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SUMMARY

A symmetric-Galerkin boundary element framework for fracture analysis with frictional contact (crack
friction) on the crack surfaces is presented. The algorithm employs a continuous interpolation on the
crack surface (utilizing quadratic boundary elements) and enables the determination of two important
quantities for the problem, namely the local normal tractions and sliding displacements on the crack
surfaces. An e�ective iterative scheme for solving this non-linear boundary value problem is proposed.
The results of test examples are compared with available analytical solutions or with those obtained
from the displacement discontinuity method (DDM) using linear elements and internal collocation. The
results demonstrate that the method works well for di�cult kinked=junction crack problems. Copyright
? 2003 John Wiley & Sons, Ltd.

KEY WORDS: crack friction; fracture analysis; kinked crack; boundary element method; symmetric-
Galerkin approximation

1. INTRODUCTION

The two principal approaches for computational fracture analysis are the �nite element method
(FEM) (e.g. Reference [1]) and boundary element method (BEM) [2–5]. The key feature of
the integral equation approach is that only the boundary of the domain is discretized and only
boundary quantities are determined. As a result, the singular stress �eld ahead of the crack
is not approximated in the analysis, and moreover, remeshing a propagating crack is easier.
In this regard, it should be noted that automatic volume meshing routines are now available
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[6] and that recent �nite element work on meshless [7] and eXtended FEM (X-FEM) [8, 9]
methods avoid explicit remeshing of the crack.
Contact friction boundary conditions arise in problems relating to rolling and sliding between

machine components or other bodies [10–12] and are ubiquitous in the �elds of earthquake
science, rock mechanics and geotechnical engineering, where multiple interacting faults and
discontinuities are present. The numerical treatment of these problems often presents a number
of di�culties in that boundary conditions are speci�ed in the form of inequality constraints
rather than in terms of �xed tractions or displacements. Further di�culties arise when multiple
intersecting junctions are considered in a cracked material (kinked crack problems). For two-
dimensional (2D) problems, a rosette of interacting wedge structures have to be analysed
with, in general, power-law displacement functions on each wedge face. Three-dimensional
junctions are correspondingly more demanding. In the face of this complexity it is clear that
purely analytic approaches will be severely restricted. However, as the deformation �eld in
the vicinity of a junction point may be non-analytic, it is essential to have con�dence in any
proposed numerical procedure that may rely on a limited representation of the deformation
shape solution.
Thus far, FEM [13], BEM using an integral equation for the resultant forces along a crack

[14–16], multi-domain BEM [17], dual BEM [18] and displacement discontinuity method
(DDM) [19–22] are numerical methods that have been employed for crack friction problems.
Note that DDM is a BEM technique based on the analytical solution to the problem of a
constant discontinuity in displacement over a single crack in unbounded domain. All these
BEM techniques are collocation methods as they employ collocation at either boundary nodes
or internal nodes (internal collocation).
The goal of this work is to demonstrate that the symmetric-Galerkin boundary element

method (SGBEM) [23–25] provides accurate solutions for crack friction problems, and more
speci�cally, for kinked and junction fractures. Frictional contact results using symmetric-
Galerkin for smooth cracks have been previously reported in Reference [26]. Symmetric-
Galerkin employs a Galerkin approximation of both the standard displacement integral
equation and the hypersingular traction equation, with this latter equation being enforced
on the crack surface [27–29]. As with most DDM implementations, the crack opening dis-
placement (COD) is employed as the unknown quantity on the crack surface. The Galerkin
procedure is based upon an additional boundary integration, and is thus potentially more
time consuming than collocation. However, the extra computational expense can be partially
o�set by exploiting symmetry, both in the matrix construction phase [30] and in solving
the linear system. Note too that internal collocation requires many more unknowns (for the
same discretization), and thus Galerkin is in fact likely to be more e�cient, especially in
three dimensions. Equally important, two key advantages follow from the Galerkin pro-
cedure. First, unlike collocation, there is no smoothness requirement on the displacement
[31, 32] in order to evaluate the hypersingular integral; thus, standard continuous elements
can be employed. The Galerkin approach can therefore easily exploit the highly e�ective
quarter point quadratic element to accurately capture the crack tip behaviour. Internal col-
location on the other hand results in a physically unappealing discontinuous interpolation.
Second, the weighted averaging formulation of Galerkin, by avoiding direct collocation at
corners and junction points, provides a smoother solution in the neighbourhood of geo-
metric discontinuities. This is especially useful for the kinked crack problems considered
herein.
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This paper is organized as follows. In the next section, a review of the SGBEM for frac-
ture mechanics is given. Section 3 brie�y describes the DDM with internal collocation. In
Section 4, an algorithm using the SGBEM for solving crack friction problems is presented. In
Section 5, several numerical examples are solved and are compared with reference solutions.
The last section contains some concluding remarks.

2. SYMMETRIC-GALERKIN BOUNDARY INTEGRAL FORMULATION

This section provides a very brief review of boundary integral equations for elasticity, and
their approximation via the symmetric-Galerkin procedure. The reader is asked to consult the
cited references for further details.
The boundary integral equation (BIE) without body forces for linear elasticity is given by

Rizzo [33]. For a source point P interior to the domain, this equation takes the form

uk(P)−
∫
�b

[Ukj(P;Q)�j(Q)− Tkj(P;Q)uj(Q)] dQ=0 (1)

where Q is a �eld point, �j and uj are traction and displacement vectors, Ukj and Tkj are the
Kelvin kernel tensors or fundamental solutions, �b denotes the boundary of the domain, and
dQ is an in�nitesimal boundary length (for 2D) or boundary surface (for 3D cases).
For plane strain problems (see, e.g. Reference [33]),

Ukj =
1

8�G(1− �)
[r; kr; j − (3− 4�)�kj ln(r)] (2)

Tkj =− 1
4�(1− �)r

[
{(1− 2�)�kj + 2r; kr; j}@r@n − (1− 2�)(njr; k − nkr; j)

]
(3)

where � is Poisson’s ratio, G is shear modulus, �ij is the Kronecker delta (≡ 1 for i= j and
≡ 0 for i �= j), rk = xk(Q)− xk(P), r2 = riri, r; k = rk=r and @r=@n= r; ini.
It can be shown that the limit of the integral in Equation (1) as P approaches the boundary

exists. From now on, for P ∈�b, the BIE is understood in this limiting sense.
As P is o� the boundary, the kernel functions are not singular and it is permissible to

di�erentiate Equation (1) with respect to P, yielding the hypersingular BIE (HBIE) for dis-
placement gradient. Substitution of this gradient into Hooke’s law gives the following HBIE
for boundary stresses:

�k‘(P)−
∫
�b

[Dkj‘(P;Q)�j(Q)− Skj‘(P;Q)uj(Q)] dQ=0 (4)

where

Dkj‘ =
1

4�(1− �)r
[(1− 2�)(�kjr; ‘ + �j‘r; k − �‘kr; j) + 2r; kr; jr; ‘] (5)

Skj‘ =
G

2�(1− �)r2

[
2
@r
@n

{(1− 2�)�‘kr; j + �(�kjr; ‘ + �j‘r; k)− 4r; kr; jr; ‘}

+2�(nkr; jr; ‘ + n‘r; kr; j) + (1− 2�)(2njr; ‘r; k + �kjn‘ + �j‘nk) − (1− 4�)�‘knj

]
(6)
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The Galerkin boundary integral formulation is obtained by taking the shape functions  m

employed in approximating the boundary tractions and displacements as weighting functions
for the integral equations (1) and (4). Thus,

∫
�b

 m(P)uk(P) dP −
∫
�b

 m(P)
∫
�b

[Ukj(P;Q)�j(Q)− Tkj(P;Q)uj(Q)] dQ dP=0 (7)

∫
�b

 m(P)�kl(P) dP −
∫
�b

 m(P)
∫
�b

[Dkjl(P;Q)�j(Q)− Skjl(P;Q)uj(Q)] dQ dP=0 (8)

A symmetric coe�cient matrix, and hence a symmetric-Galerkin approximation, is obtained
by employing Equation (7) on the boundary �b(u) where displacements ubv are prescribed, and
similarly using Equation (8) is employed on the boundary �b(�) with prescribed tractions �bv.
Note that �b =�b(u) + �b(�).
A solution procedure that employs a collocation approach enforces the BIE (1) and

HBIE (4) at discrete source points whereas these equations are satis�ed in an averaged sense
with the Galerkin approximation. The additional boundary integration is the key to obtaining
a symmetric coe�cient matrix, as this ensures that the source point P and �eld point Q are
treated in the same manner in evaluating the kernel tensors Ukj, Tkj, Dkjl and Skjl. After
discretization, the resulting equation system can be written as

[
H11 H12

H21 H22

]{
ubv

u∗

}
=

[
G11 G12

G21 G22

]{
�∗

�bv

}
(9)

Here, the �rst and second rows represent, respectively, the BIE written on (�b(u)) and
the HBIE on (�b(�)). Further, u∗ and �∗ denote unknown displacement and traction vectors.
Rearranging Equation (9) into the form [A]{x}= {b}, and multiplying the HBIE by −1, one
obtains

[−G11 H12

G21 −H22

]{
�∗

u∗

}
=

{−H11ubv +G12�bv

H21ubv −G22�bv

}
(10)

The symmetry of the coe�cient matrix, G11=GT
11, H22=HT

22 and H12=GT
21 now follows

from the symmetry properties of the kernel tensors.

2.1. Cracks in �nite domains

A �nite domain or body, B, of general shape is shown in Figure 1. The body is shown to
include a crack surface denoted as �c on which only tractions are prescribed. Initially, the
crack is composed of two coincident surfaces according to �c =�+c + �

−
c where �+c and �−

c
denote the upper and lower crack surfaces, respectively. As a result, the outward normals to
the crack surfaces, n+c and n−c , are oriented oppositely so that n−c =−n+c . Thus, the BIE and
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Figure 1. A body B containing a fracture.

HBIE written for an interior point P then take the following forms:

uk(P) =
∫
�b

[Ukj(P;Q)�j(Q)− Tkj(P;Q)uj(Q)] dQ

+
∫
�+c

[Ukj(P;Q)��j(Q)− Tkj(P;Q)�uj(Q)] dQ (11)

�k‘(P) =
∫
�b

[D‘km(P;Q)�m(Q)− S‘km(P;Q)um(Q)] dQ

+
∫
�+c

[D‘km(P;Q)��m(Q)− S‘km(P;Q)�um(Q)] dQ (12)

where, only the upper crack surface �+c needs to be modelled as on the two crack surfaces, the
displacements u+c and u−c are replaced by the single COD �uc = u+c −u−c , and the tractions �+c
and �−c by the sum of tractions ��c = �+c + �−c . However, since the crack surfaces are usually
symmetrically loaded, i.e. �−c =−�+c , one gets

uk(P) =
∫
�b

[Ukj(P;Q)�j(Q)− Tkj(P;Q)uj(Q)] dQ −
∫
�+c

Tkj(P;Q)�uj(Q) dQ (13)

�k‘(P) =
∫
�b

[D‘km(P;Q)�m(Q)− S‘km(P;Q)um(Q)] dQ −
∫
�+c

S‘km(P;Q)�um(Q) dQ (14)

It can be shown that a symmetric coe�cient matrix can be achieved by using �u as
variables on �+c . Following the Galerkin approximation, the limit of (13) and (14) is taken as
P→�b(u) and �b(�), respectively. At this point, it is convenient to convert the stress equation
(14) into a traction equation through the identity �k(P)=�‘k(P)n‘(P), with n‘(P) being the
outward normal at P. After discretizing, the following system established from Equations (13)
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and (14) is obtained:

[Gbb]{�b}=[Hbb]{ub}+ [Hbc]{�uc} (15)

where b and c denote the outer boundary and upper crack surface, respectively.
Since tractions are prescribed on the crack, only Equation (14) is written for source points

on �+c . Again, following the Galerkin approximation, the limit of (14) as P→�c, the conver-
sion of (14) into a traction equation, and discretization, the result is

[Gcb]{�b} − [Gcc]{�+c }=[Hcb]{ub}+ [Hcc]{�uc} (16)

Note that �+c now appears on the left-hand side of Equation (16) due to the limit process
as P→�c. Combining Equations (15) and (16), the equation system of the problem can be
written as follows: [

Hbb Hbc

Hcb Hcc

]{
ub

�uc

}
=

[
Gbb 0

Gcb Gcc

]{
�b

−�+c

}
(17)

where it can be proved that the coe�cient matrix on the left-hand side of (17) is also
symmetric.

2.2. Cracks in unbounded domains

When an unbounded domain is considered and is subjected to uniform remote stress ��ij,
Equation (16) reduces to the following system:

−[Gcc]{�+c }=[Hcc]{�uc} (18)

where {�+c } on the upper crack surface �+c is now the superposition of the prescribed tractions
directly applied on �+c and the tractions ��ijn+j due to the remote stresses ��ij. Note that n+j
are the components of the outward normal n+c to �+c .

2.3. Interpolation using quadratic elements

In 2D, the representation of a quantity V (t) (geometry, displacement, traction,...) using the
three-equidistant-noded quadratic element (or standard quadratic element) is

Vk(t)=
3∑

j=1
Vkj j(t) (19)

where Vkj are the nodal values of Vk , and the shape functions  j(t) for 06t61 are given by

 1(t) = (1− t)(1− 2t)
 2(t) = 4t(1− t)

 3(t) = t(2t − 1)
(20)

In crack analysis, the COD can also be interpolated using Equations (19) and (20). How-
ever, a quarter-point element needs to be associated with each crack tip in order to account
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for the stress singularity and the
√
r behaviour at the crack tip, where r is the distance

from a source point to the tip [34, 35]. The quarter-point element is formed from the stan-
dard quadratic element by simply moving the mid-node co-ordinates three-fourths of the way
towards the tip.
Recently, a modi�ed quarter-point element was proposed [36] and the SGBEM calculations

reported in this paper use this element. It was shown that the accuracy of the crack tip stress
intensity factors can be signi�cantly improved by using the modi�ed quarter-point element.
This would be important if crack propagation in these systems was being investigated.

3. DDM FORMULATION WITH INTERNAL COLLOCATION

Analytical solutions for geometrically complex crack friction problems are rare, so it is neces-
sary to validate the SG results using alternative numerical solutions. In this paper, the DDM
approximation based upon internal collocation will be used for this purpose. We therefore
present a brief description of this approach.
As indicated in the previous section, traditional boundary element solution procedures fol-

low a formulation in which the characteristic boundaries of the problem region are tessellated
by a contiguous covering of surface patches or line segments termed ‘elements’. A straight-
forward solution procedure can be implemented if no continuity requirements are imposed
on the unknown surface variables at the junctions between adjacent elements (so-called ‘non-
conforming’ approximation [37]). In this case, the local variation of the unknown surface
quantities can be described by shape functions whose nodal points fall within the element
boundaries at speci�ed internal collocation points. As a simple example, consider a straight-
line element in which any position within the element is de�ned by an intrinsic variable t
having range −16t61. If a linear variation of the unknown variables is assumed, it is nec-
essary to de�ne two collocation points at positions t=±c within the element where 0¡c¡1.
The corresponding shape functions are de�ned to be

 1(t) =
1
2

(
1− t

c

)
; −16t61

 2(t) =
1
2

(
1 +

t
c

)
; −16t61

(21)

The variation of a given quantity over the element is expressed as

V (t)=V1 1(t) + V2 2(t) (22)

where V1 and V2 are the values de�ned at each collocation point. The advantage of this
approach is that displacement and traction vectors can be evaluated analytically at the internal
collocation point positions where the boundary surface is locally smooth.
In the solution of a contact friction problem using this formulation, the local traction vector

� at collocation position P can be expressed in the form

�(P)=Ku(P) + e(P) + f(P) (23)
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where K is the self-e�ect in�uence matrix, u(P) is the unknown surface displacement (or
displacement discontinuity) vector associated with collocation point P, e(P) is the sum of
all tractions induced at point P by all collocation positions other than point P and f(P) is
the initial �eld stress at point P. The solution of a system of equations for the unknown
vectors u(P) can be carried out conveniently using an iterative procedure. Details of this
approach are described in Reference [21]. The main utility of this scheme is that general non-
linear constraints can be imposed at each collocation point. In particular, constraints between
shear and normal components of the traction vector �, imposed by sliding friction or by
non-linear joint sti�ness relationships can be easily resolved. On the other hand, two major
disadvantages are associated with the internal collocation scheme. Firstly, the relaxation of
continuity requirements at element boundaries and junctions will lead to singularities in the
stress �eld in the vicinity of these points. If multiple, closely spaced crack assemblies are to
be analysed, this can, in certain cases, lead to numerical di�culties. A second disadvantage
is that the internal collocation scheme is inherently less e�cient than approaches such as
the symmetric-Galerkin procedure described in this paper, in which the unknown solution
variables can be speci�ed at both the element junctions and at internal element positions. For
example, in a 2D crack problem comprising n elements, the number of internal collocation
points required is 3n if quadratic variation shape functions are employed. In the symmetric-
Galerkin scheme, the number of nodal points would be (2n − 1). The reduction in nodal
positions is correspondingly greater when three-dimensional surfaces are considered.

4. CRACK FRICTION ALGORITHM USING THE SGBEM

In this section, we present a framework to model cracks with frictional contact using the
SGBEM. This is a non-linear boundary value problem which can be resolved by adopting an
iterative scheme. This scheme enables the determination of two important quantities, namely
the normal tractions and sliding displacements (slip) on the sliding crack surfaces. In the
following sections, it is shown that the symmetric-Galerkin procedure can also be formulated
to resolve problems of friction sliding in cases where the friction constraint condition may be
di�erent on each branch of a common junction point.

4.1. Problem formulation

Consider a body B (or an unbounded domain) containing internal cracks subjected to pre-
scribed global tractions �c. Let �un and �ut be, respectively, the crack opening=closing and
sliding displacements in the local co-ordinate system (t; n). After the �nal solution of the itera-
tive scheme is converged, additional local tractions t=(tt ; tn) on the sliding crack surfaces are
determined such that no material interpenetration occurs. Note that tn and tt are, respectively,
the normal and tangential components of t. The boundary conditions for the �nal solution are:

1. Either �un=0 and �ut =0 (the crack is not sliding), in which case t=0, or
2. �un¿0 (the crack is open), also in which case t=0, or
3. �un is forced to be 0 (no material interpenetration, the crack is sliding) by applying
additional tractions t on those crack surfaces; the normal and tangential components
of t are related by |tt |=− tan(�)tn with � being the friction angle. The sign of tt is
such that the sliding movement of the crack surfaces is opposed.
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Note that tn is non-linearly dependent on the �un values on all other cracks and on the
�eld stress.

4.2. Iterative procedure

For crack friction problems, the numerical solution with the initial traction boundary condi-
tions on the crack surfaces provides negative �un (material interpenetration) in the region of
contact. This negative �un solution is obviously unphysical, and thus an iterative procedure
is employed to determine tn and tt such that �un¿0:

1. From the SGBEM solution for the global COD �uc, compute the local displacement
components �un and �ut .

2. If �un¡0 at a given node on the crack, set:

(a) Normal traction at the ith step as t(i)n = t(i−1)n − k�un, where t(i−1)n is the normal
traction at the previous step, and k=G=b with G and b being the shear modulus and
crack length, respectively,

(b) tt =sign (�ut) tan(�)tn.

3. At the crack tips of a sliding crack, normal tractions t(i)n are determined by interpolating
those at the other nodes of the crack tip elements.

4. Convert the local traction components tn and tt to the global traction vector �+ca on the
upper crack surface.

5. Superpose the above additional tractions �+ca to the initially prescribed tractions �+c on the
crack surface. Re-solve the SGBEM system (17).

6. Repeat from the �rst step until convergence.

The error indicator of convergence is calculated after each iterative step as the maximum
di�erence between the current and previous computed local normal traction component

�= max |t(i)n −t(i−1)n | (24)

The iteration process is converged when the error indicator � is below a speci�ed toler-
ance �0.

5. TEST CASES

Four problems are reported in this section to illustrate the proposed algorithm using the
SGBEM. Unless otherwise noted, the plane strain state is considered, the material constants
employed are Young’s modulus E=70000MPa and Poisson’s ratio �=0:2, and a convergence
criterion �0 = 10−6 MPa is chosen.

5.1. Single crack under compression

A single crack in an unbounded domain and subject to a compressive remote stress �=200MPa
(see Figure 2) is studied �rst, as an analytical solution is available for comparison. The crack
length and inclination angle are 2b=10m and �=20◦, respectively. A friction angle �=30◦

is assumed.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:835–851
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10

20o
σ

σ

Figure 2. A crack under compression in an unbounded domain.

The analytical solutions for the normal traction tn and slip �ut on the crack surface are
given by

tn =−� sin2 � (25)

�ut =
4(1− �2)�ct

E

√
b2 − (	− b)2 (26)

where �¡0, 06	62b and the shear traction �ct on the crack surface in the presence of
frictional contact is

�ct =� sin �(cos �− sin � tan�) (27)

For numerical analysis by the SGBEM, the crack is discretized into ten quadratic elements
of equal length. The numerical and analytical solutions for tn and �ut that are plotted in
Figure 3 are practically identical.

5.2. Two-wing crack problem

Consider a two-wing crack in an in�nite plate under a far-�eld compressive stress �=200MPa
acting in the plate’s plan as depicted in Figure 4. This kinked crack is formed by three
segments of equal length. Due to the compressive loading, the surfaces of the inclined crack
segment are in contact. The cases of frictionless (�=0) and frictional contacts (�=30◦) are
of interest.
For numerical analysis by the SGBEM, 10 and 14 quadratic elements are used to discretize

each of the horizontal segments and the inclined segment of the crack, respectively. These
are non-uniform elements with shorter ones being placed near the junction points. It is known
that the dislocation densities contain a singularity at a crack kink, and the mesh re�nement
technique can be used to handle this singularity [14]. Numerical analysis carried out by the
internal collocation DDM uses ten linear elements to discretize each of the crack segments.
The SGBEM and DDM solutions for normal traction tn and slip �ut on the inclined segment
of the crack are plotted in Figure 5 for the frictionless case, and in Figure 6 for the frictional

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:835–851



SYMMETRIC-GALERKIN BEM SIMULATION 845

0 2 4 6 8 10
η, [m]

23.30

23.35

23.40

23.45

23.50

t n, 
[M

P
a]

SGBEM solution tn

-15

-10

-5

0

∆
u

t , [m
m

]

SGBEM solution ∆ut
Analytical solutions

Figure 3. Normal traction and slip on the crack (�=30◦).
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Figure 4. A Two-wing crack in an unbounded domain.

case. Very good agreement between the SGBEM and DDM solutions can be observed. The
normal tractions shown in Figure 6 (with friction on the sliding crack) can be seen to be
slightly higher than the case with no friction (Figure 5).

5.3. Crack intersection problem

This problem arises from attempting to simulate a mining problem. A sliding crack intersecting
at right angles to the right-hand edge of a horizontal crack in a bi-axial compressive far-�eld
stress is shown in Figure 7. The traction-free horizontal ‘crack’ represents an approximation
to a slot-shaped opening having a large length to width aspect ratio. Allowing interpenetration
is interpreted as the movement of the roof and the �oor towards each other when this opening
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Figure 5. Normal traction and slip on the sliding (inclined) segment of the crack (�=0).
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Figure 6. Normal traction and slip on the (sliding) inclined segment of the crack (�=30◦).

is established in the compressive stress �eld mentioned above. The vertical crack represents a
fault intersecting the end of the opening, and thus its surfaces are not allowed to interpenetrate.
For numerical analyses, �=100 MPa and a frictional angle �=30◦ are considered. The

internal collocation DDM employs 40 uniform linear elements, while the SGBEM uses 20
non-uniform quadratic elements to mesh each of the crack segments. As usual, shorter elements
are located near the intersection point. The numerical solutions for local normal traction tn
and slip �ut on the fault are depicted in Figure 8. Good agreement between the SGBEM and
DDM solutions can be seen.
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Figure 7. Intersecting cracks in an unbounded domain.
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Figure 8. Normal traction and slip on the fault.

5.4. T-crack problem

Finally, consider a T -crack in an unbounded domain and subject to a remote compressive
stress �=100MPa acting vertically (see Figure 9). The vertical segment of this kinked crack
is horizontally pressurized to p=100MPa internally and intersects the middle of the horizontal
(sliding) crack segment at right angles. A frictional angle �=30◦ is used.
For the DDM simulation, 200 and 400 uniform elements are employed to discretize the

horizontal and vertical cracks, respectively. For the SGBEM simulation, the corresponding
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Figure 9. A T -crack in an unbounded domain.
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Figure 10. Normal traction and slip on the sliding (horizontal) segment of the crack.

numbers of elements are 26 and 41. Again, shorter SGBEM elements are placed near the
junction point. The SGBEM versus DDM solutions for normal pressures tn and slip �ut on
the sliding segment of the crack are plotted in Figure 10 where the agreement is very good.
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Figure 11. COD on the vertical segment of the crack.

It appears from both the SGBEM and DDM solutions that the sliding crack opens slightly
adjacent to the point of intersection with the pressurized crack.
The numerical results for the COD on the vertical crack are shown in Figure 11 where,

again, very good agreement is observed. Note that the COD at the intersection point is equal
to the jump in the slip on the sliding crack at that point (see Figure 10). While the SGBEM
is able to produce the COD at the intersection point (COD=134:98 mm) and at crack tip
(COD=0), the DDM cannot, as there is no collocation at these points.

6. CONCLUDING REMARKS

An algorithm for modelling crack problems with frictional contact based upon a symmetric-
Galerkin analysis has been presented. An iterative scheme is adopted to solve the system
of non-linear equations on the crack surface. Two important advantages of the SGBEM are
exploited, namely the ability to use standard continuous elements to solve crack problems,
and the ability to accurately handle corners and junction points. One consequence of this is
that the elegant quarter point element can be employed to accurately capture the crack tip
singularity. The results of the test problems, deliberately chosen to examine the behaviour of
the algorithm for problems involving kinks and junction points, demonstrate that the approach
is very successful. This suggests that the SGBEM is a very e�ective method for solving
problems with crack friction constraints.
In applying the friction interface model, we have speci�ed an inequality constraint that

requires the friction resistance on the sliding interface to be greater than or equal to the shear
stress acting across the interface. Consequently, the solutions that satisfy this form of bound-
ary condition are not necessarily unique. For example, if one of the existing solutions was
considered and a small reverse slip was applied to a section of the sliding interface, then the
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inequality could still be satis�ed although the ‘solution’ would be di�erent but still valid in
terms of the stated boundary constraint. In addition, we do not treat explicit time-dependent
rate=state friction constitutive rules or general time-dependent evolution of the solution. In
order to provide a ‘sensible engineering’ result, satisfying the boundary conditions, it is nec-
essary therefore to consider all loading steps to be suitably ‘small’ and to be arranged in a
de�ned sequence.
Based upon these encouraging two-dimensional results, future work will examine the ex-

tension of the method to three-dimensional crack friction problems. Note that in this higher
dimension, internal collocation necessarily requires many more unknowns (due to the non-
conforming approximation) than a corresponding SGBEM calculation, and would therefore be
highly ine�cient. Moreover, crack junctions now become one-dimensional edges (instead of a
zero-dimensional point), and thus too would pose a challenge to collocation-based approaches.

ACKNOWLEDGEMENTS

This research was supported in part by the Applied Mathematical Sciences Research Program of the
O�ce of Mathematical, Information, and Computational Sciences, U.S. Department of Energy under
contract DE-AC05-00OR22725 with UT-Battelle, LLC.

REFERENCES

1. Cook RD, Malkus DS, Plesha ME. Concepts and Applications of Finite Element Analysis. Wiley: New York,
1989.

2. Cruse TA. Boundary Element Analysis in Computational Fracture Mechanics. Kluwer Academic Publishers:
Boston, 1988,

3. Crouch SL, Star�eld AM. Boundary Element Methods in Solid Mechanics. Unwin Hyman: London, 1990.
4. Aliabadi MH. Boundary element formulations in fracture mechanics. Applied Mechanics Reviews 1997;
50:83–96.

5. Chen JT, Hong H-K. Review of dual boundary element methods with emphasis on hypersingular integrals and
divergent series. Applied Mechanics Reviews 1999; 52:17–33.

6. Carter BJ, Wawrzynek PA, Ingra�ea AR. Automated 3D crack growth simulation. International Journal for
Numerical Methods in Engineering 2000; 47:229–253.

7. Belytschko T, Lu YY, Gu L, Tabbara M. Element-free Galerkin methods for static and dynamic fracture.
International Journal of Solids and Structures 1994; 32:2547–2570.

8. Belytschko T, Black T. Elastic crack growth in �nite elements with minimal remeshing. International Journal
for Numerical Methods in Engineering 1999; 45:601–620.

9. Mo	es N, Dolbow J, Belytschko T. A �nite element method for crack growth without remeshing. International
Journal for Numerical Methods in Engineering 1999; 46:131–150.

10. Johnson KL, Shercli� HR. Shakedown of 2-dimensional asperities in sliding contact. International Journal of
Mechanical Sciences 1992; 34:375–394.

11. Man KW, Aliabadi MH, Rooke DP. BEM frictional contact analysis: load incremental technique. Computers
and Structures 1993; 47:893–905.

12. Huesmann A, Kuhn G. Automatic load incrementation technique for plane elastoplastic frictional contact
problems using boundary element method. Computers and Structures 1995; 56:733–744.

13. Ingra�ea AR, Heuze FE. Finite element models for rock fracture mechanics. International Journal for Numerical
and Analytical Methods in Geomechanics 1980; 4:25–43.

14. Zang WL, Gudmundson P. Contact problems of kinked cracks modelled by a boundary integral method.
International Journal for Numerical Methods in Engineering 1990; 29:847–860.

15. Zang WL, Gudmundson P. Frictional contact problems of kinked cracks modelled by a boundary integral method.
International Journal for Numerical Methods in Engineering 1991; 31:427–446.

16. Chen T-C, Chen W-H. Frictional contact analysis of multiple cracks by incremental displacement and resultant
traction boundary integral equations. Engineering Analysis with Boundary Elements 1998; 21:339–348.

17. Liu SB, Tan CL. Two-dimensional boundary element contact mechanics analysis of angled crack problems.
Engineering Fracture Mechanics 1992; 42:273–288.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:835–851



SYMMETRIC-GALERKIN BEM SIMULATION 851

18. Lee SS. Analysis of crack closure problem using the dual boundary element method. International Journal of
Fracture 1996; 77:323–336.

19. Chan HCM, Li V, Einstein HH. A hybridized displacement discontinuity and indirect boundary element method
to model fracture propagation. International Journal of Fracture 1990; 45:263–282.

20. Shen B, Stephansson O. Modi�cation of the G-criterion for crack propagation subjected to compression.
Engineering Fracture Mechanics 1994; 47:177–189.

21. Napier JAL, Malan DF. A viscoplastic discontinuum model of time-dependent fracture and seismicity in brittle
rock. International Journal of Rock Mechanics and Mining Sciences 1997; 34:1075–1089.

22. Bobet A, Einstein HH. Numerical modeling of fracture coalescence in a model rock material. International
Journal of Fracture 1998; 92:221–252.

23. Sirtori S. General stress analysis method by means of integral equations and boundary elements. Meccanica
1979; 14:210–218.

24. Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin boundary-element method. Applied Mechanics Reviews
(ASME) 1998; 51:669–704.

25. Bonnet M. Boundary Integral Equation Methods for Solids and Fluids. Wiley: England, 1995.
26. Maier G, Novati G, Cen Z. Symmetric-Galerkin boundary element method for quasi-brittle fracture and frictional

contact problems. Computational Mechanics 1995; 17:74–89.
27. Crouch SL. Solution of plane elasticity problems by the displacement discontinuity method. International Journal

for Numerical Methods in Engineering 1976; 10:301–343.
28. Bui HD. An integral equation method for solving the problem of a plane crack of arbitrary shape. Journal of

the Mechanics and Physics of Solids 1977; 25:29–39.
29. Li S, Mear ME, Xiao L. Symmetric weak form integral equation method for three-dimensional fracture analysis.

Computer Methods in Applied Mechanics and Engineering 1998; 151:435–459.
30. Gray LJ, Gri�th B. A faster Galerkin boundary integral algorithm. Communications in Numerical Methods in

Engineering 1998; 14:1109–1117.
31. Gray LJ. Evaluation of hypersingular integrals in the boundary element method. Mathematical and Computer

Modelling 1991; 15:165–174.
32. Martin PA, Rizzo FJ. Hypersingular integrals: how smooth must the density be? International Journal for

Numerical Methods in Engineering 1996; 39:687–704.
33. Rizzo FJ. An integral equation approach to boundary value problems of classical elastostatics. Quarterly of

Applied Mathematics 1967; 25:83–95.
34. Henshell RD, Shaw KG. Crack tip �nite elements are unnecessary. International Journal for Numerical Methods

in Engineering 1975; 9:495–507.
35. Barsoum RS. On the use of isoparametric �nite elements in linear fracture mechanics. International Journal

for Numerical Methods in Engineering 1976; 10:25–37.
36. Gray LJ, Phan A-V, Paulino GH, Kaplan T. Improved quarter-point crack tip element. Engineering Fracture

Mechanics 2003; 70:269–283.
37. Brebbia CA. The Boundary Element Method for Engineers. Wiley: New York, 1978.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:835–851


