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Summary

Although hard rock is not usually associated with large creep deformation, data collected
from the tunnels and stopes of the deep South African gold mines illustrates significant
time-dependent behaviour. Apart from application in mining, a better understanding of the
time-dependent behaviour of crystalline rock is required to analyse the long term stability of
nuclear waste repositories and to design better support for deep civil engineering tunnels in
these rock types. To illustrate the subtle problems associated with using viscoelastic theory
to simulate the time-dependent behaviour of hard rock, a viscoelastic convergence solution
for the incremental enlargement of a tabular excavation is discussed. Data on the time-
dependent deformation of a tunnel developed in hard rock further illustrates the limitations
of the theory, as it is unable to simulate the fracture zone around these excavations. To
simulate the rheology of the fracture zone, a continuum viscoplastic approach was devel-
oped and implemented in a finite di¤erence code. This proved more successful in modelling
the time-dependent closure of stopes and squeezing conditions in hard rock tunnels. A
continuum approach, however, has limitations in areas where the squeezing behaviour is



dominated by the time-dependent behaviour of prominent discontinuities such as bedding
planes. To overcome this problem, a viscoplastic displacement discontinuity technique was
developed. This, combined with a tessellation approach, leads to more realistic modelling of
the time-dependent behaviour of the fracture zone around excavations.

1. The Need for Research into the Time-dependent Behaviour of Hard Rock

In a previous paper, Malan (1999a) described the need for research into the time-
dependent behaviour of the deep tabular excavations in the South African gold
mining industry. Although the focus of this earlier paper was mainly on the clo-
sure behaviour of deep tabular excavations, the results formed part of a larger
study of the time-dependent behaviour of hard rock. As the findings of this study
have important implications in areas of rock mechanics outside the mining indus-
try, it is summarised in this paper with emphasis on application in tunneling exca-
vations. Further details on this study of the time-dependent behaviour of hard
rock can be found in Malan (1998), Malan (1999b), Napier and Malan (1997) and
Malan and Drescher (2000). It should be noted that this current paper deals exclu-
sively with the time-dependent behaviour of hard crystalline rock and the squeez-
ing behaviour of tunnels in soft rocks, such as shale or potash, will not be consid-
ered. For more information on the time-dependent behaviour of tunnels in weak
rock, the reader is referred to a special issue of the Italian Geotechnical Journal
(2000) dealing exclusively with squeezing conditions in tunnels.

Outside of the South African mining industry, an engineering application where
the time-dependent behaviour of hard rock recently became more important is the
study of long-term stability of chambers used for nuclear waste repositories (Bla-
cic, 1981; Pusch, 1993). Although many of these repositories are located in salt
and potash (e.g. Kwon, 2000), some are planned in crystalline rock such as granite
(Kwon et al., 2000). An important aspect of the problem is that the excavations
must be maintained for many decades to allow retrieval of waste and monitoring
of repository performance. According to the design criteria for Yucca mountain
repository in the United States, the closure rates in the main access drift and other
drifts need to be below 1 mm/year and 3 mm/year, respectively. Although, intu-
itively, damage to excavations in hard rock from time-dependent deformation
seems unlikely, Blacic (1981) showed that time-dependent microcracking and wa-
ter-induced stress corrosion can lead to significant reductions in strength in the
near field region of a repository. The issue of roof stability of these repositories is
also important. Although these roofs may remain stable for hundreds of years,
depending on the rock type, excavation dimensions and stress conditions, prob-
lems may appear soon after development as noted in the hard rock mines in South
Africa. Pusch (1993) estimated the rock disintegration of the roof of the Swedish
repository at Forsmark where the excavation is intersected by a fracture zone. By
generalising the structure to be one of regular layers of blocks and applying a log-
time creep law, he estimated that the roof would disintegrate to a depth of 3 m
over a period of a thousand years.

Further research on the time-dependent behaviour of hard rock is also neces-
sary to determine the onset of squeezing conditions in deep tunnels developed in
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hard rock. An example of the ever-increasing depth of civil engineering tunnels is
the Gotthard Base Tunnel being developed in southern central Switzerland where
the maximum overburden is approximately 2500 m (Brox and Hagedorn, 1996). It
is not clear if the existing empirical rules to predict squeezing are still valid at these
great depths for crystalline rock. For tunneling in soft rock, an empirical rule fre-
quently used to identify squeezing conditions is the competency factor c. This is
defined as the ratio of the uniaxial compressive strength of the rock to the over-
burden stress (Muirwood, 1972; Nakano, 1979; Barla, 1995; Aydan et al., 1996)
and is calculated as

c ¼ sc

rgH
ð1Þ

where sc is the uniaxial compressive strength of intact laboratory specimens, r is
the density of the rock, g is gravitational acceleration and H is the depth below
surface. In general, squeezing conditions are found for c < 2. This was confirmed
by Aydan et al. (1996) who did an extensive survey of squeezing tunnels in Japan.
The depth of tunnels in this study was less than 400 m and the host rock comprised
typical soft types like mudstone, tu¤, shale and siltstone. It is therefore unclear if
this simple rule can be extended to deep tunnels in hard rock.

1.1 Tunnel Deformation at Hartebeestfontein Mine

Experience of the behaviour of access tunnels in the deep South African gold mines
showed that rock displacements reminiscent of squeezing in weak rock can occur,
even though these tunnels are developed in hard crystalline rock. One example is
the large tunnel deformation observed at the Hartebeestfontein Mine near Klerks-
dorp in South Africa (Malan and Bosman, 1997). The tunnels in question are
developed in argillaceous quartzites with a uniaxial compressive strength ranging
from 130 MPa to 180 MPa. The combination of relatively weak quartzites and
high stress leads to appreciable time-dependent movement of the rock and severe
support di‰culties. In some cases, extreme tunnel closure rates in the order of
50 cm per month have been reported (Malan and Basson, 1998). Figure 1 illus-
trates typical conditions in tunnels experiencing significant time-dependent defor-
mation at the mine. This necessitates frequent rehabilitation of these tunnels. If the
time-dependent fracture processes could be better understood, optimum strategies
could be developed to reduce the cost of continually installing new support.

To illustrate typical rates of closure in the squeezing tunnels at Harte-
beestfontein Mine, data from a measuring station in the 78A24 East haulage in the
No. 6 shaft area is illustrated below. The tunnel was developed in argillaceous
quartzites with an average uniaxial compressive strength of 177 MPa. The quart-
zites contain well-defined bedding planes.

It would be of interest to measure tunnel closure on the surface of the excava-
tion, but due to the poor rock conditions, closure pegs, which are not anchored
deep in the rock, are lost very soon after installation. Therefore, the measuring
station consisted of 2.2 m rods grouted in the hangingwall and sidewalls and a
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0.4 m rod grouted in the footwall (Fig. 2). The closure measurements were taken
between the ends of these rods which protruded from the rock. The position of the
measuring station in relation to the surrounding stoping operations is illustrated
in Fig. 3.

Sidewall measurements over a period of 180 days are illustrated in Fig. 4. A
total closure of 65 mm was measured during this period. For the first 75 days of
measurement, there was no mining in this area as the ledging in Fig. 3 only started
in September 1996. For this initial period, when the stresses acting on the tunnel
were constant, an average closure rate of 0.24 mm/day was measured between the
two sidewalls. Note that the magnitude of deformation recorded is less than the
surface deformation of the excavation because the measuring rods were anchored
deeply in the rock. It is clear that the magnitude of closure measured at this site is
unacceptably high for a service excavation that needs to remain stable for many
years. Note that the rapid increase in closure rate in September 1996 was not only
due to the nearby mining, but also damage caused by a seismic event (magnitude
1.5), which was located approximately 200 m from the measurement station.

Fig. 1. Adverse haulage conditions at Hartebeestfontein Gold Mine in South Africa caused by slow
time-dependent deformation processes in the rock. Note that this is not rockburst damage (courtesy

W. D. Ortlepp)
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Fig. 2. Closure station consisting of rods grouted deeply in the rock. The deformation illustrated in
Fig. 4 was taken between the two rods in the sidewalls

 
 

 

 

  

 

 

 

 

  

 

 

 
 

 

Fig. 3. Plan view of the stoping operations surrounding the measurement station in the haulage. The
haulage is approximately 45 m below the reef. The numbers indicate the month in which the particular

section was mined in 1996
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This paper is divided in three sections, investigating the implications of using
viscoelastic models, continuum elasto-viscoplastic models and a discontinuum vis-
coplastic model to simulate the time-dependent behaviour of hard rock.

2. Some Notes on the Use of Viscoelastic Theory

The theory of viscoelasticity provides a theoretical basis for analysing time-
dependent rock movement and for extrapolation beyond the range of an experi-
mental data set. In linear viscoelastic theory, complex strain-time behaviour can
be described by various combinations of two principal states of deformation
namely elastic behaviour and viscous behaviour. As no attempt is made to review
viscoelastic theory in this text, the reader is referred to Flügge (1975) for a good
introduction to the subject. The historical use of di¤erent viscoelastic models to
simulate the creep of rocks is given in Lama and Vutukuri (1978).

There has always been some doubt about the usefulness of this theory in rep-
resenting rock behaviour, as explained by Robertson (1964), owing to the func-
tional dependence of the viscosity values on stress, temperature and chemical envi-
ronments. Some argue that this does not detract from its usefulness as a concept
in creep analysis as long as its limitations are clearly understood. Similarly the
parameters of linear elasticity theory, when applied to rock, are not constant over
a wide range of strain rates and temperatures, but it is nevertheless an important
approximation frequently used in rock mechanics. In regards to viscoelasticity,
even recent publications can be found were it has been used to simulate time-
dependent behaviour of rock (Pan and Dong, 1991a). In this current study how-
ever, it was discovered that there are some subtle problems associated with the use
of viscoelasticity theory to simulate time-dependent closure of tabular excavations
in hard rock. Although the example below is not directly relevant to tunnel design
and support, it is included to highlight some of the problems associated with vis-

Fig. 4. Sidewall deformation measured in the haulage
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coelastic theory. These problems arise because of the special geometry of the tab-
ular excavations and are not readily apparent when applying the theory to circular
tunnels. This is a symptom of the fundamental problem of linear viscoelasticity in
relation to rock mechanics, namely the inability to simulate failure.

2.1 Viscoelastic Convergence Solution for Tabular Excavations

Some experimental data of the time-dependent convergence of deep tabular exca-
vations is given in Malan (1999a). As a preliminary attempt to simulate the time-
dependent deformations measured in these excavations, a viscoelastic approach
was investigated.

As no analytical model for the closure of tabular openings in viscoelastic media
was available, a two-dimensional closure solution for a parallel-sided tabular exca-
vation (Fig. 5) in a viscoelastic medium was derived by the author. The solution
was obtained by subjecting a known elastic solution to the viscoelastic correspon-
dence principle (Appendix I). An important feature of this analytical solution is
that it accounts for the incremental enlargement of these excavations. When
assuming that the rock behaves as an elastic material in dilatation and as a Bur-
gers viscoelastic material (Fig. 6) in distortion, the solution for an excavation
developed in n increments with both faces blasted simultaneously can be derived
as given in Eq. (2) and (3). The various coe‰cients in these two equations are
given in Eq. (4) to (13).

 

Fig. 5. A single parallel-sided tabular excavation. The analytical viscoelastic convergence solution was
derived for the two-dimensional section in the figure. The origin of the co-ordinate system is at the

centre of the stope

Fig. 6. Representation of the Burgers viscoelastic model with the viscosity coe‰cients h1 and h2 and
shear moduli G1 and G2
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; ð13Þ

where Sz is the stope closure, 2li is the span of the stope after mining increment
i; r is the density of the rock, x is the position in the stope, g is the gravitational
acceleration, H is the depth below surface, k is the ratio of horizontal to vertical
stress, a is the dip of the reef, b is the angle between the x-axis and the dip, n is
Poisson’s ratio, E is Young’s modulus, n is the number of increments, t is time and
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ti is the time when increment i is mined. The Burgers viscosity coe‰cients h1 and
h2 and shear moduli G1 and G2 are defined in Fig. 6. It should also be noted that
this solution is only valid for stopes where a two-dimensional approximation is
possible and where no contact between footwall and hangingwall occurs in the
centre of the stope.

Using this approach, a good fit with experimental data could be obtained as
shown in Fig. 7 (see Malan, 1998). Although this appears encouraging, problems
were noted when attempting to calibrate the model at various distances from the
mining face. These problems arise as the model predicts that the rate of steady-
state convergence increases towards the center of the stope. This can be shown by
taking the time derivative of Eq. (3) (assuming the excavation was made in a single
cut, i ¼ 1, at time t1 ¼ 0). For time t! y, the derivative is given by (see Malan,
1998)

dSz

dt

				
t!y

¼
�2Wz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

p
1 þ dx

2

� �
h2

: ð14Þ

As t! y, the convergence rate in the secondary phase is therefore only a func-
tion of geometric parameters, stress magnitude and the viscoelastic parameter h2.
This is intuitively expected from Fig. 6. Also if h2 ¼ y (thereby reducing the
Burgers model to the 3-parameter solid, Eq. (4) predicts correctly that at t! y,
the convergence rate becomes zero. The steady-state convergence rate (Eq. 3) was
plotted as a function of the position x in Fig. 8. The highest rate of convergence is
in the centre of the stope, which reduces to a value of zero at the stope face. This
can be compared with some underground data collected in a South African mining
stope, illustrating the opposite trend where the rate of steady-state closure decreases
with increasing distance from the stope face. This di¤erence in behaviour is caused

Fig. 7. The Burgers viscoelastic closure solution fitted to experimental closure measured at Deelkraal
Mine
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by the inability of the viscoelastic model to simulate the fracture processes sur-
rounding the deep mining excavations.

2.2 Implications when Simulating the Time-dependent Behaviour of Tunnels

Using Viscoelastic Theory

In many instances where significant time-dependent tunnel deformation is ob-
served, the temptation exists to measure the rate of deformation between pegs in-
stalled on the tunnel surface and then, due to its simplicity, use viscoelastic theory
to simulate the data and extrapolate into the future. Good fits with the data can
usually be obtained, similarly to what is illustrated for the tabular excavation

Fig. 8. The rate of steady-state convergence along a panel of 100 m span at t! y. Values used in this
simulation are h2 ¼ 2 � 1012 Pa.h, H ¼ 2000 m, a ¼ 0
, k ¼ 0:5, g ¼ 9:81 m/s2 and r ¼ 2700 kg/m3

Fig. 9. Closure data from a deep tabular mining stope in South Africa. Note that the rate of steady-
state closure decreases as the distance to face increases. This is contrary to what is shown by the visco-

elastic model in Fig. 8. (Note that the stope face is to the left in Fig. 9 and to the right in Fig. 8.)
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given above in Fig. 7. When there is significant fracturing around the excavation,
however, viscoelastic theory cannot be used to estimate the relative movement
between the skin of the excavation and some distance inside the rock mass. This
was illustrated by simulating a circular tunnel of 3 m diameter in material that is
assumed to behave according to the Burgers model in Fig. 6. These simulations
were conducted using the creep version of the FLAC code (Itasca, 1993). A Bur-
gers constitutive model, available as a FISH (the built-in programming language
in FLAC) routine, was used. Figure 10 illustrates the absolute displacements
measured in the tunnel sidewall along a horizontal line. Notice that the amount
of displacement gradually decreases with increasing distance into the sidewall.

To compare these results with underground data of excavations in hard rock,
Figure 11 shows the deformation of a pump chamber at Hartebeestfontein Mine
(Malan, 1998). The chamber was developed in argillaceous quartzites with an
average strength of 142 MPa. The dimension of the chamber was 18.5 m � 6 m �
3.5 m. The data in Fig. 11 was measured using rod extensometers anchored at
di¤erent depths in the sidewall. The deformation measured is therefore the relative
displacement between the skin of the excavation and a certain depth into the rock
mass. Note that there are significant di¤erences in deformation between the an-
chor points at 2 m and 3 m and also 5 m and 6 m. This is probably caused by
fractures or discontinuities opening at these particular depths.

Unfortunately continuum viscoelastic theory is not able to simulate this com-
plex behaviour as seen in Fig. 10 where the deformation gradually decreases with
increasing distance into the rock. Although a calibrated viscoelastic model might
give a good fit to deformation measured on the skin of the tunnel in hard rock,
it cannot be used to design rock bolt support where the relative displacement be-
tween the skin of the tunnel and a point at a certain depth in the rock needs to be
determined.

Fig. 10. Numerical solution of the deformation of a tunnel sidewall. The rock is assumed to behave as a
Burgers viscoelastic material in distortion. The parameters used were (see Fig. 3): Bulk modulus ¼ 30
GPa, G1 ¼ G2 ¼ 30 GPa, h1 ¼ 80 GPa/h and h2 ¼ 2000 GPa/h. The horizontal and vertical stresses

were assumed to be 60 MPa
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3. Continuum Elasto-Viscoplastic Modelling

3.1 Introduction

As concluded in the previous section, a viscoelastic approach is not suitable to
simulate the time-dependent behaviour of deep excavations in hard rock. From
the work described in Malan (1998), it is evident that the time-dependent failure
processes in the rock play a prominent role in the underground deformation
behaviour. Any model used to simulate this time-dependent behaviour needs to
include some representation of the delayed failure processes and the resulting time-
dependent extension of the fracture zone. It appears as if the significant time-
dependent e¤ects are confined to the fracture envelope surrounding excavations.
The far field behaviour has been shown to be adequately represented by elastic
theory (Ryder and O‰cer, 1964). To simulate this behaviour, it is therefore neces-
sary that the constitutive model is able to approximate the rheology of the fracture
zone. To simulate the time-dependent fracture processes, the author developed a
continuum elasto-viscoplastic model with a novel time-dependent weakening rule
as described in the next section. This was implemented in the finite di¤erence com-
puter code FLAC.

To include failure processes in rheological models, slider elements (also called
St. Venant elements) are typically added to the elastic and viscous elements of
viscoelasticity. These slider elements have a specified failure strength and are
immobilised below this strength. Commonly, a dashpot is placed in parallel with
the slider to control the strain rate if the slider is loaded above its failure strength.
This is the so-called Bingham unit.

Various combinations of elastic, viscous and St. Venant elements have been
used by di¤erent researchers to simulate particular time-dependent problems.
Gioda (1982) and Gioda and Cividini (1996) used a Kelvin unit in series with a

Fig. 11. Time-dependent deformation of the sidewall of a pump chamber measured with rod extens-
ometers anchored at di¤erent depths. Note that the numerical results in Fig. 10 are absolute displace-
ments, while the results in Fig. 11 are relative displacements between the skin of the excavation and the

di¤erent anchor points inside the rock mass
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Bingham unit to represent primary and secondary closure in squeezing tunnels.
Tertiary movements can be considered by providing suitable laws relating the
values of the mechanical parameters (such as viscosity) to the irreversible part of
the time-dependent strain. These rheological models are particularly suited for
analysis carried out through the finite element method. This allows the interaction
between squeezing rock and support to be simulated. Other examples of the use
of these rheological models can be found in Akagi et al. (1984), Song (1993), Lee
et al. (1995), Euverte et al. (1994) and Sagawa et al. (1995).

Since Perzyna (1966) proposed the general concept of elasto-viscoplasticity,
a number of workers have applied this theory to geological materials. Elasto-
viscoplasticity is essentially a modification of classical plasticity theory by the in-
troduction of a time-rate rule in which the yield function and plastic potential
function of classical plasticity are incorporated. In comparison with viscoelasticy,
a viscoplastic material shows viscous behaviour in the plastic region only. Desai
and Zhang (1987) used this theory together with a generalised yield function
to characterise the viscoplastic behaviour of a sand and rock salt. Sepehr and
Stimpson (1988) used Perzyna’s theory as a basis to develop a time-dependent fi-
nite element model to understand the time-dependent closure of excavations and
seismicity in the potash mines in Saskatchewan. For a rheological analysis of
tunnel excavations, Swoboda et al. (1987) developed a coupled finite element/
boundary element approach to analyse the interaction of the rock with the visco-
elastic properties of the shotcrete. The rock was assumed to behave in an elasto-
viscoplastic fashion.

Fakhimi (1992) and Fakhimi and Fairhurst (1994) proposed a visco-
elastoplastic constitutive model to simulate the time-dependent behaviour of rock.
The model consists of an elasto-plastic Mohr-Coulomb model in series with a lin-
ear viscous unit. This model was implemented in an explicit finite di¤erence code.
A typical solution cycle would be to do an elasto-plastic analysis during which real
time is frozen. After an equilibrium point is reached, the linear viscous unit is used
to determine additional creep strain components for a specified period of real time.
Control is then passed back to the elasto-plastic analysis to obtain a new equilib-
rium and the process is repeated. Although this model appeared successful in imi-
tating the behaviour of uniaxial and triaxial tests and the stand-up time of exca-
vations, the time-dependent behaviour of the model is independent of the failure
processes. The entire material (including the far field) also behaves in a viscous
manner. This model is therefore not applicable to the conceptual model of deep
excavations in hard rock where the time-dependency is a direct consequence of the
failure processes and the solid rock behaves essentially elastically.

3.2 Model Formulation

A complete description of the model developed can be found in Malan (1999a).
Figure 12 gives a representation of the developed model.

In this model, the intact rock behaves elastically, while a Mohr-Coulomb yield
function determines the failure strength. Similar to classical viscoplasticity, the vis-
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coplastic strain rate _eevpi after failure is given by

_eevpi ¼ mh fsðtÞi
qgs

qsi
for i ¼ 1; 2; 3; ð15Þ

where m is the fluidity parameter, gs is the plastic potential function, fSðtÞ is the
yield function and si is a principal stress. A constitutive description of time-
dependent rock behaviour needs to include the e¤ect of strength degradation with
time and/or deformation. Observations of time-dependent fracturing ahead of tab-
ular stopes and in some tunnels in the South African mines show that the rock
becomes progressively more fractured with time, resulting in the gradual loss of
cohesive strength in a particular volume of rock. This loss of strength was mod-
elled by assuming that the rate of cohesion reduction _CCc is proportional to the
excess stress above the residual target surface.

_CCc ¼ kch fresi; ð16Þ

where kc is the cohesion decay factor and

fres ¼ s1 � s3Nfr þ 2Cr
ffiffiffiffiffiffiffi
Nfr

p
ð17Þ

Nfr ¼
1 þ sin fr
1 � sin fr

ð18Þ

is the residual target surface with Cr the residual cohesion and fr the residual fric-
tion angle. The principle embodied in Eq. (16) is based on the laboratory creep
experiments described in Malan (1998) which indicated that if the rock specimens
are loaded close to their failure strength, the creep rate and eventual creep failure
occur faster than for a low stress. For a particular volume of rock under high
stress, creep fractures will therefore form more rapidly, resulting in a faster loss of
cohesion in the rock than for low stress.

Fig. 12. Representation of the developed elasto-viscoplastic model
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3.3 Simulation of Time-dependent Fracture Zone Behaviour

To illustrate the behaviour of the model described above, the time-dependent frac-
ture zone formation surrounding a 4 m square tunnel subjected to constant field
stresses was simulated. The model parameters are given in Table 1. Note that these
parameters were arbitrarily chosen to illustrate the model behaviour.

The extent of the fracture zone at di¤erent times is illustrated in Fig. 13. Soon
after development of the tunnel, the failed zone covers those areas where the

Table 1. Model parameters used to simulate time-dependent frac-
ture formation surrounding a tunnel

Parameter Value

Vertical stress 70 MPa
Horizontal stress 40 MPa
Bulk modulus 27.7 GPa
Shear modulus 20.8 GPa
Density of the rock 2700 kg/m3

Cohesion of intact rock 22 MPa
Friction angle (peak and residual) 30


Residual cohesion 15 MPa
Cohesion decay 0.001 day�1

Dilation angle 25


Fluidity coe‰cient 1 � 10�11 Pa�1.day�1

Fig. 13. Simulated time-dependent fracture zone formation surrounding a tunnel in elasto-viscoplastic
rock subjected to constant field stresses. Note that this failure pattern is simply a plot of the failed zones

in FLAC. This pattern looks di¤erent if contours of plastic strain are plotted
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stresses exceeded the failure strength of the intact rock ( fsðtÞa 0). Time-dependent
processes lead to a gradual loss of residual strength in the fractured rock, trans-
ferring stress to the intact rock. This then also becomes fractured resulting in a
time-dependent increase in the extent of the fracture zone as illustrated in Fig. 13.
The resulting horizontal closure of the tunnel is illustrated in Fig. 14. The initial
behaviour, soon after development, is dominated by the viscous response (Eq. 15)
of the rock to changing stress conditions, which in this case are the induced stresses
caused by the tunnel development. In the longer term, the behaviour is governed
by the processes leading to a reduction in rock strength (Eq. 16). This leads to the
steady-state closure regime visible in Fig. 14 between 50 and 300 days. If the field
stresses remain constant, the closure will not continue indefinitely as an eventual
equilibrium position is attained (unless very weak properties are used). This
approach to the equilibrium position is visible in Fig. 14 as the gradual reduction
in closure rate at the end of the data set. If the field stresses however continually
increase over a period of time, the steady-state closure will also continue over this
period.

This model proved to be more successful in modeling time-dependent closure
in mining stopes as illustrated in Malan (1998).

4. Discontinuum Elasto-Viscoelastic Modelling

4.1 Need for a Discontinuum Model

When a tunnel is driven into soft squeezing rock (such as soft clays or mudstone),
the ground advances slowly into the opening without visible fracturing or loss
of continuity (Gioda and Cividini, 1996). Squeezing can, however, also involve
di¤erent mechanisms of discontinuous failure of the surrounding rock. Possible
mechanisms are complete shear failure in the rock if the existing discontinuities

Fig. 14. Simulated tunnel closure (sidewall–sidewall) as a function of time caused by the time-
dependent fracture zone formation described above
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are widely spaced, buckling failure in thinly bedded sedimentary rocks and sliding
failure along bedding planes (Aydan et al., 1996).

As described in Section 1.1, squeezing conditions can be found in the deep ac-
cess tunnels of Hartebeestfontein Gold Mine in South Africa. Figure 15 illustrates
the mechanism of deformation observed in a tunnel located at No. 6 shaft Harte-
beestfontein Mine at a depth of 2367 m. The host rock in this area comprises
bedded quartzites with a uniaxial compressive strength ranging from 160 to 180
MPa for intact laboratory specimens. The tunnel is intersected by prominent bed-
ding planes containing infilling with thickness up to 10 cm in some places. Signif-
icant shear displacement is observed on these bedding planes. The accompany-
ing fracture processes and large deformations lead to the eventual destruction
of the tunnel support as illustrated in Fig. 1. In these cases, a continuum elasto-
viscoplastic formulation cannot be used to simulate the deformation and a di¤er-
ent modelling approach is required.

4.2 Discontinuum Model Formulation

It is generally accepted that the time-dependent behaviour of excavations in hard
rock is governed mainly by the rheological properties of discontinuities surround-
ing the excavation. This is in agreement with other workers (Tan and Kang, 1980;
Schwartz and Kolluru, 1984). Barla (2000) noted that in conditions where discon-
tinuities dominate the squeezing behaviour, discontinuum modelling is the most
appropriate model to simulate the behaviour of the rock. Realistic modelling of
the time-dependent behaviour of hard rock therefore needs to simulate the rheo-
logical behaviour of discontinuities and the interaction between these disconti-

Fig. 15. Mechanism of squeezing tunnel deformation observed at Hartebeestfontein Mine (after
Bosman et al., 2000)
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nuities. Samtani et al. (1996) developed a viscoplastic interface model for use in
finite element programs. Interface elements in finite element programs can how-
ever cause numerical problems through ill conditioning of the sti¤ness matrix and
high stress gradients in the interface elements. (Day and Potts, 1994). Further
di‰culties are experienced in generating multiple discontinuities in finite element
meshes. These problems are not encountered in boundary element programs.
Napier and Peirce (1995) developed a boundary element method for solving
multiple interacting crack problems in which several thousand elements can be
treated. This formulation was used as modeling tool by the author to simulate the
time-dependent behaviour of excavations in hard rock. To simulate the time-de-
pendent behaviour of the discontinuities, a viscoplastic displacement discontinuity
interface model was developed. In this model, it is postulated that the intact rock
material behaves elastically and all inelastic behaviour, including viscoplastic
e¤ects is controlled by the presence of multiple interacting discontinuities. Shear
slip on these discontinuities happens in a time-dependent fashion. This allows for
the progressive redistribution of stress near the edges of mine openings. The
detailed formulation of this model can be found in Napier and Malan (1997).

In summary, the model can be described as follows. Suppose that the local
components of the displacement discontinuity vector are denoted by DS for the
shear and DN for the normal component. Based on Perzyna’s (1966) theory of
plasticity, the rates of change in normal and shear discontinuity can then be given
by 8>>><

>>>:
_DDs

d
_DDn

d

9>>>=
>>>;

¼ mhFi

qQ

qt
qQ

qsn

8>><
>>:

9>>=
>>; ð19Þ

where F is the yield criterion, Q the plastic potential function, t the shear stress
acting on the discontinuity and sn the normal stress. It is postulated that the vis-
coplastic e¤ects are limited to a finite discontinuity thickness d. This thickness not
only includes gouge width and asperity heights but also the thin layer of rock ad-
jacent to the discontinuity wall controlling the strength and deformation proper-
ties (Barton and Choubey, 1977). The intact rock between discontinuities behaves
elastically. The fluidity m is a material constant with units Pa�1s�1. For ease of
model calibration the parameters m and d will be grouped as k ¼ md with k a sur-
face fluidity parameter with units of Pa�1s�1m. The Mohr-Coulomb model is
adopted as yield criterion giving the following shear yield function.

F ¼ jtj � SC þ sn tan fC ; ð20Þ

where SC and fC are the current values of cohesion and friction angle respectively.
For an unmobilised discontinuity, SC ¼ SP and fC ¼ fP where SP and fP are the
peak values of cohesion and friction angle respectively. A negative stress conven-
tion is used for compressive stresses. Shear failure takes place for F > 0. Below the
yield surface the discontinuity is immobilised. The function hFi in Eq. (19) im-
plies that

D. F. Malan242



hFi ¼ F for F b 0;

hFi ¼ 0 for F < 0:
ð21Þ

Roberts and Einstein (1978) showed that a non-associated flow rule should be
adopted for rock joints. The plastic potential function is given by

Q ¼ jtj þ sn tanc; ð22Þ

where c is the dilation angle. Inserting Eq. (22) in (19) and writing in incremental
format gives

DDs ¼ klhFiDt

DDn ¼ jDDsj tanc;
ð23Þ

where Dt is the time increment. The variable l is introduced as a slip direction in-
dicator where

l ¼ þ1 for t < 0;

l ¼ �1 for t > 0:
ð24Þ

Napier and Malan (1997) and Malan (1998) used this model to simulate the
time-dependent failure processes around tabular excavations. A good correlation
between modelled and simulated stope closures were obtained in these studies.
When setting up a particular model, the problem region of interest is covered by a
specified mesh of potential crack surfaces. A random Delaunay mesh is used in
this study with an example shown in Fig. 16. At the end of each timestep, the
stress distribution in the model is calculated. The program then searches through
the potential crack surfaces and activates those that will fail according to the
specified Mohr-Coulomb failure criterion. The activated discontinuities then relax
according to Eq. (19). The resulting stress distribution will lead to the activation of
further crack surfaces as the program steps through time. This continues until an
equilibrium condition is attained (depending on the chosen model parameters).

4.3 Numerical Simulation of Time-dependent Tunnel Deformation

The discontinuum model described above was used to simulate the mechanism
of tunnel deformation at Hartebeestfontein Mine illustrated in Fig. 15. A square
tunnel with dimensions of 3.4 m was simulated. Two parallel bedding planes with
a dip angle of 9
, intersecting the sidewalls of the tunnel, were included. The geom-
etry used is shown in Fig. 16. The other parameters used in the simulation are
given in Table 2. It should be noted that the friction angles and cohesion are
downgraded to simulate in situ conditions. Unfortunately no time-dependent tun-
nel deformation measurements are available for this particular site and therefore
arbitrary values for the surface fluidity were used in this preliminary modelling
attempt.

An important consequence of the imposed time-dependent displacement law
imposed by Eq. (19) is that the fracture zone surrounding the excavation does not
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form instantaneously but develops as a function of time. The discontinuities closer
to the excavation fail first. They slip in a time-dependent fashion and gradually
transfers the stress away from the tunnel where new fractures form. This is illus-
trated in Fig. 17. As a result of this behaviour, the sidewall closure also behaves in
a time-dependent fashion. This is illustrated in Fig. 18. The bedding planes were

Fig. 16. Random mesh of potential fracture surfaces surrounding a tunnel. The thick lines represent the
bedding planes. It should be emphasised that these elements are initially intact and only those that fail
according to the failure criterion are included in the solution process. Also keep in mind that this is a
boundary element formulation with infinite elastic boundaries. Although the potential fracture surfaces
are only defined up to a certain distance from the tunnel, this should not be confused with a finite

element or finite di¤erence mesh

Table 2. Modelling parameters used

Parameter Value

Young’s modulus 70 GPa
Poisson’s ratio 0.2
Vertical stress 110 MPa
Horizontal stress 71 MPa
Properties of intact rock:
Intact friction angle 30


Intact cohesion 20 MPa
Mobilized friction 30


Mobilized cohesion 10 MPa
Surface fluidity 4 � 10�7 m.Pa�1.day�1

Properties of bedding planes:
Friction angle 5


Cohesion 0 MPa
Surface fluidity 4 � 10�7 m.Pa�1.day�1
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only mobilized from the tunnel sidewalls up to approximately 3.6 m. Of interest
is that the slip on the bedding planes is low in spite of a low friction angle of 5
.
This is illustrated in Fig. 19.

Apart from the tunnel simulations, the model was used successfully to simu-
late the time-dependent closure behaviour of tabular excavations as described in
Malan (1998). Further work is currently conducted to verify that Eq. (19) is in fact

Fig. 17. Time-dependent evolution of the fracture zone after development of the tunnel
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the most appropriate constitutive law in this particular case and for hard rock in
general.

5. Conclusions

Data collected from the tunnels and stopes of the deep South African mines illus-
trate significant time-dependent behaviour. Apart from application in mining, a
better understanding of the time-dependent behaviour of crystalline rock is required
to analyse the long term stability of nuclear waste repositories and to design better
support for deep civil engineering tunnels in these rock types. To simulate the
time-dependent behaviour of deep excavations in hard rock, the author inves-
tigated the following analytical and numerical approaches.

Fig. 18. Time-dependent deformation of the left sidewall

Fig. 19. Shear slip of one of the upper right bedding plane as a function of time. This is the deformation
on the bedding plane at a distance of 0.8 m from the tunnel sidewall
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Viscoelasticy: To illustrate the subtle problems associated with using this
theory, an analytical viscoelastic solution for the time-dependent closure of a tab-
ular excavation mined in incremental steps is described in this study. Although this
model gives a good fit with measured stope closure at a particular point in the
stope, the calibrated solution does not necessarily give the correct results for other
distances from the stope face. This is a result of the inability of viscoelastic theory
to simulate the fracture zone around these excavations. This has important impli-
cations when using viscoelastic theory to simulate the time-dependent behaviour
of tunnels surrounded by a zone of fractured material. Although a good fit can be
obtained with a viscoelastic model and deformation measured on the skin of the
excavation, it cannot be used to estimate the relative movement between the skin
of the excavation and some point inside the rock mass.

Continuum elasto-viscoplasticy: A model based on classical viscoplasticity was
developed and implemented in a finite di¤erence code to simulate the formation of
the fracture zone and the time-dependent behaviour of this zone around excava-
tions. A novel time-dependent weakening rule was used to simulate the loss of
cohesion in the near-field rock mass due to delayed fracture formation. This model
proved successful in simulating the time-dependent stress transfer processes ahead
of tabular excavations and the resulting time-dependent closure behaviour of min-
ing stopes. It was also used to simulate the squeezing behaviour of some tunnels
in these deep mines. The drawback of this continuum approach is its inability to
simulate behaviour that is dominated by the creep of major discontinuities such as
bedding planes.

Discontinuum viscoplasticity: A discontinuum viscoplastic approach was devel-
oped and implemented in a displacement discontinuity boundary element code.
This allows explicit crack growth and development of these fractures in a time-
dependent fashion. This approach was successful in simulating the time-dependent
behaviour of the fracture zone around tabular excavations and the resulting time-
dependent closure behaviour. The advantage of this model over the continuum
approach is the ability to easily include bedding planes and the associated creep of
these structures.
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Appendix I. Deriving a Viscoelastic Convergence Solution for

Tabular Excavations

Salamon (1968) calculated the elastic convergence (Sz) of a parallel-sided panel
(see Fig. 5) in isotropic ground without contact between the hangingwall and foot-
wall as

SzðxÞ ¼
�4ð1 � n2ÞWz

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

p
1 þ dx

2

� �
; ðI:1Þ

where

Wz ¼
�rgH

2
½ð1 þ kÞ þ ð1 � kÞ cos 2a�; ðI:2Þ

and

d ¼ sin a cos b

H
; ðI:3Þ

where 2l is the span of the stope, r is the density of the rock, g is the gravitational
acceleration, H is the depth below surface, k is the ratio of horizontal to vertical
stress, a is the dip of the reef, b is the angle between x-axis and the dip, n is Pois-
son’s ratio and E is Young’s modulus.

Any viscoelastic model can be described by a di¤erential equation of the form
(Flügge, 1975)

sþ p1 _ssþ p2€ssþ � � � ¼ q0eþ q1 _eeþ q2€eeþ � � � ðI:4Þ

or

Ps ¼ Qe; ðI:5Þ

where
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P ¼
Xm
k¼0

pk
d k

dtk
Q ¼

Xn
k¼0

qk
d k

dtk
; ðI:6Þ

with s the stress tensor, e the strain tensor and p0 ¼ 1. Subjecting Eq. (I.5) to the
Laplace transformation gives

~PPðsÞ~ssðsÞ ¼ ~QQðsÞ~eeðsÞ; ðI:7Þ

where

~PPðsÞ ¼
Xm
k¼0

pks
k ~QQðsÞ ¼

Xn
k¼0

qks
k: ðI:8Þ

When doing an analysis of strain in a viscoelastic material, the stress and strain
tensors can be divided in two representing dilatation and distortion (see Flügge,
1975). Eq. (I.5) then becomes

P 0sm ¼ Q 0em ðI:9Þ

P 00sd ¼ Q 00ed ; ðI:10Þ

with Eq. (I.9) representing dilatation (hydrostatic compression) and Eq. (I.10) dis-
tortion. In these equations, sm and em are the dilational stress and strain and sd
and ed the distortional stress and strain. In the limiting case of an elastic solid,
Hooke’s law for an isotropic medium may be written as (Jaeger and Cook, 1979)

sm ¼ 3Kem ðI:11Þ

sd ¼ 2Ged ; ðI:12Þ

where K and G are the bulk and shear modulus respectively. In the Laplace domain,
Eq. (I.9), (I.10), (I.11) and (I.12) become

~PP 0ðsÞ~ssmðsÞ ¼ ~QQ 0ðsÞ~eemðsÞ; ðI:13Þ
~PP 00ðsÞ~ssdðsÞ ¼ ~QQ 00ðsÞ~eedðsÞ; ðI:14Þ

~ssmðsÞ ¼ 3K~eemðsÞ; ðI:15Þ

~ssdðsÞ ¼ 2G~eedðsÞ: ðI:16Þ

Therefore for an elastic material when choosing ~PP 0ðsÞ ¼ 1 and ~PP 00ðsÞ ¼ 1, it fol-
lows that

~QQ 0ðsÞ ¼ 3K ~QQ 00ðsÞ ¼ 2G: ðI:17Þ

Dividing (I.13) by (I.15) and (I.14) by (I.16) gives

K ¼
~QQ 0ðsÞ

3 ~PP 0ðsÞ
; ðI:18Þ

G ¼
~QQ 00ðsÞ

2 ~PP 00ðsÞ
: ðI:19Þ
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Writing Eq. (I.18) and (I.19) in terms of Young’s Modulus ðEÞ and Poisson’s
Ratio ðnÞ gives

~EE ¼ 3 ~QQ 00 ~QQ 0

2 ~PP 00 ~QQ 0 þ ~QQ 00 ~PP 0 ; ðI:20Þ

~nn ¼
~PP 00 ~QQ 0 � ~QQ 00 ~PP 0

2 ~PP 00 ~QQ 0 þ ~QQ 00 ~PP 0 : ðI:21Þ

Subjecting Eq. (I.1) to the correspondence principle gives

~SSz ¼
�4ð1 � ~nn2Þ ~WWz

~EE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

p
1 þ dx

2

� �
: ðI:22Þ

Assuming that Wz does not change with time gives

~WWzðsÞ ¼
Wz

s
: ðI:23Þ

Substituting the Eq. (I.20), (I.21) and (I.23) in Eq. (I.22) and transforming back to
the time domain gives

Szðx; tÞ ¼ �4WzFðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

p
1 þ dx

2

� �
; ðI:24Þ

where

F ðtÞ ¼ L�1
~PP 002 ~QQ 0 þ 2 ~PP 00 ~PP 0 ~QQ 00

s ~QQ 00ð2 ~PP 00 ~QQ 0 þ ~PP 0 ~QQ 00Þ

" #
: ðI:25Þ

The symbol L�1 is used to signify the inverse Laplace transformation. To obtain
the final solution, the inverse Laplace transformation in Eq. (I.25) must be deter-
mined for the appropriate viscoelastic model.

I.1 Viscoelastic Convergence Solution for a Burgers Model

The Burgers model can be constructed by combining a Maxwell and Kelvin model
(Fig. 6). If it is assumed that the rock behaves as an elastic solid in dilatation and
like a Burgers model in distortion, the following di¤erential equation can be
derived for the distortional part. Although the general equation of the Burgers
model is known in the form of Eq. (I.4) (Flügge, 1975), the following analysis for
the distortional component is necessary to determine the coe‰cients p1, p2, q1 and
q2 in terms of the viscosity coe‰cients h1 and h2 and shear moduli G1 and G2. For
the Maxwell component it can be shown that

sd þ p 01 _ssd ¼ q 01 _ee
0
d ; ðI:26Þ

where

p 01 ¼ h2

2G2
q 01 ¼ h2: ðI:27Þ
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For the Kelvin component it follows that

sd ¼ q 000 e
00
d þ q 001 _ee

00
d ; ðI:28Þ

where

q 000 ¼ 2G1; q 001 ¼ h1: ðI:29Þ

Taking the Laplace transformation of Eqs. (I.26) and (I.28) gives

ð1 þ p 01sÞ~ssd ¼ q 01s~ee
0
d ðI:30Þ

~ssd ¼ ðq 000 þ q 001 sÞ~ee 00d : ðI:31Þ

Multiplying each equation with a suitable constant and adding gives

ð1 þ p 01sÞðq 000 þ q 001 sÞ~ssd þ q 01s~ssd ¼ q 01sðq 000 þ q 001 sÞ~eed ; ðI:32Þ

where

~eed ¼ ~ee 0d þ ~ee 00d : ðI:33Þ

Taking the inverse Laplace transformation and inserting Eq. (I.27) and (I.29)
gives

sd þ p1 _ssd þ p2€ssd ¼ q1 _eed þ q2€eed ; ðI:34Þ

where

p1 ¼ q 001 þ p 01q
00
0 þ q 01

q 000
¼ h1G2 þ h2G1 þ h2G2

2G1G2
ðI:35Þ

p2 ¼ p 01q
00
1

q 000
¼ h1h2

4G1G2
ðI:36Þ

q1 ¼ q 01 ¼ h2 ðI:37Þ

q2 ¼ q 01q
00
1

q 000
¼ h1h2

2G1
: ðI:38Þ

When subjecting Eq. (I.34) to the Laplace transformation gives

ð1 þ p1sþ p2s
2Þ~ssd ¼ ðq1sþ q2s

2Þ~eed : ðI:39Þ

If the rock behaves elastically in dilatation and according to a Burgers model in
distortion it therefore follows from Eq. (I.13), (I.14), (I.15) and (I.39) that

~PP 0 ¼ 1 ~PP 00 ¼ 1 þ p1sþ p2s
2 ~QQ 0 ¼ 3K ~QQ 00 ¼ q1sþ q2s

2: ðI:40Þ

When Eq. (I.40) is substituted into (I.25)

F ðtÞ ¼ L�1 3Kð1 þ p1sþ p2s
2Þ2 þ 2ð1 þ p1sþ p2s

2Þðq1sþ q2s
2Þ

sðq1sþ q2s2Þ½6Kð1 þ p1sþ p2s2Þ þ ðq1sþ q2s2Þ�

" #
: ðI:41Þ

Finding the inverse Laplace transformation by partial fraction expansion gives (see
Malan, 1998)

F ðtÞ ¼ g1½1 þ c5tþ c6e
�ft þ ðc7 sinh btþ c8 cosh btÞe�ht=2�; ðI:42Þ
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where the parameters b; g1; c5; c6; c7; c8; f and h is given by Eqs. (6) to (12). The
complete convergence solution for the Burgers model is obtained by inserting Eq.
(I.42) in (I.24).

I.2 Dealing with Incremental Face Advance

Equation (I.24) is applicable to situations where the total length of the tabular
excavation is mined instantaneously. This is not the case in practice where the face
is incrementally advanced. Assume that the first mining increment is created at
time t1 giving a stope of half span L. Equation (I.24) will give the viscoelastic
convergence for this step as Szðl ¼ L; x; t� t1Þ. At time t2 the face is advanced on
both sides of the stope by Dl giving a half span of ðLþ DlÞ. Using Eq. (I.24) with
a half span of ðLþ DlÞ at time t2 results in the total span being created in one
step, which is clearly wrong. At time t2 þ Dt the total viscoelastic convergence is
the sum of the viscoelastic convergence caused by a half span of L (excavated at
time t1) plus an incremental viscoelastic convergence caused by the incremental
length Dl, excavated at time t2. The incremental viscoelastic convergence is the
di¤erence between the viscoelastic convergence of a stope with half span Lþ Dl
created at time t2 and the viscoelastic convergence of a stope with half span L also
created at time t2. Therefore at time t2 þ Dt the viscoelastic convergence is given
as

Sz ¼ Szðl ¼ L; x; t� t1Þ þ Szðl ¼ Lþ Dl; x; t� t2Þ

� Szðl ¼ L; x; t� t2Þ: ðI:43Þ

Salamon (1974) used arguments of negative and positive superposition to give a
general expression for an arbitrarily shaped excavation created in n increments as

u ¼
Xn�1

i¼1

½Fiðli; t� tiÞ� � ½Fiðli; t� tiþ1Þ�
( )

þ Fn½ln; t� tn� ðI:44Þ

which is valid for tn a t < tnþ1 where u is the displacement component at some
point in the rock, Fi is some function dependent on the shape of the excavation
and li is a critical linear dimension of the excavation.

If the shape of the excavation stays constant ðF1 ¼ F2 ¼ FÞ and n ¼ 2, then
Eq. (I.44) is reduced to Eq. (I.43) with F ¼ Sz. Equation (2) is obtained by writing
(I.44) in the notation used for the tabular excavations.
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