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Abstract. A two-dimensional boundary element code, based on the displacement discontinuity method is used
to simulate a confined compression test. The method takes account of the granular nature of the rock and of the
presence of pre-existing defects. Fracture propagation is thought to depend, amongst other factors, on the crack
orientation, the residual friction angle, the dilation angle, and the confining pressure. To obtain a more precise
understanding of the influence of these properties on the crack growth process, their influence on the normal
stress and the excess shear stress on potential fracture planes ahead of the crack tip is investigated for a single
crack configuration. The orientation of the potential fracture planes proves to be the most important parameter
determining fracture growth. A series of numerical experiments is carried out to determine the influence of the
tessellation pattern used to represent the granular nature of the rock. Both the influence of the type of tessellation
and the tessellation density are evaluated, and reasons for the differences in behaviour are presented. The results
of the simulations with the Delaunay and a Voronoi tessellation with internal fracture paths compare well with the
fracture pattern obtained in laboratory tests. The pre-peak non-linearity in the stress-strain response obtained with
the Voronoi tessellation and the post-peak strain softening obtained with the Delaunay tessellation are combined in
one model. For that purpose, a Voronoi tessellation with internal fracture paths is used, whereby the properties of
the elements of the polygons and of the internal fracture paths are assigned different values. The role that is played
by shear failure and the influence of dilation on the localisation process is determined by means of some further
numerical experiments. It is shown that at the scale, at which the material is modelled, shear failure is required for

a shear band to develop.
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1. Introduction

Stress levels around excavations in mining, petroleum or civil engineering applications reg-
ularly exceed the strength of the material, resulting in fracturing around the workings. An
in-depth evaluation of the rock mass behaviour surrounding these excavations requires a fun-
damental understanding of the fracture initiation and growth processes in the rock. Therefore,
fundamental research is focussed on aspects of the onset and propagation of fractures. Lab-
oratory testing and numerical modelling studies are hereby carried out to provide a better
understanding of the nature of failure, the mechanisms involved in crack initiation and the
processes controlling damage evolution and localisation.

The study presented here concentrates on granular rocks with a brittle nature. The research
aims at clarifying some of the fundamental processes that may play a role in the fracture
initiation in rocks and the development of the macroscopic fracture pattern observed in lab-
oratory testing of crinoidal limestone. While interatomic breakage processes must lie at the
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Figure 1. Crack-element configuration with local coordinate system.

basis of the fracturing process (Lawn, 1993), no processes at the atomic level are considered
here. It is assumed that the development of macroscopic fractures, which forms the subject of
this paper, is in the first place the result of processes on the micro-scale. Therefore, the present
research considers the processes at the scale of millimetres and fractions of millimetres, which
corresponds to the larger grain size, and is approximately an order of magnitude larger than
the average grain size. It is recognised that the stress distribution at this level is inhomo-
geneous because of the presence of defects in both the grains and in the matrix material.
These defects or weaknesses embrace weakly cemented grain boundaries, inclusions, pores,
pre-existing cracks etc. The rock type considered in this study, a crinoidal limestone, has a
very low porosity &0.70%), and the dominant defects and weaknesses form features with a
low width to length ratio. Attention is focussed therefore on crack-like defects. Although the
above-mentioned problems are three-dimensional, a firm understanding of the issues in two
dimensions should precede any further analysis. In this paper, a 2-D version of a boundary el-
ement program is utilised for the simulations providing a solution for the plain strain problem.

The main features of the modelling approach, are the explicit fracture modelling, the
recognition of the granular composition of the material and the introduction into the models of
randomly placed flaws that serve as fracture initiators. In this paper, it is shown how a random
arrangement of growing cracks in confined compression tests at low confining pressures may
result in a localisation into a shear band. The influence is further discussed of how some of
the model parameters may influence the macroscopic response.

2. Explicit fracture modelling

The two-dimensional boundary element code DIGS (Discontinuity Interaction and Growth
Simulation) allows for an explicit fracture modelling (Napier, 1990; Napier and Hildyard,
1992; Napier and Pierce, 1995; Malan and Napier, 1995; Kuijpers and Napier, 1996, Napier
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et al., 1997; Napier and Malan, 1997). If the initial failure process can be represented by
small strain dislocations, and if dynamic effects can be discarded, the cracks can be modelled
as displacement discontinuities. The displacement discontinuity boundary element method
(Crouch and Starfield, 1983) forms the basis for the code. In an elastic solid, the displacements
are assumed continuous, except over the discontinuity elements. Over straight-line elements
with normal vector components, andn, centred on the-axis of a local coordinate system

y-z (Figure 1), the local displacement discontinuity components are defined as:

D;(yg) = ui(yy,0-) —u;i(yy, 04) i=y,2,-b<y, <b, 1)

wherez = 0, the positive side and = 0— the negative side of the discontinuity. The dis-
placements and the stresses over an element are represented in a number of collocation points.
In the original displacement discontinuity formulation, the displacement discontinuities over
the element were constant and the displacements and the stresses at a single mid-element col-
location point were assumed to adequately represent the stresses and displacements over the
face of a discontinuity. More accurate results can be obtained with linear, quadratic or higher
order elements, with respectively 2, 3 or more collocation points at which the displacements
and stresses are determined such that the boundary conditions are satisfied (Crawford and
Curran, 1982). If the displacement discontinuity varies linearly over a discontinuity element
with length D, as is the case in DIGS, (1) becomes:

Di(y,) = + Biy, o, B constants )

The contribution of an element to the total stress components at aypointz,,) in isotropic
elastic material with Young’s modulus and Poisson’s ratio is given by

Oyy ()’p’ Zp) E b _‘y,zzzz ‘y,yzzz _‘y,yyzz Dy (yq)”ly
Gyz()’pv Zp) = m / \I",yzzz_q",yyzz W o2z Dy()’q)nz + Dz()’q)”y d)’q (3)
02z (¥ps 2p) P =Wz Wy Wy | | D2 (9g)nz

For two-dimensional plane strain problems:
1
v = E(r2 —r?logr?) and r?= yp — Yq)2 + zf,.

The normal stress on the y-axis of the local coordinate system is given by:

_E 1 1 y+b\?
0.:(y,0) = 81— 02 |:2(05z + B:y) (m - m) + B. log (m) :| . 4)

It is obvious from (4) that the stress values foe= +b become singular. This requires that the
collocation points at which the stresses and displacements are determined have to be placed
in the interior of the elements. If it is assumed that the element stresses may reasonably be
represented by a polynomial, the stress distribution along an element is best represented by the
stresses at collocation points located at the Gauss-Chebyshev points (Crawford and Curran,
1982).

y,-:cos(Zi—l)% i=12....n (5)

1The comma behin& denotes derivatives (thati y,.. = 8%y /8y%8z°)



168 B. van de Steen et al.

From (5) it follows that for the linear variation elemenis=£ 2), the points should be situated

aty = +(v/2/2)b from the centre of the element, such that +(1 — v/2/2)b (Figure 1).
Napier (1990) provides additional arguments relating to the opening displacement of a single
element to situate the collocation points at the above-mentioned distance for linear variation
elements.

The total stress values at the point p are given by summing the contributions (3) from each
defined discontinuity element that is used to represent both the excavation or sample geometry
and the cracks and fractures within the material. The shear and normal traction at a collocation
pointy = y. within a given element are given by:

Oy, = KODy(yC) + Eyz(yc), 6)
0, = KoD;(yc) + E-(ye)s

where K is the self-effect influence coefficient, atl, and £, are the so called external
influences. The external influences are built up of the influence of the other collocation point
of the same element at = —y. through the influence coefficierk, and of the primitive
stresses, and the stress induced by all other mobilised displacement discontinuities, whose
influence aty = y. is given byE|_andE_. .

{ Eyz(yc) = KDy(_yc) + E;Z(YC),
E..(y.) = KD (—y.) + Eéz(yc)7

From (6), the values ab, and D, are determined, using an iterative technique. In the case of
frictional sliding, (6) is complemented with the equilibrium condition:

(7)

ey (ye, 0) = So — tang, o, (y., 0),

where S, is the residual cohesiom, is the residual friction angle andl= +1if E,, < O
ande = —1if E,, > 0. In what follows,S is taken zero. UnlesB, is determined by tensile
stresses, it is assumed that

Dz(yc) = _tanwu)y(yc)l,

whereyr is the dilation angle.

Fractures are often seen to follow preferred directions such as grain boundaries and cleav-
age planes (Peng and Johnson, 1972; Kranz, 1979a, b; Wong, 1982; Chen et al., 1999). Studies
on untested rock samples using scanning electron microscopy and optical microscopy tech-
nigues also indicate that untested rock samples contain a high number of pre-existing defects.
For granitic rocks, the following data were published: crack densities of 0.672 cracks ger mm
sample (Peng and Johnson, 1972); a crack length density of 3.56 mm pgesample (Chen
et al., 1999) and crack/pore intersection rate of 1.4 cracks per mm traverse with an average
crack length of 0.054 mm per crack (Kranz, 1979a). Studies of other rock types also indicate
the abundance of pre-existing defects (Bathurst, 1991; KoZuSnikova andKdeae 1999).

Since it would be impractical to model all these effects individually, equivalent structures that
represent the effect of the defects have to be devised. These equivalent structures are termed
flaws, and are distributed randomly over the sample. The region of interest may be overlaid
with a random grid defining the possible discontinuity elements. The random grid defines the
potential fracture paths, thereby simulating the granular texture and the internal structure of
the composing minerals. A number of strength properties and post-failure characteristics are
associated with each grid element. Assigning reduced strength parameters to a random set of
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elements allows for the introduction of the flaws. The stresses at the collocation points of the
grid elements are evaluated against the specified failure criterion. The element or elements,
for which the failure criterion is exceeded, are retained for activation and one or more can
be added to the list of discontinuity elements. In the case of a Coulomb failure criterion, an
internal friction angley; is used as long as an element has not failed to determine the resistance
against shear failure. After failure, the resistance against sliding is determined by the residual
friction angleg,. Individual discontinuity elements are also referred to as cracks. The term
fractures is used for a number of cracks connected to each other. The initial displacement
discontinuitiesD, and D, of all the grid elements, no matter whether they have reduced
properties or not, is equal to zero.

The random grid is generated by a Delaunay—Voronoi generator: after generating a random
set of points £ sites) in the area to be meshed, triangles (Delaunay) or polygons (Voronoi)
are constructed (Finney, 1979, Malan and Napier, 1995; Napier and Peirce, 1995). Additional
edges can be obtained in the Voronoi tessellation, by connecting the geometric centre of the
Voronoi polygons with the vertices of the polygons. These last elements are further referred
to as the internal fracture paths, while the points in which two or more elements are joined are
referred to as nodes. An example of each of the tessellations is given in the discussion of the
numerical simulations (see further: Figure 6a: Delaunay; Figure 8a Voronoi and Figure 10a
Voronoi with internal fracture paths).

To obtain an indication of possible localisation, the second invariant of the deviatoric
part of the inelastic strain (Sellers and Napier, 1997) or the octahedral inelastic shear strain
y can be considered. The octahedral shear strginis related to the second invariant of
the deviatoric strain tensaf; (Chen and Han, 1988) and provides a measure for the shear
deformation.

/2
Yoct = 2 é']/a (8)

Jé = (13[(8xx - 8yy)2 + (8yy - 8zz)2 + (& — 8”)2] + 8fy + 8; + 812)6- (9)

For the plastic strain in plane strain, the total strain components are substituted by the average
inelastic strain components, and (9) becomes:

, _ — —2 —2 2
I = gl(eds — en)’+ (ehy +el 1+e). . (10)

The average inelastic strain in an afeaontaining discontinuity elements with a total crack
lengthC is given by (Sellers and Napier, 1997):
— 1

3. Stress distribution around individual cracks

In the further discussion, either a Rankine or a Coulomb failure criterion is considered. Failure
depends on either the normal tensile stees®r on the excess shear stress (ESS or net driving
shear stress) on an element (in local co-ordinates ESS|= tgyi 0., wherey; is the internal
friction angle of the material). Fractures are built up of a number of activated elements joined
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end to end. The fracture length ls expressed as the sum of the individual lengthtbdt

make up the fracture. Crack growth occurs when either the normal stress or the ESS at the
collocation point of an element joined to an activated crack satisfies the failure criterion. The
direction in which the normal stress and the ESS have to be evaluated is determined by the
orientation of the element. The element orientation is expressed as thefabgtereen the
element direction and the major principal stress direction (Figure 1).

To evaluate the influence of a number of parameters on the fracturing process, a parametric
study is carried out. To this effect, a plain strain analysis is carried out of the stress field around
a single displacement discontinuity (also called crack) with lenbtipaced in a stress field
defined by the far field stressés = o, and B = oy;,. To evaluate the impact of the different
parameters on the crack growth, an element with length d and orienfatjomed to one of
the crack tips is considered as a function of the element orientatidime normal stress and
the ESS are then calculated in the collocation point closest to the crack tip. The influence of
the following parameters is determined:

— the crack angle,

— the element anglg,

— the residual friction angle,,
— the dilation angle/,

— the confining stress,,

The configuration that serves as a base for the parametric study consists of a single dis-
placement discontinuity element that makes an aaghe 35> with the major principal stress
o) (Figure 1). The applied compressive stresses are eqiaktar, = 10 MPa, andP, = oy =
1 MP&. The dilation angle/ is equal to 15 and the residual friction angle is equal t0°20
The ESS is calculated with an internal friction angle= 40°. The crack length 2b is equal to
the length d of the neighbouring elements. Hence, the distance from the crack tip to the first
collocation point ¢ is equal to:

c/:c=1-<l—\/—§>d:}<l—\/—_2>2b.
2 2 2 2

The discussion of the parameter study is restricted to the influence of the crackianmgthe
ESS and on the normal stress. For the other parameters, only the main results and conclusions
are given in here.

In a compressive biaxial stress field with # P,, crack sliding can only occur if the crack
anglea < 90° —¢,. The stress field in a specimen containing a single crackawith90® — ¢,
is therefore equivalent to the stress field in a crack free specimen.

The influence of a change in the crack anglis used to illustrate the major characteristics
of the normal stress and the ESS distribution as a function of the element @nglel to
indicate the sensitivity of the results to a change in one of the parameters (Figures 2a and
2b). The curves of the normal stress as a function of the element Anfglea number of
different crack orientations are given in Figure 2a. Save for a crack 6f the curves are
not symmetric. If the crack orientatiam is positive, the minimum normal stress (i.e. either
the smallest compressive stress or the highest tensile stress) is recorded for element angles
between 0 and—5° depending on the crack angle Since the crack is placed in a uniform
stress field, all the curves obtained for negative crack anglase symmetric to the curves
obtained for positive crack angles

2Henceforth compressive stresses and angles measured in clockwise direction are positive.
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Figure 2. Influence of crack angle on normal stress (a) and ESS (b) in response to a single displacement
discontinuity element®; = 10 MPa,P> = 1 MPa,p; = 40° ¢, = 20°, ¢ = 15°).

The ESS curves (Figure 2b) are characterised by two maxima. The position of these max-
ima is only marginally affected by a change in element angle. The element angle at which
the highest maxima in ESS are recorded is equal to approximatélyoRsracks with an
orientation between°0and 53. The second maximum in the ESS curves is recorded at
B = —25 to —30°, depending on the crack angie It is obvious from Figure 2a and 2b
that the element anglg, much more than the crack angledetermines the normal stress
and the ESS at an element adjacent to a crack. The influence of the crackamagieot be
totally dismissed though. Under the circumstances applicable in this exampl = 10;
¢ = 40; ¢, = 20°; ¢ = 15°), the crack angle should have a value in betweeha2fel 53
for a limited number of element orientations to be subjected to a tensile stress. Similarly, the
maximum ESS attained is largest when the crack has an orientation betweand?%5. In
their study on wing crack initiation, Li et al. (1998) obtained similar results. Using a mode Il
fracture criterion, they concluded that the wing cracks are most easily initiated on pre-existing
cracks located in the range @f= 20° toa = 50°.

A characteristic of the displacement discontinuity method is that, independent of the mod-
elled crack width (which is equal to zero in the work presented here), the applied stress
component parallel to the crack does not lead to an induced stress component perpendicular
to the crack. Hence, the stress field at the tip of a crack with 0° (Figures 2a and 2b) is
symmetric with respect to the vertical and it reflects the stress field in a crack free sample.

The curves of the normal stress as a function of the element Arafi&ained for a variation
in the crack anglex depict the typical characteristics encountered in the normal stress and
ESS-curves as a function of the element argjler the other parameter studies. The single
minimum in the normal stress curves in the vicinity of the principal stress directign (0
and the two maxima in the ESS curves as well as the overriding influence of the element
orientation are found back when the influence of the other parameters is studied. The main
results of these parameter studies can be summarised as follows:

— The influence of a change in dilation angle or a change in friction angle is limited. A
decrease in the residual friction angle and an increase in the dilation angle tend to enhance
the stress concentration in the vicinity of the crack tip. This is translated in a lowering of
the normal stress and an increase in the ESS for a certain elemenpangle

— An increase in the confining pressure invariably shifts the normal stresses at an element
to higher values, making tensile failure more and more unlikely and even impossible as
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Figure 3. Orientation of the elements activated in shear (a) and activated in tension (b) in a simulation of a biaxial
test. The orientation of the 4583 elements activated in sample V2 (see figure 8c) is determined relative to the
vertical sample axis.

the normal stress eventually becomes compressive for all element orientations with an
increase in the confinement. Similarly, the ESS is decreased considerably by an increase
in confining pressure.

It can here be indicated that an increase in the ratio of the crack length to the element
length (2/d) has a more pronounced influence on the normal stress and the ESS curves. A
discussion of this topic falls however outside the realm of this paper.

For the displacement discontinuity method, it can be concluded that for elements joined to
an activated crack that makes a positive angleith the major principal stress, the elements
that make an anglg of approximately 20to 30 with o, are subjected to the highest ESS. A
second local maximum in the ESS is reached for elements with an oriengattbapproxi-
mately —35° to —25°. The lowest normal stress (i.e., either the smallest compressive stress or
the highest tensile stress) at a collocation point is reached for elements with an oriefitaftion
approximately—5° to 0°. The element angles for which these maxima are reached are mainly
determined by the direction of the principal stresses. The element angles for which the maxima
occur, are not very sensitive to the crack angle, the dilation angle, the residual friction angle or
the confinement. A histogram of the element orientation for elements that failed in shear and
tension in a numerical simulation of a biaxial test is given in Figure 3. The histogram refers to
simulation V2 (see also Figure 8c). The element orientations are expressed with respect to the
sample axis, which coincides with the direction of the major principal stress (see Figure 1).
The results indicate that the foregoing conclusions, derived in a two-dimensional analysis for
a single crack configuration also apply to a multi-crack configuration in a two-dimensional
plane strain simulation of a biaxial test.

4. Numerical simulations of the biaxial test

In a polyaxial cell, a true triaxial stress state can be appbeds> o, > oy,. The special

case in whichr; > o, = oy is most commonly used in the laboratory testing of cylindrical
rock specimen. The test, known as the triaxial test, is described in detail in most manuals on
rock mechanics (Jaeger and Cook, 1979; Brady and Brown, 1993). In the case discussed in
this paperoy, is held constant and, is increased while, (whose direction coincides here

with the direction ofo;;) = 0 (plane strain). This case is here referred to as a biaxial test.
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Figure 4. Experimental stress-strain curve of a triaxial test on a crinoidal limestone wit a confining pressure of
10 MPa.

In the failure criterion used (Coulomb with tension cut off) only the major and the minor
principal stress play a role. This implies that the fracture pattern obtained in a biaxial test
should be comparable to the fracture pattern obtained in a triaxial test. The localisation process
can be described as the development of a band inclined at an angle of less tharod5

in which microfractures coalesce to form a macroscopic shear band. A detailed discussion
of the failure mechanism and the stress-strain relationship can be found in Hallbauer et al.
(1973) or in Jaeger and Cook (1979). A typical stress-strain curve obtained from a triaxial
test with a confining stress of 10 MPa on a crinoidal limestone is given in Figure 4. Four of
the five regions that can be associated with the stress-strain relationship for triaxial tests on
brittle materials are indicated on Figure 4 (Hallbauer et al. 1973; Jaeger and Cook, 1979). The
test depicted in Figure 4 was stopped before region V was reached, in which sliding along
macroscopic fracture planes occurs.

In the following sections a number of two-dimensional plane strain numerical simulations
of the biaxial test are considered. The main aim is to determine the influence of the mesh size
and the tessellation geometry on the simulation results, the dominant failure mode and the role
played by dilation. Besides the sample (50 mri00 mm), the loading platens were modelled
to enable the friction between the platens and the sample to be accounted for. Displacements
were applied in steps of 0.025 mm. Unless stated otherwise, the material properties of the
elements and the flaws listed in Table 1 are used. The flaws are, as stated previously, structures
representing the effect of the defects in the material. Since individual cracks are often bridged
by uncracked or healed material (Sprunt and Brace, 1974), the flaws are also given a cohesion
and a tension cut off.

4.1. MESH SIZE

To assess the influence of the tessellation pattern and the mesh fineness on the fracture pat-
tern and on the stress-strain behaviour, four simulations with progressively finer meshes are
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Table 1. Material properties of elements and flaws used in the

simulations.
Flaws Elements
Cohesion 25 MPa 80 MPa
Residual cohesion 0 MPa 0 MPa
Unmobilised friction angle 35 35°
Mobilised friction angle 20 20°
Dilation angle 158 15°
Tension cut off —7 MPa —35 MPa
General
Friction platen-sample 20
Percentage flaws 12.5%
Confining pressure 10 MPa
160
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Figure 5. Average axial stress as a function of the average axial strain for the simulation of a biaxial test of a series
of Delaunay samples with an increasingly higher tessellation density.

performed per tessellation pattern. The three tessellation patterns that are considered are the
Delaunay tessellation, its dual the Voronoi tessellation and a Voronoi tessellation in which
additional elements are added. The relation between the tessellation and the fracture pattern
is for each tessellation type indicated for the most coarsely meshed sample.

The influence of the tessellation density on the response is evaluated for a series of De-
launay tessellations having 654 elements (D0), 2673 elements (D1), 5199 elements (D2) and
7853 elements (D3), respectively. The stress-strain curves reach in each instance a peak stress
(Figure 5). The fracture patterns illustrating the shear banding obtained with the different tes-
sellation densities are shown in Figure 6. As will be discussed further, the octahedral inelastic
strain also illustrates the localisation (Figure 11a). In these simulations, attention is focussed
on the fracture initiation, fracture growth and localisation process. No attempts were made
to model the closure of cracks that may initially be open as described by Walsh (1965a, b).
The initial displacement discontinuit®, and D, of the flaws are thus equal to zero. Hence,
region | (Figure 4) is not present on any of the simulated stress-strain curves (e.g., Figure 5).
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Figure 6. Fracture pattern obtained with an increasingly finer Delaunay tessellatoa t005 in the simulation
of a biaxial test. The fracture pattern of DO is overlaid on the tessellation pattern.

The regions I, Il and IV on the other hand can be recognised in several of the stress-strain
curves. In the linear-elastic part (region Il) of the simulation, no elements are activated. The
non-linear part indicated as region Il in Figure 4 commences in the simulations when the first
flaws are activated, and ends as the peak stress is reathgdAcs,, > 0). In region IV, a

stress decrease is registered with increasing axial sthaip (As,, < 0). In this stage, small
oscillations in the stress level often occur in the simulations. In most simulations, region V is
attained as well. A stage of continuous deformation is reached if one or more shear planes that
affect the whole sample have been generated, allowing a nearly unlimited axial movement.
The stress changes with increasing axial strain then remain small. If the shear plane that has
been formed affects only part of the sample, a saw tooth pattern is obtained (Figure 5, curve
D3). The drop in the average stress remains then limited since the stress is not relieved over
the full width of the sample. Further displacements cause again an increase in the load, until a
second or third shear plane is formed that allows another part of the sample to shed part of its
load.

The step in which the main stress drop is registered is the step in which a fracture is formed
that extends from the side of the sample to either the other side of the sample or to the bottom
or the top of the sample. The orientation of this fracture has to be such that sliding can occur
to relieve the stress in part of the sample. Since the displacement discontinuity at the free
boundary is not restricted, the resulting axial movement of the part of the sample influenced
by the fracture causes a decrease of the average axial stress. The particular position of the flaws
in the mesh as well as the position of the elements influence the size of the stress drop and
the stress at which this stress relieving fracture reaches the boundary. For the same flaw and
element properties, the brittleness characterised by the main stress drop, decreases in general
with an increase in the tessellation density (Figure 5). It should be stressed though that the
randomness in the mesh and flaw generation introduces a spread in the results (DO and DOc,
Table 2). The spread increases as the number of elements per sample decreases. A more brittle
behaviour can be obtained with the same mesh, by bringing the strength properties of the flaws
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Table 2. Element, flaw and mesh properties used to investigate the influence of the mesh
randomness and the flaw and element properties. Two different meshes A and B were

used.
DO DOb DOc Dod
Mesh A Mesh B

Ratio average element length 0.1050 0.1050
to sample width
Standard deviation of ratio 0.0259 0.0258
element length to sample width
Number of elements 654 651
Main stress drop 80 MPa 37 MPa 21 MPa 57 MPa
Cohesion intact elements 80 MPa 80 MPa 80 MPa 60 MPa
Tension cut off intact elements —35 MPa —35MPa —35MPa —30 MPa
Cohesion flaws 25 MPa 25 MPa 25 MPa 30 MPa
Percentage flaws 12.5% 25% 12.5% 12.5%
Tension cut off flaws —7MPa —-7MPa —-7MPa —-8MPa

and the intact elements closer together (DOc to DOd, Table 2). Delaunay samples without flaws
therefore display a very brittle behaviour (Napier and Peirce, 1995). To obtain a more plastic

behaviour, it may be necessary to adjust the flaw density as well (DO to DOb, Table 2). The

brittleness of the simulated biaxial tests is also function of the modelled friction between the

sample and the platens. Repeating simulation D2 with a frictionless contact between platens
and sample renders a stress-strain curve that displays a considerable stress.

The tessellation density has an influence also on the formation of shear bands or shear
planes, which are formed in each of the samples. In samples with a coarse mesh, the shear
planes along which the major sliding occurs consists of a limited number of elements (15 and
21 in DO) and is easily discernible in the fracture pattern (Figure 6a). The fracture path is
the result of a single crack that grows steadily into the final shear plane. Existing fractures
and cracks can hereby be included, but there is nothing like the coalescence of a number of
small fractures aligned in a certain pattern. In the finely meshed samples on the other hand
the localisation is attributed to the coalescence of cracks and small fractures, aligned in what
could be described as a shear band.

The number of elements in the simulations of the samples meshed with a Voronoi tessel-
lation was increased from 608 (VO0) to 2427 (V1) to 4583 (V2) and to 6924 (V3). To generate
the Voronoi polygons, the same geometric centres used to generate the Delaunay polygons
were utilised. In the simulated biaxial tests cracking and fracturing is, with the exception
of VO, quite extensive (Figure 8). The stress-strain curves (Figure 7) are slightly non-linear,
indicating a certain plasticity; but no peak strength or strain softening stage is reached. There
is also no percolation from the top or the bottom to one of the sides in any of the four samples.
Zones with a higher crack density are observed (Figures 8b to d) in most of the simulations,
in what could be perceived as the onset of shear banding. Although some form of localisation
occurs, no percolation takes place, since the different fractures fail to coalesce (Figures 8 and
11b). Asthe load is increased, further cracking may even obliterate the incipient shear banding
that came to the foreground. The influence of the tessellation density on the response of the
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Figure 7. Average axial stress as a function of the average axial strain for the simultion of a biaxial test of a series

of Voronoi samples with an increasingly higher tessellation density. The initial linear elastic part of the curve is
omitted to focus on the non-linear part of the curve.
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Figure 8. Fracture pattern obtained with an increasingly finer Voronoi tessellation=a.006 in the simulation
of a biaxial test. The fracture pattern of VO is overlaid on the tessellation pattern.
(a) VO. (b) V1. (c) V2. (d) V3.

samples remains in every sense very limited. Napier and Peirce (1995) studied the influence of
the mesh size in samples meshed with Voronoi polygons not containing flaws on the simula-
tion of UCS tests (Uniaxial Compressive Strength). Their investigation also indicated that the
densely tessellated samples displayed almost no load shedding once failure is initiated. Based
on their experiments and on the results obtained by Handley (1995), Napier and Peirce (1995)
suggest that the Voronoi structure may be self-stabilising. These researchers also conducted
some experiments with Voronoi patterns in which they allowed fracture initiation within the
Voronoi polygons as well (Malan and Napier, 1994; Napier and Peirce, 1995). In such cases
rapid load shedding is recorded.

The Voronoi tessellation with internal fracture paths was devised (Sellers and Napier, 1997)
to investigate whether rapid load shedding could be obtained when fracturing is not confined
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Figure 9. Average axial stress as a function of the average axial strain, for the simulation of a biaxial test of a
series of Voronoi tessellations with internal fracture paths with an increasingly higher tessellation density.

to the Voronoi boundaries. The Voronoi polygons can be interpreted as the mineral grains,
and the internal fracture paths as possible fracture paths within the grains that may have
different strength properties than the grain boundaries. The samples meshed with Voronoi
polygons with internal fracture paths contain 624 (VI0), 1764 (VI1), 3513 (VI2) and 7127
(VI3) elements. Mesh VI3 is obtained by adding internal fracture paths to Voronoi mesh V1.
As for the Delaunay tessellation, the linear-elastic region and the non-linear region at the
end of which the peak stress is reached, are also recognised in the stress-strain curves for
the Voronoi tessellation with internal fracture paths (Figure 9). In the post-peak region, a
more gentle stress decrease is recorded than in the Delaunay tessellation. As in the Delaunay
tessellation, the brittleness can be increased by bringing the strength properties of the flaws
and the intact elements closer together. The simulations in which a frictionless platen-sample
contact is modelled exhibit again a more brittle behaviour. There is also a parallel with the
Delaunay tessellation as far as the influence of the tessellation density on the localisation
mechanism is concerned. In the densely meshed samples a shear band consisting of small
coalescing fractures is formed (Figures 10 and 11c), while a few long fractures that form a
shear plane dominate the fracture pattern in the coarser meshed samples (Figure 10). The shear
banding is most pronounced in the samples with the most densely tessellated samples.

The Delaunay tessellation and the Voronoi tessellation with internal fracture paths gener-
ally show an improvement in the fracture pattern for increasingly finer tessellation patterns.
A mean element size of approximately one thirtieth of the sample width (D2, Figure 6c; V2;
Figure 8c and VI3, Figure 10d) seems to be sufficiently fine to satisfactorily simulate the
fracturing process and the resulting fracture pattern. For a sample with a width of 50 mm,
modelling at grain level would require a decrease in element size with a factor 10 to 20. This
would result in a significant increase in the CPU-time and memory requirements (Peirce and
Napier, 1995). Just as the flaws are equivalent structures for the defects in the material, the
elements are equivalent structures for the intact material comprising cleavage planes and grain
boundaries. Based on the results, the oversizing of the elements seems to be acceptable.
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Figure 10. Fracture pattern obtained with an increasingly finer Voronoi tessellation with internal fracture paths at
¢ = 0.0063 in the simulation of a biaxial test. The fracture pattern of VIO is overlaid on the tessellation pattern. A
few of the polygons have been shaded, illustrating the difference between polygons and internal fracture paths.
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Figure 11. Octahedral inelastic shear strain associated with the fracture pattern depicted in Figure 6d (sample D3,
Delaunay), Figure 8c (sample V2, Voronoi) and Figure 10d (sample VI3, Voronoi with internal fracture paths).

4.2. TESSELLATION PATTERN

A comparison of the stress-strain curves (Figures 5 and 9), the fracture pattern (Figures 6 and
10) and the octahedral inelastic shear strain (Figure 11) of the Delaunay tessellation and the
Voronoi tessellation with internal fracture paths indicates that the response obtained for both
tessellation patterns is qualitatively similar if comparable strength characteristics are used.
The response of the Voronoi tessellation on the other hand differs radically from the response
obtained with the two previous tessellation patterns and with the laboratory observations. The
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reason for the similarity between the Delaunay and the Voronoi with internal fracture paths
and the difference with the Voronoi is attributed to the number of potential fracture paths
available at each node for fracture growth and coalescence. The number of potential fracture
paths is approximately six in the case of the Delaunay tessellation and three in the case of the
Voronoi tessellation.

A comparison between the characteristics of an unmodified Voronoi, a Delaunay and a
Voronoi tessellation with internal fracture paths indicates that the element size distribution
and the distribution of the angle between neighbouring elements of the former is different
from the latter two. It can be shown that the stresses at the collocation gyafRtgure 1)
closest to a crack tip increase if the size of an element is decreased in comparison to the
size of a neighbouring crack. In samples with a large range in element sizes, the smaller
elements adjacent to large elements are easily activated. They have however only a minor
influence on the fracture pattern or the stress redistribution compared to the influence of their
large neighbours. Hence, the fracture pattern in samples with a large range in element sizes
is determined by the larger elements. The angle size distribution though is believed to be of
major importance in explaining the difference in behaviour between the unmaodified Voronoi
tessellation and the other two tessellation patterns.

The angle characteristics for the three tessellation patterns under investigation are brought
together in Table 3. The element angle distribution in the mesh obtained with a Voronoi
tessellation with internal fracture paths is in fact built up of two sub-populations: the angles
between the elements at the geometric centres, and the angles between the elements at the
corners of the polygons. The characteristics of each of the sub-populations are therefore given
as well.

The Delaunay tessellation and the Voronoi tessellation with internal fracture paths have
similar angle distributions. Both distributions are characterised by a positive skewness, and the
average number of elements per node is identical. The range of angles between elements and
the standard deviation on the average angle are somewhat larger for the Voronoi tessellation
with internal fracture paths than for the Delaunay tessellation (Table 3). The distribution of
the element angle in the Voronoi tessellation differs markedly from the two other tessellation
patterns. In a Delaunay or a Voronoi tessellation with internal fracture paths, the average
number of elements per node is nearly twice the average number of elements per node in a
Voronoi mesh. It has been shown that whether an element joined to a crack or a fracture is
activated or not, depends mainly on the orientation of the element (see Figure 2). Fracture
growth and fracture coalescence is therefore facilitated in the Delaunay tessellation and the
Voronoi tessellation with internal fracture paths.

The self-stabilising effect in the Voronoi tessellation would disappear if additional fracture
paths were available. The fracture density obtained-at0.0067 in sample V2 (Figure 12)
is not uniformly distributed over the sample. The pattern could be described as consisting of
individual, subvertical fractures that are only sporadically interconnected. The areas of high
density fracturing form a pair of conjugate shear bands. The subvertical fractures lead to the
formation of apparently stable columns. A detail of such a column-like structure, overlaid on
the Voronoi tessellation is given in Figure 12b. The polygons in between two such fractures
are ‘piled’ on top of each other. The element forming the interface between two polygons
in a column is nearly orthogonal @ and is unlikely to be activated. Since no alternative
fracture paths are available, coalescence cannot take place. The arrest of the fracture marked
‘a’ in Figure 12b is also due to a lack of element availability. To establish whether coales-
cence between the different fractures would occur if additional fracture paths were available,



Numerical modelling of fracture initiation and propagatiof81

Table 3. Characteristics of the angles formed at the nodes by the elements for different tessellation patterns.

Delaunay Voronoi Voronoi withinternal el. Geometric centres Corners polygons

Average number of 6.0 3.3 6.0 5.2 6.5
elements at a node

Max. number of 9 6 12 8 12
elements at a node

Most frequent number 6 3 6 5 6
of elements at a node

Average angle between %0 11 60° 69 55°

two neighbouring
elements at a node

Standard deviation 184 21.6 21.# 26.9 16.4
Skewness 0.53 -0.36 0.56 -0.07 0.49
Min. angle 22 43 16° 20° 16°
Max. angle 126 166° 136° 136° 123
Number of angles 15267 13595 13734 4366 9368
Number of nodes 2544 4157 2278 842 1436
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Figure 12. Fracture pattern obtained with a Voronoi tessellation (V2} a& 0.0067. (a) Vertical fractures
concentrated in a diagonal band. (b) Detail of (a) overlaid on the tessellation.

a numerical experiment was carried out. Some additional elements, providing a connection
between the different subvertical fractures, were added to the configuration depicted in Fig-
ure 12a. These additional elements are activated without having to increase the load, resulting
in a coalescence of the existing fractures.

The limitation in the number of possible growth directions is not only reflected in the
stress-strain curve. The percentage of elements activated under the same loading conditions,
the average number of elements per fracture segment and the average length of the fracture
segments also indicate that fracture growth is inhibited in the samples with a Voronoi mesh
(Table 4). The fractures in a Delaunay tessellation grow at lower stresses, are longer and
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Figure 13.Comparison of axial strain against volumetrigure 14.Average axial stress as a function of the av-
ric strain for Delaunay sample D3, Voronoi sample V8rage axial strain for the simulation of a biaxial test
and the sample with a Voronoi tessellation with internedodelled with a Voronoi tesselation with internal frac-
fracture paths VI3. The octahedral inelastic shear stréime paths whereby the properties of the elements of
ate = 0.00482 is for the three samples respectivetiie polygons and of the internal fracture paths have
y = 10.81 (D3),y = 0.30 (V3), andy = 10.76 (VI3). different values against a linear elastic response.

Table 4. Comparison of fracture characteristics of sample D2 and V2.

Delaunay (D2) Voronoi (V2)
% elements activated 7.6% £ 0.0037) 2.2% § = 0.0037)
Number of elements 4.1 (396 elements activated at 2.3 (386 elements activated at
per fracture segment e = 0.0037) ¢ = 0.006)
Ratio of average segment 0.146 (total crack length 14.180 at 0.077 (total crack length 13.460 at
length to sample width & = 0.0037) e = 0.006)

contain more elements per fracture segment. The fracture segments are hereby defined as the
parts of a fracture, which formed fractures in their own right before coalescence.

The difference in volumetric strain (Figure 13) between the Voronoi tessellation and the
two alternative tessellation patterns is due to the restricted shear deformation as reflected by
the average octahedral inelastic shear strain.

Although the Voronoi tessellation cannot reproduce the post-peak softening, the abundance
of small individual fractures gives rise to a non-linear response corresponding to region Ill in
Figure 4 Ao/ Acax > 0) in the stress-strain curves (Figure 7). In the Delaunay tessellation
and the Voronoi tessellation with internal fracture paths on the other hand, the non-linearity
before reaching the peak strength is, except for the coarsest tessellation, very limited or non-
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Figure 15. Fracture pattern obtained with a Voronoi tessellation with internal fracture paths 8t006, whereby
the properties of the elements of the polygons and of the internal fracture paths have different values.

Table 5. Element and flaw properties used in the simulation of the biaxial test
with different properties for the polygon elements and the internal fracture paths.

Polygons Internal fracture paths
Intact element  Flaw Intact element  Flaw
Cohesion 80 MPa 25MPa 160 MPa 50 MPa
Internal friction 35 35° 35° 35°
angleg;
Residual friction 20 20° 20° 20°
anglegr
Dilation angleyr  15° 15° 15° 15°
Tension cut off —35 MPa —7MPa —70 MPa —14 MPa

existent. Both features, the non-linear pre-peak response and the post-peak strain softening,
can however be combined in the Voronoi tessellation with internal fracture paths. If the el-
ements making up the polygons and the internal fracture paths are given different strength
characteristics, both features can be reflected in one model. The cohesion and a tension cut off
have therefore to be larger for the internal fracture paths than for the elements of the polygons
(Table 5). The non-linear stress-strain response (Figure 14) is at first caused by the activation
of flaws. As the stress further increases, the non-linearity is due to both the activation of
flaws and the activation of an increasing number of polygon elements. As the peak strength is
approached, the number of internal fracture paths that are activated becomes more important.
This results in a fracture and crack coalescence (Figure 15) and a strain-softening response
(Figure 14).
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(a) (b)
Figure 16. Fracture pattern obtained with a frictionless platen-sample contact for a Delaunay tessellation (Fig-
ure 16a, = 0.0051), a Voronoi tessellation (Figure 16b~= 0.0072) and a Voronoi tessellation with internal
fracture paths (Figure 16e,= 0.0051).

4.3. SHEAR BAND FORMATION

In the simulations, at least three factors seem to play an important role in the formation
of a shear band. Firstly, the general stress distribution in the sample, which is function of
the applied stresses and boundary conditions, is important. It secondly appears that growing
fractures are preferentially aligned in a shear band-like structure. The third factor pertains to
the coalescence of the different cracks and fractures.

The fracture pattern in the Voronoi sample cannot be interpreted unambiguously (Fig-
ure 16b). In most of the Voronoi samples in which a frictional resistance was modelled
between the sample and the platens (Figure 8b, 8c, and 8d), the larger fractures form a band-
like structure. The lack of a clear and unequivocal alignment of the fractures in the sample
with the Voronoi tessellation in which no friction is modelled indicates that the role of the
general stress distribution induced by the applied boundary conditions cannot be ignored
either. Note also that the activation of flaws near the platen is inhibited as a result of the
additional confining stresses brought about by the frictional resistance. This is illustrated in
for example the different fracture pattern near the platens in Figures 16b and 8d.

To demonstrate that the fractures and activated flaws can cause the stress redistribution
favouring shear banding and that not only the stress state in the uncracked sample lies at
the basis of the shear banding, a number of simulations were carried out with a frictionless
sample-platen contact. The almost uniform stress distribution in these models does not inhibit
flaw activation close to the platens and only the fractures and activated flaws can cause redistri-
bution of the stresses. Shear banding is obtained in both the Delaunay and Voronoi tessellation
with internal fracture paths (Figure 16). It is observed that a number of fractures and a number
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Figure 17. ESS-distribution around a set of 13 cracks and small fractures after 36 growth increments. The depicted
area measures 50 mm55 mm and is part of a 50 mm 100 mm samples(= 0.00367).

of activated flaws in their vicinity behave as a single structure. The stress redistribution around
this structure favours fracture growth and crack activation in a shear band like structure. This
is illustrated in Figure 17. It shows the stress distribution around a structure that consists
of a total of 13 cracks and fractures placed in an otherwise uniform stress field. The stress
distribution around this structure favours flaw activation and fracture growth at the top and

the bottom of the structure in a direction inclined to the axial stress, while the region along

the fracture is partially de-stressed. The resulting stress redistribution favours further crack
activation and fracture growth in a shear band like direction.

Itis generally recognised that crack-crack interaction can be complex and different types of
coalescence patterns have been described. It has been recognised that the coalescence mech-
anisms are not only material related, but are also dependent on the geometry of the fractures
involved in the process. Horii and Nemat-Nasser (1985), Ashby and Hallam (1986) and Li
et al. (1998) demonstrate the importance of wing cracks. Other researchers associate particular
crack patterns with a particular coalescence mechanism, involving wing cracks, shear failure
or a combination of shear and tensile failure (Kranz, 1979b; Wong and Chau, 1998; Bobet and
Einstein, 1998a, b). The coalescence mechanisms in the simulations are also a complicated
process that starts shortly after the first fractures are generated and that carries on through the
whole fracturing process. As may be derived from the discussions in the previous paragraphs,
the availability of a sufficient number of fracture paths at each node is a hecessary requirement
to enable the individual fractures to coalesce such that localisation can take place. Besides the
availability of suitably oriented elements, the orientation of the individual fractures, the stress
redistribution caused by the presence of the cracks and fractures influence the coalescence
process as well. Fractures that do not coalesce in a localisation process tend to grow in an
axial direction (Figures 6, 8, 10, and 16c).

The inclination of the shear band from the direction of the major principal stress is for
soils reported to be in the range between the Coulomb orientatofof a small shear band
thickness and the Roscoe orientatigiz for larger shear band thickness (Vermeer, 1990).
Arthur et al. (1977) provide experimental evidence that supports an intermediate orientation
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Figure 18. Influence of failure criterion and dilation on fracture pattesn=£ 0.0061). (a) Rankine criterion,
¥ = 0°; (b) Rankine criterionyy = 15°; (c) Coulomb criterionyr = 0°; (d) Coulomb criterionyy = 15°.

Oa:
Qc = 450 —gﬂm/z,

QR =45 — 'lﬂm/z,

QA =45 — ((pm + Wm)/4
The friction angleyp,, and dilation angle/,, in (12), (13) and (14) are the ‘macro’ sample

continuum values and have to be distinguished from values applicable to individual gpacks (
andg, for the friction angle andy for the dilation angle). The difference between the con-
tinuum values and the values on individual cracks is not unlike the difference noted between
the friction angles of rocks and the friction angle of their individual constituting minerals
(Jaeger and Cook, 1979). The forming of a shear band in the simulations is a rather complex
mechanism whereby the inclination of the shear band is influenced by the internal friction
angle, the residual friction angle, the confinement and the tessellation. The angle of the shear

(12)
(13)

(14)

band in the simulations varies betweer? 2Bd 30 from the direction of the major principal
stress. If it is assumed that, = ¢, andy,, = ¥;, then6., = 27.5°, 9y = 37.5° and

0, = 325°. In additional simulations not shown here, the influence of the dilation angle

and the combined influence of the friction anglgsand ¢, on the shear band inclination

were tested. The influence of changes in the dilation angle on the shear band inclination is

minimal. However, as the values of bathandg, is altered, the inclination of the shear band

angle changes as well, such that it corresponds more or less with the Coulomb orientation

(Equation 12).
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Figure 19. Average axial stress as a function of the average axial strain for the simulation of a biaxial test with a
Rankine criterionyy = 0°; a Rankine criterionyr = 15°; a Coulomb criterionyy = 0°; and a Coulomb criterion,
¥ =15,

4.4. FAILURE CRITERION

The tensile failure mode is often considered to be the basic failure mechanism (Hallbauer
et al., 1973; Peng and Johnson, 1972; Sprunt and Brace, 1974; Kranz, 1979; Batzle et al.,
1980; Blair and Cook, 1998). The extension and coalescence of these extensile cracks should
then lead to macroscopic failure patterns such as shear banding. To determine whether this
theory is applicable at the scale at which the material is modelled and for the way the defects
are modelled, the fracture pattern obtained with simulations with a maximum-tensile-stress
criterion (Rankine criterion) (Chen and Han, 1988) is compared to the pattern obtained with a
Coulomb failure criterion.

The stress heterogeneity in a loaded rock is directly related to the heterogeneous nature
of the material. Voids, variations in grain properties, the specific grain shape and mineral
anisotropy amongst others can all be the source of a stress redistribution. All defects and
all features causing a stress redistribution are modelled in the present study by means of
displacement discontinuities. Since no tensile stresses are generated in a homogeneous sample
subjected to a biaxial test, it is assumed that a population of pre-existing weaknesses (flaws)
is present that can fail in shear. All the other elements are assumed to fail in tension only.
The fracture pattern and the stress-strain curve obtained with a Rankine criterion for a sample
meshed with a Voronoi tessellation with internal fracture paths is given in Figure 18a (dilation
angleyr = 0°). Cracking and fracturing are dispersed, and no clear localisation pattern ap-
pears. Since no shear planes are formed, no load shedding is observed either (Figure 19). To
determine whether the dilation of activated flaws could lead to a localisation, the simulation
was repeated with a dilation angle ¢f = 15° (Figure 18b). The introduction of dilation
has no marked influence on the fracture pattern and fracturing remains dispersed without
localisation taking place. With the selected material properties and at the scale at which the
simulations are carried out, a full Coulomb failure criterion is required to obtain localisation.
The influence of the dilation on the response using a Coulomb criterion is illustrated as well
(Figure 18c and 18d). The number of flaws activated before fracture growth and localisation
commence is much higher when no dilation is introduced (Figure 18c). The peak stress is
also higher in the simulation without dilation (Figure 19). As indicated in the discussion of
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the stress distribution around individual cracks, the increase in the area of influence as well
as the increase in stress levels that result from the increase in dilation angle favour fracture
growth. Both the peak stress and the onset of the localisation process are hereby affected. The
dilation is however not the driving force behind the localisation process, but only enhances
the mechanisms that lay at the basis of fracture growth, coalescence and localisation.

The failure of the Rankine criterion to adequately represent the fracture and localisation
process in the model can be traced back to the normal stress distribution in front of the crack
tip as a function of the element angbe(Figures 1 and 2). As indicated before, the normal
stress at the collocation point of elements joined to a crack as a function of the element
angleg (Figures 1 and 2) goes through a minimum. The elements at which this minimum
is recorded are approximately parallel to the major principal streds was further pointed
out that, in a compressive stress field, the crack amgteust be large enough for the normal
stress to be negative=(tensile). Since the normal stress is only negative for a small range in
element angles that are more or less parallet, t(Figure 2), the probability that a suitably
oriented element is available at the crack tip is limited. If such an element is available and is
activated, fracture growth occurs in a direction approximately parallel to the major principal
stresso. The newly activated element is however oriented in a direction subparabel #0
crack orientation for which the minimal normal stress at a distahiefront of the crack tip
tends to be positive in a compressive stress field. Further crack growth is therefore precluded.
Hence, it can be concluded that in the model presented here the crack growth with a Rankine
criterion is self-limiting.

5. Conclusions

A boundary element code with linear variation displacement discontinuity elements (DIGS)
has been demonstrated to be able to model fracture initiation, fracture growth and localisation.
Applied in combination with a tessellation approach, the models can take account of the
granular composition, intragranular cleavage planes and the presence of material defects. The
attention in this paper has been focussed on the simulation of biaxial tests on rock samples.
The code and the modelling approach under discussion have also already been used in the
quantification of stope fracture zone behaviour in deep level gold mines in both a homoge-
neous rock mass and in a rock mass with bedding planes (Napier et al., 1997). The study
presented in this paper must be seen as part of the attempt to further develop this code to
interpret and predict expected underground behaviour.

The study of the stress distribution in the vicinity of a displacement discontinuity element
and the comparison with the stress distribution in the vicinity of a flat elliptic crack indicated
that the displacement discontinuity elements are able to model flat cracks. The highest normal
stress on elements joined to a sliding crack is noted for elements subparallel to the major
principal stress. This can, also in biaxial tests, give rise to mode | extensile crack growth in the
direction of the major principal stress. The direction of the principal stresses also determines
the directions in which fracture growth, by means of shear failure, can be expected. The net
driving shear stress reaches its highest values on elements that are oriented in a direction
similar to the sliding crack and make an angle of approximatetywth the major principal
stress.

At the scale at which the material is modelled, both tensile and shear failure play a role.
With a Rankine criterion, no localisation can be obtained. A full Coulomb failure criterion is
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required to obtain the shear banding observed in laboratory tests. It is shown that with the used
model, a pure tensile fracture is self-limiting: the direction in which the tensile fractures grow,
preclude further mode | crack activation. A shear failure mechanism is therefore required to
allow for continuing fracture growth and coalescence.

The numerical experiments to determine the influence of the mesh size and the tessellation
type on the response showed that although some form of localisation occurs, the fractures
fail to coalesce and no load shedding occurs in a sample meshed with a Voronoi tessellation.
The Voronoi tessellation seems to be self-stabilising, and the response is not influenced by the
tessellation density. The Voronoi tessellation with internal fracture paths and the Delaunay
tessellation exhibit a strain softening behaviour and are characterised by a localisation of
the deformation in shear bands. These two types of tessellations behave in a similar way.
Increasing the tessellation density makes the shear banding more pronounced. The different
response of the Voronoi tessellation on the one hand and the Delaunay and Voronoi tessellation
with internal fracture paths on the other hand, can be explained by the higher number of
possible fracture paths that are available at each node. The triangulations have an average
co-ordination of approximately six elements per node, while the Voronoi tessellation has an
average co-ordination of about 3.3 elements per node. This implies that the fracture growth
and coalescence occurs more easily in the former resulting in the typical shear banding pat-
tern encountered in biaxial tests. To take advantage of both the non-linear pre-peak response
noted in the Voronoi tessellation, and to reproduce at the same time the peak strength and the
post-peak softening, a Voronoi tessellation with internal fracture paths can be used, whereby
the elements of the polygons and the internal fracture paths are assigned different strength
properties.

It was further demonstrated that friction between the loading platens and the sample in-
hibits fracturing near the platen contact. The influence of the boundary conditions such as the
sliding resistance at the contact between the loading platens and the sample has an influence
on the general stress distribution in the sample. The frictional resistance at the platen contact
seems to favour shear banding in especially the Voronoi samples. Shear banding does however
occur in the Delaunay samples and in the Voronoi samples with internal fracture paths that are
modelled with a frictionless platen contact. The activated flaws and the fractures themselves
seem to cause a stress redistribution in the sample leading to crack activation in a localised,
shear band like manner. The coalescence of small fractures proved to be of crucial importance
in the localisation process. Further research is required to investigate to which extent the
physical processes involved in coalescence can be represented in the numerical models.
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