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ABSTRACT

Water quality modelling is a critical tool for managing the health of river ecosystems, particularly in regions impacted by point

source pollution activities. This study investigates the influence of different hydrodynamic data sources on the performance of

two river water quality models, the Basic Model (BM) and the Water Quality Analysis Simulation Programme (WASP) for model-

ling nitrogenous compounds in a complex river system including wastewater treatment plant effluent discharges. Four diverse

hydrodynamic data input types were considered. These included measured station data, altered station data, rainfall-generated

flow, and the WRSM/Pitman model estimate. Findings revealed trends, analysis of variance (ANOVA), and t-test analyses con-

sistently demonstrated significant disparities between model predictions and measured data in specific river segments,

indicating a need for segment-specific modelling approaches. An increase in Root Mean Square Error (RMSE) and Mean

Square Error (MSE) values in certain segments pointed to a decline in model accuracy when confronted with distinct hydrodyn-

amic conditions. Additionally, application of four diverse hydrodynamic data input sources yielded similar performance for BM

and WASP against measured data. The research findings indicated a complex interplay between river hydrodynamics and water

quality modelling, resulting in a recommendation for tailored modelling strategies that account for unique characteristics of

river segments.
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HIGHLIGHTS

• Hydrodynamic data input sources yielded similar performance for the Basic Model and WASP against measured data for

nitrogenous compounds.

• Reduced performance of models farther from boundary was detected.

• Altered station hydrology showed comparable impact on WASP and Basic Model.

• Examination of segment-specific model accuracy disparities across varied inputs and models.
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GRAPHICAL ABSTRACT

INTRODUCTION

Assessing and predicting water quality are crucial for preserving the ecological health of river systems. The dis-

posal of nitrogenous compounds, which encompass nitrates, nitrites, ammonia, nitrogen oxides, and organic
nitrogen compounds, is linked to nutrient enrichment and eutrophication processes in aquatic ecosystems
(Chapra 1997). These compounds serve as essential nutrients for plant growth, but excessive inputs can lead

to nutrient overload, promoting algal blooms and subsequent oxygen depletion in water bodies – a phenomenon
known as eutrophication (Harding 2015). Water quality models, in conjunction with extensive monitoring net-
works, have been essential tools for simulating and understating water quality dynamics in various scenarios

(Sharma & Kansal 2013; Wang et al. 2013; Darji et al. 2022).
The success of water quality modelling largely depends on the availability of accurate and comprehensive

hydrodynamic data, which forms the basis for simulating the transport and dispersion of pollutants within
river systems (Radwan et al. 2005; Milledge et al. 2012; Kim et al. 2021). However, obtaining reliable hydrodyn-

amic data is challenging in practice, leading to a significant decrease in data collection efforts across South
African river systems (Horn et al. 2018). This lack of empirical data has led to the use of hydrodynamic
models (Havenga et al. 2007) as a practical alternative; compensating for the data scarcity and accelerating

the modelling process. For example, models like the Water Quality Analysis Simulation Programme (WASP)
(Wool et al. 2020) rely on sets of limited hydrodynamics data for integration to simulate complex river systems.
The crucial importance of rigorously testing model input data is underscored by the fact that the performance of

water quality models hinges on both the accuracy of external inputs and the intricate dynamics within a water
body. In the realm of modelling, particularly in expansive environments, errors in water quality predictions fre-
quently stem from the limitations of available field data (Kim et al. 2021).

Despite these advancements, inconsistencies in the availability of hydrodynamic data remain a concern across
South Africa’s extensive river networks (Deventer et al. 2018). To address this, researchers have turned to surro-
gate data sources, such as rainfall models and proxy basin hydrodynamics gauge station data (Donmez et al.
2021) to supplement the lack of comprehensive data and leading to a variety of modelling approaches. However,

this diversity in modelling strategies introduces discrepancies in simulation results, further complicating the field
of water quality modelling (Hughes 2013; Daggupati et al. 2015).

The focus of this study is, specifically, on simulating nitrogenous compounds in South African river systems

given the critical role these play in aquatic ecosystems and their potential impact on environmental and
human health (Harding 2015; Rezagama et al. 2017). In this regard, a comparative investigation assessing the
performance of two distinct water quality models, viz. the sophisticated WASP (Wool et al. 2020) and a Basic

Model (BM) consisting of a series of Continuously Stirred Reactors (CSTRs) (Mahlathi et al. 2022), was
conducted.

Furthermore, this study aims to enhance understanding water quality modelling in data-limited situations. It

seeks to provide fundamental knowledge towards standardising the modelling process by addressing
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inconsistencies arising from using varied hydrodynamic data sources and improve model reliability. The research
included a comparative analysis of two water quality models and explored alternative data sources, aiming to pro-
vide insights and innovative data usage approaches. Focusing on simulating nitrogenous compounds in South

African river systems, the study is intended to improve predictive capabilities of models, refine modelling prac-
tices, and contribute to effective water resource management strategies.

METHODS

Data were obtained from the Natal Spruit River (Figure 1), a significant tributary that feeds into the Riet Spruit
River, ultimately connecting to the Vaal River located at the Upper Vaal catchment in South Africa. The com-

parative analysis was centred on two distinct observation zones: the upstream and downstream sections of
three wastewater treatment plants effluent discharge locations. Notably, this river system is a poignant example
of a nutrient- and waste-affected river within the country, primarily attributed to intensive industrial operations

that supports major economic activities for a population of more than 12 million people (du Plessis 2021).

River flowrates

Four distinct hydrodynamics data sources were used for comparison. Each source represents the best closest esti-
mate of hydrodynamic at this ungauged river system with no direct hydrodynamics data:

1. Proxy basin station data: This data category encompasses hydrodynamics data sourced from a dedicated moni-

toring station situated near the study area. The concept of using proxy basin station data for modelling studies
is adapted from Daggupati et al. (2015) where proxy basin station data can be used for model calibration and
validation strategy. To emphasise the impact of conducting a modelling study under scarce data conditions,

these stations provide real-time measurements of flow velocities, water depths, and associated hydraulic par-
ameters, offering direct insights into the river system’s hydrodynamic behaviour.

2. Altered station data: This dataset comprises modified measurements obtained from the proxy basin stations

hydrodynamics. Utilising a multiplier function, these altered station data points represent the effects of apply-
ing a multiplier (double flow) to the station flow data. This approach aids in evaluating the sensitivity of
modelling outcomes to different flow scenarios and allows for an assessment of the potential range of

variations.

Figure 1 | Study area with multiple study locations upstream and downstream of three WWTPs (Google Earth Pro 7.3.4, Natal
Spruit, 26°1505500S, 25°1103000E, Maxar Technologies, August 2023).
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3. Rainfall-generated flow data: In this category, flow data are generated based on observed rainfall patterns. The
intricate relationship between precipitation and resulting river flow is harnessed to simulate hydrodynamics.
This approach is particularly relevant in regions where reliable hydrodynamics measurements might be limited

but where rainfall data are more accessible.
4. WRSM/Pitman model estimates: Simulated River flow data are obtained from the calibrated and validated

Water Resources System Model (WRSM/Pitman) (Bailey & Pitman 2016) of the WR12 study conducted in
the Upper Vaal covered by this study, which provides predictive insights into hydrodynamics behaviour

based on established models. This source offers an opportunity to assess the accuracy and applicability of
model-derived hydrodynamics data when compared to direct measurements.

These diverse hydrodynamics data sources provide a comprehensive framework for evaluating the Natal Spruit
River dynamics within the Vaal River watershed context. Figure 2 shows the four hydrodynamic input data time

series for the selected study period. The hydrodynamic station data were sourced from the National Integrated
Water Information System (NIWIS) (Department of Water & Sanitation 2019), a comprehensive database for
water monitoring networks in South Africa. Rainfall station data were obtained from the Water Research Com-

mission (WRC) database (Lynch 2004). Additionally, the WRSM Model estimation data were extracted from the
WR2012 Water Resource Information System website, which houses model configurations for a multitude of
rivers across South Africa.

Including direct measurements and modelled estimates along with the exploration of altered and rainfall-

generated data enriches the study’s ability to capture the multifaceted hydrodynamics intricacies present in the
study area. This source of data is listed as one of the limited sources of hydrodynamic data outlined in the
recent work of Mahlathi et al. (2024).

Simulation models

Two types of water quality models were applied to simulate water quality. The primary focus on the nitrification

process is described in Chapra (1997).

Figure 2 | Flow input data from the WRSM/Pitman model, proxy basin station, altered proxy basin station data, and rainfall data
sources.
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CSTR in a series model

The investigation employed a basic CSTR model to replicate the dynamics of a thoroughly mixed natural water

body. The approach involved arranging multiple CSTRs in a series configuration to simulate discrete river sec-
tions. This technique, extensively outlined by Chapra (1997) and recently applied by Mahlathi et al. (2022),
revolves around solving the mass balance equation, represented by Equation (1) below, with a focus on a feed-
forward system.

V
dc
dt

¼ W(t)� kVc � vAsc (1)

In Equation (1), V denotes the reactor volume, c is parameter concentration in the reactor, W(t) represents the
lumped loading, t is time, k is the reaction rate constant, As is the cross-sectional area and v is the flow velocity.

The mass balance equation’s reaction term encapsulates the nitrification process within the river system. This

process unfolds through two sequential reaction steps. Step 1 (Equation (2)) illustrates the conversion of
ammonium ion into nitrite by nitrifying organisms (Chapra 1997).

NHþ
4 þ 1:5O2 ! 2Hþ þH2OþNO�

2 (2)

Step 2 (Equation (3)) entails the conversion of nitrite to nitrate:

NO�
2 þ 0:5O2 ! NO�

3 (3)

The oxygen requirements for both steps are ascertainable through Equation (4) (Chapra 1997):

ron ¼ roa þ roi ¼ 4:57 gO gN�1 (4)

where ron is the amount of oxygen consumed per a unit mass of nitrogen in the total nitrification reaction. roa and
roi is the total oxygen consumed due to nitrification of ammonia and nitrite, respectively. Usually, first-order kin-
etics are assumed for modelling the nitrification process and the following Equations (5)–(8) as described in
Chapra (1997) were included:

dNo

dt
¼ �koaNo (5)

dNa

dt
¼ koaNo � kaiNa (6)

dNi

dt
¼ kaiNa � kinNi (7)

dNn

dt
¼ kinNi (8)

In Equations (5)–(8), N is the parameter concentration and the subscripts o, a, i and n denote organic,
ammonium, nitrite, and nitrate, respectively. The oxygen deficit (D) balance can be computed with Equation (9).

dD
dt

¼ roakaiNa þ roikinNi � kaD (9)

These differential equations were solved with fourth order Runge-Kutta method and the ammonia concen-
trations were computed on the selected checkpoints in the river reach.

Water Quality Analysis Simulation Programme

WASP is a versatile modelling tool used to simulate and predict water quality dynamics in various aquatic
environments. It integrates hydrodynamics with water quality processes, offering insights into the behaviour of
pollutants and nutrients within rivers, lakes, estuaries, and coastal areas. WASP divides the aquatic system

into compartments to model complex interactions among water quality constituents, considering processes
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such as diffusion, advection, decay, and biological interactions. It accommodates biological processes such as
nutrient cycling, algal growth, and bacterial activities, which are crucial to understanding aquatic ecosystem
health. The programme accounts for point and non-point pollution sources, enables scenario analysis, and assists

in model calibration and validation against real-world data.

Modelling approach

The simulation framework was devised to emulate the behaviour of nitrogenous compounds within the river

system, encompassing the influences of wastewater treatment plants. This approach involved configuring both
the BM and the WASP model to incorporate hydrodynamics data obtained from the four distinct sources. The
BM and WASP model we calibrated using the proxy basin data input, the best-fit model was then used with

the different hydrodynamic data sets. The objective was to comprehensively capture the effects of these
approaches on the output water quality dynamics. The model output was subsequently juxtaposed against
observed data at upstream and downstream points of each wastewater treatment plant location within the

study area.
To effectively gauge the disparities between model outputs, the following comparison methods were employed:

1. BM vs. WASP model: This assessment leveraged statistical techniques, t-test and ANOVA, to discern signifi-
cant differences between the BM and WASP respective outputs.

2. BM vs. measured data and WASP model vs. measured data: The accuracy of the models was evaluated
against real-world measurements at each output location. Root Mean Square Error (RMSE) plots were

employed to visualise and quantify the deviations between model predictions and observed data.
3. Models vs. location plots: Plots were generated to illustrate how well the models aligned with actual data

across different locations. Mean Squared Error (MSE) plots and accompanying statistical tables offered

insights into the model fits at various points.
4.Overall model vs. model vs. location visualisation: A comprehensive visualisation strategy involved the use of

heat maps, which facilitated a holistic assessment of the model’s performances across multiple locations.

By adopting this comprehensive approach to model comparison, the study aimed to discern nuanced patterns,
strengths, and limitations of the BM and the WASP model in predicting the behaviour of nitrogenous compounds

in the presence of wastewater treatment plants using multiple hydrodynamics sources to drive the water quality
models.

Considering the limitations posed by the number of available data points and data scarcity, the comparative
study was constrained to the timeframe from 2017 to 2018. This specific period was chosen due to its alignment

with the availability of pertinent measurements and wastewater treatment plant effluent discharge data. This tem-
poral focus was instrumental to ensuring that the study’s analyses and comparisons were grounded in reliable and
relevant information. This was pursued in the context of varying hydrodynamics input data, recognising the pivo-

tal role of these inputs in shaping the behaviour of pollutants.

Limitations

The study operated under the assumption that the hydrodynamic flowrates derived from the four selected
sources, sufficiently represented the conditions prevailing within the river system under the circumstances.
Additionally, the models presuppose a scenario where the river is thoroughly mixed, disregarding any potential
heterogeneity in flow patterns. Furthermore, the models exclusively consider the pollution sources explicitly

incorporated into their formulations, potentially overlooking other significant sources of pollution that could
influence the water quality dynamics within the river. It is important to acknowledge these limitations, as they
may impact the models’ ability to precisely replicate real-world conditions and underscore the need for cautious

interpretation of the study’s findings.

Investigation design

The investigation was carefully structured to comprehensively explore the dynamics of nitrogenous compounds
within the river system, focusing on the impact of wastewater treatment plants and the influence of variable
hydrodynamics input data. A series of interconnected steps guided the design to derive meaningful insights
and robust conclusions.
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1. Objective formulation: The primary objectives of the investigation were established and included the need to
assess the behaviour of nitrogenous compounds in a complex river system, evaluate the efficacy of different
modelling approaches, and understand the interplay between hydrodynamics input and water quality model

output.
2. Data acquisition and preprocessing: Pertinent data sources were identified and collected, encompassing

hydrodynamics measurements, pollutant concentrations, and effluent discharge data from wastewater treat-
ment plants. This data formed the foundation for subsequent analyses.

3. Hydrodynamics model setup: Simulation models, including the Basic WASP, were configured to incorporate
the hydrodynamics input data from multiple sources from point 2.

4. Temporal scope definition: The study’s temporal scope was delineated to encompass the period between 2017

and 2018. This time frame was selected to align with available measurements and wastewater treatment plant
effluent data.

5. Comparative analysis: Model outputs were compared against observed data at upstream and downstream

points of wastewater treatment plant discharge locations. Various techniques, including statistical tests (t-
test, ANOVA), goodness-of-fit metrics (RMSE, MAE), and visualisation tools (residual curves, time series
plots), were employed to assess model performance.

6. Visualisation and pattern recognition: Frequency distribution histograms, boxplots, and heat maps were used
to visualise discrepancies and variations in model predictions across different scenarios and locations.

7. Interpretation and conclusion: The findings were systematically interpreted considering the limitations of the
study design and the implications of the results. Conclusions were drawn regarding the accuracy of the models

and the significance of hydrodynamics input variability.

By structuring the investigation in this manner, this research aimed to provide a comprehensive and rigorous
analysis of nitrogenous compound dynamics within a river system while accounting for the complexities intro-

duced by wastewater treatment plant effluents and hydrodynamics variability under scarce data conditions.
The computational structure of the river system was divided into 17 distinct reaches, as detailed in Table 1.
Seven observation points were designated to assess the models’ performance under different hydrodynamic

inputs. These observation points were key locations for comparing and evaluating the model outputs based on
the varying hydrodynamic inputs.

Table 1 | Study segment names and locations of significance

Segment numbers Segment name Measured data location

1 Upstream WWTP A Boundary water quality data

2 Stream 1 -

3 Effluent at WWTP A Effluent composition data

4 Stream 2 -

5 Downstream WWTP A Measured data point 1

6 Stream 3

7 Upstream WWTP B Measured data point 2

8 Stream 4

9 Effluent at WWTP B Measured data point 3

10 Stream 5

11 Downstream WWTP B Measured data point 4

12 Stream 6

13 Upstream WWTP C Measured data point 5

14 Stream 7

15 Effluent WWTP C Measured data point 6

16 Stream 8

17 Downstream WWTP C Measured data point 7
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Interpretation of results

The interpretation of results encompassed a multifaceted approach; leveraging diverse analytical techniques to

assess the outcomes comprehensively. The investigation embraced several key methods:

1. Residual curves: Residual curves visualise the differences between observed and model-predicted values over

time. These curves provide insights into the magnitude and patterns of deviations, aiding in identifying trends
and potential discrepancies (Martin et al. 2017).

2. Time series curves: Time series curves offer a dynamic visualisation of modelled and observed data over the
study period. This approach has demonstrated precise assessment of temporal patterns, trends, and variations

in water quality dynamics studies (Hobson et al. 2015; Monteiro & Costa 2018).
3. Frequency distribution histograms: Frequency distribution histograms enable the examination of the distri-

bution of model residuals or observed data values. These provide a glimpse into the spread and frequency

of discrepancies, facilitating the identification of potential biases (Wilks 2011).
4. Goodness-of-fit metrics: Goodness-of-fit metrics, such as RMSE and Mean Absolute Error (MAE), quantify

the overall agreement between model predictions and observed data. These metrics offer quantitative insights

into the accuracy of the models (Legates & McCabe 1999).
5. Boxplots and residual curves: Boxplots illustrate using diagrams the distribution of model residuals of statisti-

cal data across different subsets. These aid in identifying potential trends, outliers, and variations in model
performance (Jandu et al. 2021)

RESULTS AND DISCUSSION

Statistics and trends

Proxy basin station and altered proxy basin station data hydrodynamics

The model output comparison statistics, which include p-values for the t-test and ANOVA, as well as RMSE andMSE
for proxy basin station and altered proxy basin station data input, are presented in Table 2. Trendlines were included

to illustrate the variations between the models and the measured data downstream of the simulated river system.
Results for the proxy basin station data hydrodynamic input show that in Segment 5, both ANOVA and t-test

comparisons for this segment show high p-values indicating no significant differences between the BM and

WASP or between these models and measured data. RMSE and MSE values are relatively low, indicating
good agreement between model outputs and measured data. Similarly, ANOVA and t-test comparisons show
no significant differences between models and measured data, with p-values above 0.05. RMSE and MSE

values also remained relatively low, suggesting favourable model performance. In Segment 11, ANOVA tests
showed p-values lower than 0.05, indicating that there are significant differences between model outputs and
measured data. t-Test comparisons revealed mixed results, with a p-value of 0.15 suggesting some agreement
between BM and WASP, but not with measured data. RMSE and MSE values are notably higher, indicating

larger errors between the models and measured data. Segment 15 and Segment 17 ANOVA tests indicate a sig-
nificant difference between model outputs and measured data (p-value less than 0.05). t-Test comparisons also
show no agreement between the models and measured data. RMSE and MSE values are considerably higher,

indicating substantial errors between models and measured data. Similar statistical significance results can be
observed from the altered proxy basin station hydrodynamic input results.

The analysis of proxy basin station and altered proxy station data input demonstrate varying degrees of agree-

ment between model outputs (BM and WASP) and measured data across different segments. Segments 5 and 9
exhibit good model performance with low RMSE and MSE values and no significant differences in statistical
tests. In contrast, Segments 11, 15, and 17 show significant differences between models and measured data,

along with higher RMSE and MSE values, indicating poorer model performance.
These trends highlight the importance of segment-specific assessments and suggest that model performance

can vary significantly depending on the conditions and inputs. Further investigation into the factors contributing
to the discrepancies in Segments 11, 15, and 17 is warranted to improve the accuracy of water quality modelling

in these areas.

Rainfall hydrodynamic input

The model output comparison statistics, which include p-values for the t-test and ANOVA, as well as RMSE and
MSE for rainfall and WRSM/Pitman data input, are presented in Table 3.
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For the rainfall hydrodynamic input, overall ANOVA tests indicate significant differences between models and

measured data in Segments 11, 15, and 17, while Segments 5 and 9 show no significant differences. t-Test results
also reveal a lack of agreement between models and measured data in Segments 11, 15, and 17. RMSE and MSE
values increase in Segments 11, 15, and 17, indicating deteriorating model performance and larger errors com-

pared to Segments 5 and 9.
In a broad overview, ANOVA tests highlight substantial disparities between model predictions and observed

data in Segments 11, 15, and 17, whereas Segments 5 and 9 exhibit consistent patterns with no statistically

notable distinctions. Furthermore, t-test findings underscore the absence of alignment between model outputs

Table 2 | Statistics of WASP and BM output for simulations with proxy basin station and altered station data hydrodynamics

Proxy basin station data

Segment number
5 9 11 15 17 Trend

Models compare p-value

ANOVA (BM vs. WASP) 0.79 0.24 0.0012 0.00012 0.0003

ANOVA (BM vs. Measured) 0.79 0.24 0.0012 0.00012 0.0001

ANOVA (WASP vs. Measured) 0.78 0.24 0.0012 0.0007 0.00047

ANOVA (BM vs. WASP vs. Measured) 0.79 0.24 0.0012 0.0006 0.00145

t-Test (BM vs. WASP) 0.79 0.16 0.15 0.0024 0.00136

t-Test (BM vs. Measured) 0.65 0.16 0.00047 0.00032 0.00014

t-Test (WASP vs. Measured) 0.53 0.89 0.00023 0.0005 0.00032

Errors Statistic

RMSE (BM vs. WASP) 0.8 0.87 0.86 0.97 0.97

MSE (BM vs. WASP) 0.89 0.75 0.74 0.94 0.94

RMSE (BM vs. Measured) 1.03 0.96 2.6 2.41 0.8

MSE (BM vs. Measured) 1.06 0.91 6.74 5.83 0.64

RMSE (WASP vs. Measured) 1.07 0.77 2.61 2.78 0.52

MSE (WASP vs. Measured) 1.13 0.59 6.82 7.74 0.27

Altered proxy basin station data

Segment number
5 9 11 15 17 Trend

Models compare p-value

ANOVA (BM vs. WASP) 0.8 0.59 0.0032 0.00013 0.00027

ANOVA (BM vs. Measured) 0.8 0.59 0.0032 0.00013 0.0001

ANOVA (WASP vs. Measured) 0.8 0.59 0.0012 0.0007 0.00037

ANOVA (BM vs. WASP vs. Measured) 0.8 0.59 0.0012 0.0006 0.00185

t-Test (BM vs. WASP) 0.69 0.52 0.51 0.0064 0.00166

t-Test (BM vs. Measured) 0.52 0.32 0.00037 0.00032 0.00014

t-Test (WASP vs. Measured) 0.76 0.7 0.00013 0.0007 0.00022

Errors Error

RMSE (BM vs. WASP) 0.93 0.91 0.91 0.85 0.85

MSE (BM vs. WASP) 0.87 0.82 0.72 0.72

RMSE (BM vs. Measured) 1.11 0.96 2.61 2.4 0.77

MSE (BM vs. Measured) 1.23 0.92 6.8 5.74 0.6

RMSE (WASP vs. Measured) 1.05 0.84 2.62 2.62 0.43

MSE (WASP vs. Measured) 1.1 0.7 6.86 6.87 0.18
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and empirical measurements in Segments 11, 15, and 17. It is noteworthy that RMSE and MSE values escalate in
Segments 11, 15, and 17, signalling a decline in model performance and larger discrepancies when compared to
Segments 5 and 9.

The analysis of WRSM/Pitman estimated hydrodynamic data reveals varying levels of accord between model
outputs (BM and WASP) and measured data across different segments within the context of WRSM/Pitman
hydrodynamic data input. Segments 5 and 9 demonstrate commendable model performance characterised by

minimal RMSE and MSE values and a lack of statistically significant differences in the conducted statistical

Table 3 | Statistics of WASP and BM output for simulations with rainfall and WRSM/pitman data hydrodynamics

Rainfall

Segment Number
5 9 11 15 17 Trend

Models compare p-value

ANOVA (BM vs. WASP) 0.86 0.7 0.00145 0.00134 0.00124

ANOVA (BM vs. Measured) 0.86 0.7 0.00145 0.00134 0.00124

ANOVA (WASP vs. Measured) 0.86 0.7 0.00145 0.00134 0.00124

ANOVA (BM vs. WASP vs. Measured) 0.86 0.7 0.00144 0.00134 0.00124

t-Test (BM vs. WASP) 0.94 0.57 0.58 0.0144 0.0014

t-Test (BM vs. Measured) 0.64 0.44 0.0002 0.0018 0.00315

t-Test (WASP vs. Measured) 0.67 0.78 0.0114 0.0056 0.00014

Errors Error

RMSE (BM vs. WASP) 0.89 0.85 0.84 0.9 0.9

MSE (BM vs. WASP) 0.8 0.72 0.71 0.8 0.8

RMSE (BM vs. Measured) 1.11 0.95 2.63 2.46 0.76

MSE (BM vs. Measured) 1.23 0.91 6.9 6.03 0.57

RMSE (WASP vs. Measured) 1.02 0.78 2.61 2.78 0.52

MSE (WASP vs. Measured) 1.05 0.61 6.83 7.71 0.27

WRSM/Pitman

Segment Number
5 9 11 15 17 Trend

Models compare p-value

ANOVA (BM vs. WASP) 0.81 0.34 0.00001 0.00134 0.00034

ANOVA (BM vs. Measured) 0.81 0.34 0.00003 0.00134 0.00224

ANOVA (WASP vs. Measured) 0.81 0.34 0.00004 0.00134 0.0003124

ANOVA (BM vs. WASP vs. Measured) 0.81 0.34 0.00001 0.00134 0.0004

t-Test (BM vs. WASP) 0.79 0.17 0.16 0.02314 0.0014

t-Test (BM vs. Measured) 0.56 0.28 0.0006 0.0018 0.00015

t-Test (WASP vs. Measured) 0.69 0.85 0.0003 0.0056 0.00014

Errors Error

RMSE (BM vs. WASP) 0.89 0.84 0.83 0.96 0.97

MSE (BM vs. WASP) 0.79 0.7 0.69 0.93 0.93

RMSE (BM vs. Measured) 1.12 0.97 2.61 2.44 0.79

MSE (BM vs. Measured) 1.26 0.95 6.83 5.94 0.63

RMSE (WASP vs. Measured) 1.03 0.77 2.62 2.8 0.53

MSE (WASP vs. Measured) 1.05 0.59 6.84 7.84 0.28
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tests for the WRSM/Pitman estimated hydrodynamic input types. In contrast, Segments 11, 15, and 17 display
substantial disparities between model predictions and observed data, along with elevated RMSE and MSE
values, indicative of inferior model performance.

These trends emphasise the necessity of segment-specific assessments when employing WRSM/Pitman esti-
mated hydrodynamic data as input, underscoring the potential for considerable variations in model
performance contingent on prevailing conditions and input sources. Delving deeper into the factors contributing
to the disparities in Segments 11, 15, and 17 is pivotal for refining the accuracy of water quality modelling in these

specific regions.

Segment error compound analysis

The models, result with rainfall hydrodynamic input is selected as a representative example of WASP and BM
performance near the boundary segment (Segment 5), selected because of proximity to model input boundary

data. The models, performance results for Segment 17 also are discussed because it is located further downstream
the river to demonstrate error compounding. Figures 3 and 4 illustrate scatter plot, residual curve, timeseries plot,
goodness-of-fit, and box plot for the BM and WASP model, respectively.

Figures 3 and 4, which include scatter plots, residual curves, time series plots, goodness-of-fit, and box plots for

the BM and WASP Model, collectively reflect the minor visual differences in model performance and agreement
with statistical data as described for Segment 5. This indicates that the BM performed similarly to the WASP
model for the same inputs, when data quantity and quality was sufficient to good predictions, indicating that
the BM may be used with confidence by water quality modellers in lieu of the WASP model if preferred.

The model performance results for both BM andWASP model were studied to investigate the effect of the error
compounding further from the model boundary input data. Figures 5 and 6 show model performance for BM and
WASP model at Segment 17.

From the results relating to Segment 17, it is evident that both the WASP and BM s exhibit subpar performance
when compared to the measured data, with the WASP model showing a slightly better fit than the BM. This
improved performance of the WASP model may be attributed to its more complex structure, which includes a

built-in parameter estimation capability. This capability allows the WASP model to fine-tune its parameters
and adapt to the specific conditions of Segment 17, leading to a closer alignment with the observed data. There-
fore, it can be concluded that both models performed poorly in the case of poor data availability, even when

different hydrodynamic models are used, with the WASP model seeming to perform slightly less poorly.

Figure 3 | BM output at Segment 5 for rainfall hydrodynamic input data.
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Furthermore, a noteworthy trend becomes apparent when considering the entire study area: as you move
further away from the boundary input, both models tend to perform less accurately. This trend suggests that

the models excel in capturing the dynamics and interactions in areas closer to the hydrodynamic input source,
but their accuracy diminishes as you move downstream, likely due to the increasing complexity and variability
of the river system.

These trends emphasise the importance of segment-specific assessments and data provision when using rainfall
hydrodynamic input and suggest that model performance can vary significantly based on the conditions and
inputs.

In the comprehensive analysis of water quality modelling using varying hydrodynamic data inputs, several key
trends emerge. Across multiple segments, statistical tests consistently reveal significant differences between
model predictions (both BM and WASP) and measured data, particularly in Segments 11, 15, and 17. Figures 7

and 8 illustrates deteriorating model performance the further the output location is to the boundary data input

Figure 4 | WASP output at Segment 5 for rainfall hydrodynamic input data.

Figure 5 | BM output at Segment 17 for rainfall hydrodynamic input data.
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indicating compounding of errors with distance at Segment 11 and Segment 15. Results for Segment 17 were

omitted since these results are discussed previously.
These segments consistently display a lack of agreement between model outputs and empirical measurements,

as corroborated by t-test results. Furthermore, RMSE and MSE values consistently rise in Segments 11 and 15

signifying a decline in model performance and the presence of larger errors compared to Segments 5 (discussed
previously) and Segment 9. To reiterate, Figure 9 illustrates that the BM and WASP model perform better against
measured data compared at Segment 9 for all the hydrodynamics sources.

These results support the importance of conducting segment-specific data inputs and assessments when utilis-
ing model-generated hydrodynamic data, as model performance can vary significantly depending on the
conditions and input sources. Addressing the factors contributing to disparities in these segments is crucial for

enhancing the accuracy of water quality modelling in these specific regions.

Figure 6 | WASP model output at Segment 17 for rainfall hydrodynamic input data.

Figure 7 | Time series plots of BM and WASP model against measured data at Segment 11.
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The models’ poor performance in certain segments can be attributed to several possible factors. Firstly, the

uncertainties arising from the transfer of hydrological data sources to ungauged basins may have introduced inac-
curacies in the model predictions. Additionally, the hydro-geometry of ungauged river channels may not have
been adequately accounted for, as the hydrodynamic data were transferred from neighbouring streams that

may only be similar, but not identical, in their characteristics. Moreover, the study primarily focused on assessing
the differences in model performance resulting from varying hydrodynamic data sources, rather than specifically
evaluating the models’ capabilities to match measured data. This emphasis may have led to less attention being

paid to factors influencing model accuracy in specific segments. Ultimately, the study aimed to highlight the impli-
cations of transferring data sources to ungauged river systems using water quality models, serving to quantify the
discrepancies. However, further research into these factors is warranted to better understand and address the
sources of poor model performance in certain segments.

Figure 8 | Time series plots of BM and WASP model against measured data at Segment 15.

Figure 9 | Time series plots of BM and WASP model against measured data at Segment 9.
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CONCLUSIONS

The outcomes of this study have shed crucial light on the intricacies of water quality modelling of nitrogenous
compounds within river systems, particularly concerning the utilisation of various hydrodynamic data inputs.

Two river water quality models were compared, viz. the BM (BM) and WASP across multiple segments of the
Natal Spruit River in South Africa using different hydrodynamic data sources as inputs. These models notably
both performed well for all the hydrodynamic data source inputs closer to the model boundary, with a significant

drop in performance with distance downstream.
Statistical analysis showed that the ANOVA and t-test results consistently produced significant disparities

between model predictions and measured data in Segments 11, 15, and 17. This finding highlights the intricate

relationship between hydrodynamics and water quality modelling, emphasising that a one-size-fits-all approach
may not be suitable for all river segments, especially in areas with data scarcity. Instead, it emphasises the impor-
tance of tailored modelling strategies, particularly in regions characterised by distinct hydrodynamic conditions.

A notable rise in RMSE and MSE values in Segments 11, 15, and 17 indicates the emergence of larger errors
and declining model performance along the river reach when compared to the more harmonious results observed
in Segments 5 and 9. This further accentuates the necessity of segment-specific assessments, as water quality mod-
elling accuracy is inherently linked to the nature and accuracy of hydrodynamic data inputs.

In conclusion, this study underscores the dynamic nature of water quality modelling and emphasises the criti-
cal role played by hydrodynamic data sources in shaping model outcomes. It highlights the nuanced endeavour
required to achieve precise water quality predictions, contingent upon the unique characteristics of each river

segment. The findings compel a deeper understanding of the significant impact that compounding errors can
have on model accuracy, particularly in relation to river length. As demonstrated by the research outcomes,
there is a clear need for a more refined and localised approach to water quality modelling, acknowledging the

diversity of hydrodynamic conditions within river systems.
Future research into lengths of river segments, for different water quality models and hydrodynamic inputs that

result in acceptable modelling errors is warranted. This to inform future data acquisition plans for river water

quality modellers.
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