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Abstract: There has been significant research on the relationship 

between current-voltage (I-V) curve characteristics and 

electroluminescence (EL) module defects. Current methods use 

EL image pixels to develop features, which are then correlated 

with module I-V curve characteristics. In most cases, image 

thresholding is used to gather pixel information. These 

approaches have two major limitations. First, they lack 

generalisability, as imaging conditions may vary from module to 

module, and thresholding algorithms are often developed for 

specific types of defects or imaging conditions. Second, the 

correlation between specific types of defects and I-V features 

cannot be studied because all defects are grouped into one high-

level defect detected by a sharp change in pixel intensity. In this 

paper, we conduct a correlation study between EL defects and I-

V curve characteristics of photovoltaic (PV) modules that were 

exposed to accelerated stress testing. We correlate power loss 

and two common EL defects. The defects are detected and 

quantified using a prediction model based on semantic 

segmentation in which each pixel is assigned to one of multiple 

classes. Results obtained indicate that the defect detection tool 

can be used to correlate power loss with dark cells and cell 

cracks. A significant amount of variability  in output power delta 

can be explained by defects detected by the prediction model  (r2 

= 72%). 

Keywords: Cell cracks; Electroluminescence image defect 

detection; I-V curve characteristics; deep learning; PV module; 
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1. Introduction 

The ongoing adoption and installation of solar PV with the 

intention of moving to sustainable energy generation has 

necessitated the need to understand module lifetime performance 

and gain insights into the mechanisms causing module 

degradation [1]. Current-voltage (I-V) curve tracing and 

electroluminescence (EL) imaging are two of the commonly 

used techniques for characterising a PV module. I-V curve 

tracing performs a complete electrical sweep from short circuit 

current to open circuit voltage of an illuminated PV module [2]. 

The I-V curve characteristics alone cannot be used to determine 

specific degradation mechanisms leading to power loss. 

However, EL imaging rich spatial information that can help to 

understand the performance and condition of a module [3]. Due 

to the vital role that both I-V curve tracing and EL imaging play 

in the characterisation of a PV module, there has been a huge 

research effort aimed at finding the correlation between I-V 

curve characteristics of a PV module and the module defects 

found on the corresponding EL image [1]–[6]. Such studies can 

aid the development of algorithms that can estimate the I-V 

characteristics of a module. The ability to estimate module I-V 

features from EL images can enable high-speed in-situ power 

estimation for fielded PV modules and a framework for 

understanding large-scale mechanistic degradation of PV 

modules at high resolution. In addition, such a framework can be 

used across different facets of the PV community to improve 

speed, quality, and usefulness of cell and module-level image-

based characterisation.  

A host of the existing approaches use the EL image pixel 

intensities to derive hand-crafted features that describe the 

defects found on the EL image of the module. Approaches that 

use hand-crafted features derived from image pixel information 

have two major limitations. First, the approaches have limited or 

lack of generalising ability because imaging conditions may 

change from module to module and the thresholding algorithms 

are often developed for specific type of defects or imaging 

conditions. Second, the correlation between specific type of 

defects and the I-V features cannot be studied because all defects 

are grouped into one high-level defect that is detected by sharp 



  

  

change in pixel intensity. Studying the correlation between 

specific defects and I-V features can help us understand low-

level details about the performance of a module.  

In this paper, we conduct a correlation study between two 

specific EL defects and I-V curve characteristics of PV modules 

that were exposed to accelerated stress testing at the CSIR PV 

Module Quality and Reliability Lab (PVQRL). The I-V data was 

measured on the indoor sun simulator and the EL defects were 

detected using a deep learning semantic segmentation-based 

model that was trained to detect and quantify common defects in 

solar cells. 

2. Related work 

The correlation of I-V curve characteristics and EL defects has 

received a lot of attention in the literature. The first work that 

investigated the impact of EL defects on module performance 

was presented by Köntges et al. [7]. In the paper, the direct 

impact of micro-cracks on the module power and the 

consequences after artificial aging were analysed. According to 

the results of the experiment, artificially initiated micro-cracks 

in the silicon wafer did not impair the electrical contact between 

cell fragments and did not reduce solar power generation by 

more than 2.5 %. It was found that cracked cells are correlated 

with power degradation after the accelerated ageing test, and that 

power loss follows a linear pattern over time. Since then, there 

has been significant research effort directed at investing the 

correlation of EL defects with I-V curve characteristics.  

Existing methods investigate correlation between I-V curve 

characteristics and EL defects that are quantified using the pixel 

intensities of EL images. The I-V curve characteristics are 

typically obtained using a sun simulator. Typical characteristic 

values measured and derived from the module I-V curve include 

maximum power (Pmp), fill factor (FF), current at maximum 

power (Imp), voltage at maximum power (Vmp), current at short 

circuit (Isc), voltage at open circuit (Voc), series resistance (Rs), 

and shunt resistance (Rsh) [2]. To quantify EL defects, some 

researchers convert the EL images to grayscale and use the raw 

pixel intensities to calculate the median, mean, and standard 

deviation [2], [8]. For example, Karimi et al. [8] demonstrated 

the quantification of generalized and performance mechanism-

specific EL image features using pixel intensity-based and 

machine learning classification algorithms. The research 

employed two stress testing methods: 3000 hours of damp heat 

exposure with measurements at 500-hour intervals for 15 

modules, and 600 cycles of thermal cycling with measurements 

taken every 200 cycles for another 15 modules. This yielded 

11,700 EL images from the 30 modules tested. Each cell-level 

image was analysed, resulting in four hand-crafted features being 

extracted, including the busbar corrosion ratio (BBCR). The 

research reported strong correlations between the features 

extracted from EL images and I-V characteristics. The study also 

uses a convolutional neural network to classify cells by the 

severity of busbar corrosion. In addition, researchers developed 

models to predict PV module I-V features from EL image 

characteristics, especially ribbon corrosion. 

Some researchers [4], [9] also use image thresholding and edge 

detection techniques to enhance and localise module cracks. The 

area of a crack is then used to quantify the crack defect. For 

example, Wu et al. [4] used MATLAB’s “im2bw(I, level)” 

function to perform image thresholding using different “level” 

values to capture and quantify module dark areas (cracks and 

inactive areas) using pixel intensity percentages. In their results, 

total pixel weight percentage of EL image dark areas and fill 

factor demonstrated a linear correlation with an r2 value of 86.5 

%. Likewise, Whitaker et al. [9] conducted a correlation study 

between I-V curve characteristics and EL image defects. The EL 

defects were quantified using an image thresholding algorithm 

called black top-hat transform. The black top-hat filter enhances 

dark cracks in a bright background; thus, it isolates darker pixels 

from brighter neighbouring pixels.  

In this paper, we use a deep learning semantic segmentation EL 

defect detection tool to detect and quantify defects on EL images 

taken before and after accelerated stress testing. A study is then 

conducted to investigate possible correlations between the 

quantified defects and I-V curve characteristics of the PV 

modules. To the best of our knowledge, there is no study that 

investigates the correlation between EL defects quantified by a 

deep learning semantic segmentation algorithm.  

3. Methodology 

3.1. Solar cell defect detection overview  

Solar cell defect detection (SCDD) on EL images is performed 

using a deep learning semantic segmentation model called 

Deeplabv3 [10]. The model was adapted for the task of defect 

detection on EL images using the source code provided by the 

authors on their official GitHub repository. The model was 

adapted using the three-step development process shown in Fig. 

1. The reader is encouraged to refer to our previous work [11], 

[12] for details on the implementation and training details as they 

are beyond the scope of the current work.  



  

  

 

Fig. 1. Three-step development process of the SCDD model. 

3.2. EL defects vs I-V curves correlation  

The EL images and I-V curves were collected during a PV 

module reliability program conducted in 2019-2020 at the CSIR 

[13]. PV modules with four different ‘bill-of-materials’ (BOMs) 

were subjected to a series of accelerated stress tests according to 

the methods described in the IEC 61215:2016 international 

standard for PV module design qualification and type approval. 

The accelerated stress tests are designed to simulate real-world 

stresses in a controlled lab environment for certification testing. 

The PV Module Testing Protocol for Quality Assurance 

Programs described in the ANSI C450-18 is a public standard 

designed for long-term reliability testing of PV modules based 

on the IEC 61215 series in which the certification tests are 

conducted repeatedly. For example, a certification test per IEC 

61215 requires 200 thermal cycles and the C450 requires 600 

thermal cycles with a characterization sequence every 200 

cycles. The characterisation sequence includes EL images and I-

V measurements. The characterization sequence was conducted 

on each module as received at the lab and again after each step 

in the stress testing sequence, generating nearly 200 EL images 

and IV curves (Fig. 2).  

 

Fig. 2. Methodology used for the EL defects vs. I-V 

correlation study. 

 

 

The I-V curves were generated on an indoor sun simulator at the 

CSIR PVQRL. The sun simulator is designed to measure the 

electrical characteristics over a range of temperatures and 

irradiance levels. A module is loaded into the integrated 

temperature chamber (Fig. 3) to control temperature while the 

irradiance level is controlled by the energy applied from a 

capacitor bank to the xenon arc lamp. The temperature chamber 

has a glass door to allow the light to hit the module and the 

irradiance level is monitored by a reference cell that is co-planar 

with the PV module. During a C450 reliability sequence, most I-

V curves are conducted at standard test conditions (STC) defined 

as 1000 W/m2, 25 °C cell temperature, and a light spectrum 

consistent with the natural sunlight at an airmass of 1.5.  

 

Fig. 3. PV module mounted inside the sun simulator 

thermal chamber with glass door. 

The correlation analysis was conducted using simple linear 

regression and summarized by the coefficient of determination, 

or the square of the Pearson’s Correlation Coefficient (r2). The 

dataset consisted of matched pairs for each module at each 

characterization step. The pairs consisted of an IV characteristic 

and an output from the SCDD model. Table 1 shows a subset of 

the data used in this study. Row 1 shows a record for the ‘dark 

cell’ defect on Module 1 at the initial inspection. The initial 

maximum power (Pmp) serves as the reference point for 

subsequent IV measurement, so the delta to initial = 0. The 

percentage defective shows the output of the SCDD model 

averaged over all the cells in the module. At this stage, the SCDD 

model did not detect any ‘dark cell’ defects in any of the cells. 

The second row shows the results on the same module after the 

potential inducted degradation (PID) stress test. The module 

power decreased by 6.8% and the SCDD model predicted 1.77% 

of the pixels were likely from dark cells, on average. The bottom 

half of the table shows a similar example for one module after 

the thermal cycling sequence. After 600 thermal cycles (TC600), 

the module power decreased by 1.1 % and the percentage 

defective increased to 0.52 %. This study focuses on maximum 

power measurements (Pmp) versus dark cells after PID and 

cracks after thermal cycling.  

 



  

  

 

Table 1. Sample records of the dataset used for the 

correlation analysis. 

Defect 
Module 

ID 
Sequence 

Pmp Delta 

to Initial 

(%) 

Percentage 

Defective 

(%) 

Dark cell 1 Initial 0.0 0.00 

Dark cell 1 Post PID 6.8 -1.77 

Dark cell 2 Initial 0.0 0.00 

Dark cell 2 Post PID 9.9 -2.19 

Crack 1 Initial 0.0 0.06 

Crack 1 Post TC200 -0.2 0.07 

Crack 1 Post TC400 -0.5 0.48 

Crack 1 Post TC600 -1.1 0.52 

 

The r2 value from the linear regression quantifies the proportion 

of the variation in the dependent variable (y-axis) explained by 

the independent variable (x-axis). For example, Fig. 4 shows the 

least squares line for maximum power (Pmp) versus current at 

maximum power (Imp) for a subset of the modules analysed in 

this research. The r2= 0.99, meaning 99 % of the variability in 

the Pmp can be explained by the variability in Imp. While 

correlation does not prove causation, in the case of I-V 

characteristics this relationship does imply causation because a 

higher current output will lead to higher power output.  

 

 

Fig. 4. Simple linear regression of maximum power (Pmp) 

delta to initial versus current at maximum power (Imp) 

delta to initial (r2 = 0.99). 

Table 2 shows the key statistics for the analysis of variance from 

the linear regression model. The sum of squares error (SSE) 

quantifies the residual errors, specifically the value represents 

the sum of the squared residuals. The sum of squares total (SST) 

quantifies the variance in the Pmp, specifically the value 

represents the sum of squared differences between the Pmp and 

the average of the Pmp. The sun of squares model (SSM) is the 

difference between the SST and the SSE. The ratio of the SSM 

over SST equals the r2. In this case, 99 % of the variability in the 

Pmp is explained by the Imp.  

Table 2 Analysis of variance summary statistics for the 

linear regression analysis. 

Description  Value  

Error Sum of Squares (SSE) 350 223 

Model Sum of Squares (SSM) 31 562 191 

Total Sum of Squares (SST) 31 912 413 

R2 0.99 

 

4. Results and analysis 

4.1. Module output power vs. dark cells post PID  

Fig. 5 shows the correlation between module power loss (delta 

to initial Pmp) and the percentage of dark cell pixels predicted 

by the SCDD model. A subset of the dataset was described in 

Section 3.2 for clarity. An r2 value of 55% was obtained from the 

analysis of variance table as described in Table 2. This indicates 

that 55% of the decrease in Pmp can be explained by the increase 

in the dark cell percentage. The point representing SASC_00145 

module was an outlier with respect to the regression model. With 

the outlier excluded, an r2 value of 78% percentage was obtained. 

This demonstrates the significant impact the outlier had on the 

correlation analysis. Further investigations were made to 

understand the behaviour of the SASEC_00145 observation. 

 

 

Fig. 5. Regression analysis between delta output power and 

percentage of dark cells predicted by SCDD. 



  

  

We investigated the effect of pre-processing methods applied to 

the EL images before prediction by the SCDD tool to better 

understand the SASEC_00145 outlier. Specifically, we studied 

the influence of the brightness of an EL image on the ability of 

the SCDD tool to predict and quantify dark cells. Fig. 6 shows 

the correlation between the module power loss (delta to initial 

Pmp) and the percentage of dark cell pixels predicted by the 

SCDD model after reducing the brightness of the original EL 

image of the SASEC_00145 PV module by 50%. The percentage 

of dark cell pixels predicted by the SCDD model increased after 

reducing the brightness, and the resulting r2 value increased by 

17% (from 55% to 72%). This suggests that pre-processing 

methods that change the brightness of EL images impact the 

prediction of dark cells.  

 

Fig. 6. Regression analysis between delta output power and 

percentage of dark cells predicted by SCDD after 

darkening the PV module. 

The bias current applied during EL imaging can also impact pixel 

brightness. Fig. 7 shows the change in the percentage of dark cell 

pixels in the pre- and post-stress EL images recorded at 100 % 

of Isc current and in the post-stress EL image at 10 % of Isc 

current. The percentage of pixels predicted as dark cells 

increases significantly when the current bias is decreased from 

100 % of Isc current to 10 % of Isc current, as per the 

international standard. The IEC TS 62804-1 describes the test 

methods for the detection of potential-induced degradation. In 

that technical specification, the test sequence includes EL 

imaging at both 100 % of Isc current and 10 % of Isc current 

because the PID degradation is more easily seen to the human 

observer at the low bias setting It follows that the SS model 

would also detect more dark cell pixels in images taken at low 

bias. Unfortunately, the pre-stress EL images at 10% of Isc were 

not available to assess the percentage of dark cell pixels at that 

bias current prior to the stress.   

 

Fig. 7. Percentage of dark cells post PID at different levels 

of bias current. 

4.2. Module output power vs. cracks after thermal cycling  

Fig. 8 shows the correlation between module power loss (delta 

to initial Pmp) and the percentage of crack pixels predicted by 

the SCDD model for each module from one BOM that was 

subjected to thermal cycling. Based on the Pmp delta and 

cracked cell percentage values, an r2 value of 55% was obtained. 

This indicates that 55% of the change in Pmp can be explained 

by the change in the percentage of crack pixels predicted by the 

SCDD model.  

 

Fig. 8. Regression analysis between Pmp delta and crack 

pixels average post thermal cycling. 

Fig. 9 shows the evolution of cell cracks on the three PV modules 

from one BOM during 600 hours of thermal cycling, using steps 

of 200 thermal cycles. From this figure, it can be observed that 

all three PV modules developed cracks after TC400. This was 

not expected since thermal cycling does not typically cause 

cracks, and none of the modules from the other three BOMs 

developed significant cracks. Interestingly, the cracks showed a 

similar pattern across all three modules with long, 45 ° diagonal 

cracks developing in the top left and bottom right corners.  

 



  

  

 

Fig. 9. Variation of the percentage of cracked cells at 0, 200, 

400, and 600 thermal cycles. 

The sensitivity of crack detection to brightness post thermal 

cycling was also investigated. It was found that crack detection 

is robust to any brightness changes applied to the original image 

during pre-processing.  

5. Conclusion  

This work investigated linear correlations between the output of 

a semantic segmentation model trained to detect defects in EL 

images and the corresponding IV characteristics of PV modules 

exposed to accelerated stress testing. The output power of PV 

modules that were subjected to damp heat and thermal cycling 

was correlated to the percentage of dark cells and the percentage 

of cracks, respectively. The results suggest that a significant 

amount of variability in output power loss can be explained by 

defects detected by the SCDD tool, although causation should 

not be implied. In addition, it was found that the prediction of 

dark cells using the SCDD tool is susceptible to brightness 

changes in the EL image made during post-processing and the 

electrical current bias applied during imaging. In contrast, crack 

detection is robust to brightness changes.  

Future work will include further investigations on the sensitivity 

of predictions using the SCDD model to image preprocessing.  
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