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Abstract. Collaborative robots are adopted in the drive towards Industry 
4.0 to automate manufacturing, while retaining a human workforce. This 
area of research is known as human-robot collaboration (HRC) and focusses 
on understanding the interactions between the robot and a human. During 
HRC the robot is often programmed to perform a predefined task, however 
when working in a dynamic and unstructured environment this is not 
achievable. To this end, machine learning is commonly employed to train 
the collaborative robot to autonomously execute a collaborative task. Most 
of the current research is concerned with HRC, however, when considering 
the smart factory of the future investigating an autonomous collaborative 
task between two robots is pertinent. In this paper deep reinforcement 
learning (DRL) is considered to teach two collaborative robots to handover 
an object in a simulated environment. The simulation environment was 
developed using Pybullet and OpenAI gym. Three DRL algorithms and three 
different reward functions were investigated. The results clearly indicated 
that PPO is the best performing DRL algorithm as it provided the highest 
reward output, which is indicative that the robots were learning how to 
perform the task, even though they were not successful. A discrete reward 
function with reward shaping, to incentivise the cobot to perform the desired 
actions and incremental goals (picking up the object, lifting the object and 
transferring the object), provided the overall best performance.  

1 Introduction 
Industry 4.0 focuses on the development of a smart factory that is not only highly flexible 
but also offers reconfigurable facilities [1, 2]. To achieve this, autonomous, safe, and 
effective robotic systems are needed to allow for more rapid manufacturing practices [1]. 
These robotic systems should therefore be able to perform complex tasks in unstructured and 
dynamic environments [1, 3].  
 Robots will also be expected to collaborate with their human colleagues by interacting 
with their surroundings and assisting with the task at hand, while working in the same 
environment [3-6]. The most popular robot to consider in human-robot collaboration (HRC) 
tasks is the collaborative robot, better known as a cobot [3, 5, 6]. Cobots are equipped with 
safety systems according to ISO regulations, are easy to install, demand less space and require 
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fewer modifications in a production environment [5]. One disadvantage of cobots is that 
when they are programmed for a specific task that they are unable to adapt to any changes in 
the environment [5]. For example, if their human colleague moves an object or doesn’t place 
it in the exact location for collection the cobot will not be able to collect it. Autonomous 
behaviour through learning will solve this issue and increase flexibility and adaptability of 
cobots in a dynamic and unstructured manufacturing environment [1, 5].  
 In an industrial environment there are several HRC type tasks which normally involve a 
human, a cobot, an object and a manufacturing process [3]. In some of these tasks there is a 
true collaboration between the human and robot where they are working together to achieve 
a common goal: co-manipulation (object handling), handover, assembly, pick-and-place and 
fetching. These tasks would require some intelligence or automation from the cobot to 
interact seamlessly with the human. There are also instances where the cobot is simply used 
as a tool replacing older static technologies, for example, acting as a light source 
(illumination), holding soldering wire, inspection (quality control), drilling, sanding (surface 
finish) and screwing. In these cases, it would be sufficient to manually program the cobot’s 
actions as they are not required to interact or respond to a changing environment.  
 Similar to humans, cobots learn through observation, demonstrations, trial and error, 
feedback and by asking questions [3]. The most common way to teach cobots, or any robot, 
intelligence is with reinforcement learning (RL) algorithms – one of three areas of machine 
learning (ML) [2, 3]. The basic concept of RL is that a robot is trained to take a series of 
desired actions within their environment by maximising the cumulative reward [6]. 
Leveraging high-performance computing, RL can be enhanced by combining it with deep 
neural networks which improves performance, adaptability, and time efficiency [2]. Deep 
reinforcement learning (DRL) allows robots to learn by themselves to make precise and fast 
decisions in dynamic and complex situations [2]. It is therefore ideal to use for learning on 
cobots as it improves its manipulation adaptability, controls the performance, and reduces its 
reliance on expert knowledge to train [2].  
 Object handover is a typical task to be performed in an industrial setting and is a core 
part of other collaborative tasks such as assembly and fetching [1, 4, 6]. In this instance a 
robot will pick up an object and hand the object over to its human colleague according to a 
predefined path. When a human colleague is involved, it is easy for the human to adjust their 
hand position to prevent the cobot from colliding with their hand or wait for release. This is 
not the case between two cobots as the handover timing needs to be precise. Poor timing 
could lead to the object being dropped either due to the second cobot’s path colliding, or the 
releasing and gripping activities that are not synched properly. In fact, this is a seamless task 
among humans as we autonomously predict, perceive, perform an action, learn, and adjust to 
handover an object [4]. To achieve this with either HRC or robot-to-robot collaboration 
(R2R) would require a lot of training and algorithmic development.  
 Most studies in literature consider the object handover between HRC as discussed in 
Ortenzi et al.’s [4] review. There are far fewer studies that have considered object handover 
for R2R, or robot-to-robot collaboration [1,7]. This is largely due to a more complex scenario 
in R2R, as there are no humans involved that can easily adapt to the cobot’s behaviour. In an 
R2R scenario the cobots need to learn to adapt to each other [7].  
 Sileo et al. [1] proposed an autonomous R2R object handover in the presence of 
uncertainties. Their experiments were performed using two Franka Panda robot arms. Each 
robot arm was equipped with an eye-in-hand depth camera for additional perception and 
object recognition capabilities. They used counter-rotating shafts of different lengths and 
shapes as the object, which is placed in a box in the field of view of the first robot’s camera. 
Sileo et al. [1] proposed a 6-stage approach to complete the object handover task (Figure 1). 
To detect the object (stage 1), they investigated two convolutional neural networks (CNN) 
namely, Faster R-CNN and YOLOv4. YOLOv4 was found to be the best performing 

algorithm, able to detect the three different object classes with a higher accuracy than Faster 
R-CNN. They developed an algorithm which used the visual data as input to estimate the 
grasping point of the object (stage 2) before picking up the object and moving towards the 
exchange point (stage 3). The second robot arm has an exteroceptive sensor to detect the 
presence of the object, before aligning itself to the object’s axis using visual input (stage 4). 
It detects first contact with the object when the estimated force along the object is higher than 
a predefined threshold and closes its gripper (stage 5). Object handover then takes place 
where the second robot arm moves the object upward. The first robot arm experiences a force 
along the object and once a predefined threshold is reached it releases the gripper, and the 
object is successfully transferred (stage 6). Sileo et al.’s [1] proposed approach was 
successful in the absence of explicit communication, relying only on visual and sensor input 
for a predefined algorithm to perform this complex task. However, they were still reliant on 
input data and algorithmic calculations to perform the task.  

 

Fig. 1. Object handover 6-stage approach: (1) detecting the object, (2) estimating the grasping point, 
(3) grasping the object and moving to the exchange point, (4) detecting the object at the exchange 
point, (5) second robot arm grasps the object, and (6) first robot arm releases the object. (Adapted 
from Sileo et al. [1]) 

  
 Costanzo et al. [7] experimentally investigated object handover for both HRC and R2R 
collaboration tasks. For the R2R task they equipped two Kuka LBR robots with a WSG-50 
gripper, an eye-in-hand depth camera to track the object as well as force sensors to determine 
the gripping force. As with Sileo et al. [1] there is no active communication between the two 
robot arms and a motion is performed when certain cues are observed. The object is placed 
in the camera’s line of sight of the first robot arm (giver) so that it can track the object and 
waits for a haptic cue from the second robot arm (receiver) to indicate that it intends on taking 
the object. Once the second robot arm has gripped the object the first arm performs a 
backward and forward motion to determine the pulling force. If this force exceeds a 
predefined threshold and satisfies a few conditions to determine slippage and contact with 
the gripper from the second robot arm, then the first robot arm releases its gripper, and the 
object is successfully transferred. A flow diagram for the handover process is illustrated in 
Figure 2.  
 
 
 

2

MATEC Web of Conferences 388, 04012 (2023)	 https://doi.org/10.1051/matecconf/202338804012
2023 RAPDASA-RobMech-PRASA-AMI Conference



fewer modifications in a production environment [5]. One disadvantage of cobots is that 
when they are programmed for a specific task that they are unable to adapt to any changes in 
the environment [5]. For example, if their human colleague moves an object or doesn’t place 
it in the exact location for collection the cobot will not be able to collect it. Autonomous 
behaviour through learning will solve this issue and increase flexibility and adaptability of 
cobots in a dynamic and unstructured manufacturing environment [1, 5].  
 In an industrial environment there are several HRC type tasks which normally involve a 
human, a cobot, an object and a manufacturing process [3]. In some of these tasks there is a 
true collaboration between the human and robot where they are working together to achieve 
a common goal: co-manipulation (object handling), handover, assembly, pick-and-place and 
fetching. These tasks would require some intelligence or automation from the cobot to 
interact seamlessly with the human. There are also instances where the cobot is simply used 
as a tool replacing older static technologies, for example, acting as a light source 
(illumination), holding soldering wire, inspection (quality control), drilling, sanding (surface 
finish) and screwing. In these cases, it would be sufficient to manually program the cobot’s 
actions as they are not required to interact or respond to a changing environment.  
 Similar to humans, cobots learn through observation, demonstrations, trial and error, 
feedback and by asking questions [3]. The most common way to teach cobots, or any robot, 
intelligence is with reinforcement learning (RL) algorithms – one of three areas of machine 
learning (ML) [2, 3]. The basic concept of RL is that a robot is trained to take a series of 
desired actions within their environment by maximising the cumulative reward [6]. 
Leveraging high-performance computing, RL can be enhanced by combining it with deep 
neural networks which improves performance, adaptability, and time efficiency [2]. Deep 
reinforcement learning (DRL) allows robots to learn by themselves to make precise and fast 
decisions in dynamic and complex situations [2]. It is therefore ideal to use for learning on 
cobots as it improves its manipulation adaptability, controls the performance, and reduces its 
reliance on expert knowledge to train [2].  
 Object handover is a typical task to be performed in an industrial setting and is a core 
part of other collaborative tasks such as assembly and fetching [1, 4, 6]. In this instance a 
robot will pick up an object and hand the object over to its human colleague according to a 
predefined path. When a human colleague is involved, it is easy for the human to adjust their 
hand position to prevent the cobot from colliding with their hand or wait for release. This is 
not the case between two cobots as the handover timing needs to be precise. Poor timing 
could lead to the object being dropped either due to the second cobot’s path colliding, or the 
releasing and gripping activities that are not synched properly. In fact, this is a seamless task 
among humans as we autonomously predict, perceive, perform an action, learn, and adjust to 
handover an object [4]. To achieve this with either HRC or robot-to-robot collaboration 
(R2R) would require a lot of training and algorithmic development.  
 Most studies in literature consider the object handover between HRC as discussed in 
Ortenzi et al.’s [4] review. There are far fewer studies that have considered object handover 
for R2R, or robot-to-robot collaboration [1,7]. This is largely due to a more complex scenario 
in R2R, as there are no humans involved that can easily adapt to the cobot’s behaviour. In an 
R2R scenario the cobots need to learn to adapt to each other [7].  
 Sileo et al. [1] proposed an autonomous R2R object handover in the presence of 
uncertainties. Their experiments were performed using two Franka Panda robot arms. Each 
robot arm was equipped with an eye-in-hand depth camera for additional perception and 
object recognition capabilities. They used counter-rotating shafts of different lengths and 
shapes as the object, which is placed in a box in the field of view of the first robot’s camera. 
Sileo et al. [1] proposed a 6-stage approach to complete the object handover task (Figure 1). 
To detect the object (stage 1), they investigated two convolutional neural networks (CNN) 
namely, Faster R-CNN and YOLOv4. YOLOv4 was found to be the best performing 

algorithm, able to detect the three different object classes with a higher accuracy than Faster 
R-CNN. They developed an algorithm which used the visual data as input to estimate the 
grasping point of the object (stage 2) before picking up the object and moving towards the 
exchange point (stage 3). The second robot arm has an exteroceptive sensor to detect the 
presence of the object, before aligning itself to the object’s axis using visual input (stage 4). 
It detects first contact with the object when the estimated force along the object is higher than 
a predefined threshold and closes its gripper (stage 5). Object handover then takes place 
where the second robot arm moves the object upward. The first robot arm experiences a force 
along the object and once a predefined threshold is reached it releases the gripper, and the 
object is successfully transferred (stage 6). Sileo et al.’s [1] proposed approach was 
successful in the absence of explicit communication, relying only on visual and sensor input 
for a predefined algorithm to perform this complex task. However, they were still reliant on 
input data and algorithmic calculations to perform the task.  

 

Fig. 1. Object handover 6-stage approach: (1) detecting the object, (2) estimating the grasping point, 
(3) grasping the object and moving to the exchange point, (4) detecting the object at the exchange 
point, (5) second robot arm grasps the object, and (6) first robot arm releases the object. (Adapted 
from Sileo et al. [1]) 

  
 Costanzo et al. [7] experimentally investigated object handover for both HRC and R2R 
collaboration tasks. For the R2R task they equipped two Kuka LBR robots with a WSG-50 
gripper, an eye-in-hand depth camera to track the object as well as force sensors to determine 
the gripping force. As with Sileo et al. [1] there is no active communication between the two 
robot arms and a motion is performed when certain cues are observed. The object is placed 
in the camera’s line of sight of the first robot arm (giver) so that it can track the object and 
waits for a haptic cue from the second robot arm (receiver) to indicate that it intends on taking 
the object. Once the second robot arm has gripped the object the first arm performs a 
backward and forward motion to determine the pulling force. If this force exceeds a 
predefined threshold and satisfies a few conditions to determine slippage and contact with 
the gripper from the second robot arm, then the first robot arm releases its gripper, and the 
object is successfully transferred. A flow diagram for the handover process is illustrated in 
Figure 2.  
 
 
 

3

MATEC Web of Conferences 388, 04012 (2023)	 https://doi.org/10.1051/matecconf/202338804012
2023 RAPDASA-RobMech-PRASA-AMI Conference



 
Fig. 2. Flow diagram for both robot arms to achieve an object handover task. (Reprinted from 
Costanzo et al. [7] with permission under the Creative Commons CC-BY license version 4.0) 

  
 Both Sileo et al. [1] and Costanzo et al. [7] used additional data from cameras and sensors 
as input into the algorithms which control the two cobots’ behaviour. We propose an 
autonomous learning approach using DRL, with no additional sensor or environmental data, 
to perform object handover between two collaborative robots, safely and efficiently. This 
study will focus on a simulated environment as there are complexities involved in performing 
DRL realistically in a real-world environment [8, 9].  
 The contribution from this study is two-fold. Firstly, with the limited literature available 
on object handover between two collaborative robots, this study will add to the body of 
knowledge while also providing a detailed discussion on the development of a simulated 
environment. The second contribution focusses on the use of DRL to teach collaborative 
robots to perform object handover, which is a complex task, in a simulated environment. The 
study emphasises the importance of selecting the right DRL algorithm and reward function 
to facilitate successful learning. 

2 Methodology 
The collaborative robot system used in this study is the Franka Emika Panda, illustrated in 
Figure 3. The Panda arm has 7 degrees of freedom with torque sensors at each joint and a 
parallel finger gripper [10]. The Panda arm has similar manoeuvrability to a human arm and 
the torque sensors allow the Panda to handle objects delicately [10]. The Panda arm is a 
research tool able to interface easily with the robot operating software (ROS) through the 
libfranka and franka_ros libraries, transferring and updating data at rates up to 1 kHz [10].  
 

 
Fig. 3. Franka Emika Panda arms in the CSIR robotics laboratory. 

2.1 Task Description  

Ortenzi et al. [4] formally defines object handover as a joint action, or any form of social 
interaction to coordinate actions, between a giver and receiver. A successful joint action is 
dependent on their ability to share representations, predict actions, and integrate all actions.  
 For this study the object handover task is illustrated in Figure 4 and was kept very simple. 
Cobot arm 1 will first pick up the object (Figure 4(a)) and then lift it above the height 
threshold (Figure 4(b)). Once there cobot arm 1 will stop moving and cobot arm 2 will move 
towards the object. Once cobot arm 2 has gripped the object, cobot arm 1 will let go (Figure 
4(c)). Cobot arm 2 then moves the object safely away until a positional threshold is reached 
(Figure 4(d)).  
 

 

  
Fig. 4. Illustration of the object handover task within the simulation environment. 

 
 The most critical point is the object handover as cobot arm 1 needs to realise when cobot 
arm 2 has gripped the object. If it doesn’t there are two potential failure scenarios that can 
occur:  

1. Cobot arm 1 won’t let go resulting in either a tug of the object where both arms 
could perhaps move together with the object, similar to co-manipulation.  

2. Cobot arm 1’s grip is stronger and when cobot arm 2 moves to place the object it 
leaves the transfer area without it. 

2.2 Reinforcement Learning  

Reinforcement learning (RL) is one of the three core machine learning groups and is often 
used to optimise the performance of sequential decision processes [2]. RL does this using 
Markov decision processes (MDP). MDP is a graphical model where an agent interacts with 
an environment under a policy, is rewarded based on its actions, and outputs an observation 

(a) Pick up object (b) Lift object 

(c) Object handover (d) Move object 
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about the state [5, 6]. This process is illustrated in Figure 5, where the agent is the Panda 
arms and the environment the object handover task. 
 There are two categories of RL: model-based and model-free. In a model-based RL the 
state transition probability of the system is known, and a model can therefore be developed 
[2]. Model-free RL is often used as it is difficult to develop a model of the environment 
transition beforehand [5, 6]. Deep reinforcement learning (DRL) uses deep neural networks 
(DNN) to improve the decision-making capabilities of RL [2, 5] and is often part of the agent 
framework as illustrated in Figure 5. A DNN is used to extract environmental information 
based on the state and reward to infer an optimal policy [2].  
 

 
 

Fig. 5. Schematic illustration of a learning framework for reinforcement learning (RL) and deep 
reinforcement learning (DRL). 

 
 For the simulation environment we used OpenAI Gym (v0.21.0) and Pybullet. For 
compatibility we selected the stable-baselines3 (v1.8.0) Python module which contains 
standard DRL models, including model-free actor-critic algorithms which are mainly used in 
DRL [2]. An actor-critic algorithm combines a state-action pair value function with policy-
based learning algorithms and uses two DNN’s simultaneously to approximate the value and 
policy functions [2]. The actor-network for the policy function generates actions to interact 
with the environment, and the critic-network for the value function evaluates the actor’s 
performance and guides its next actions [2].  
 There are seven DRL algorithms implemented in the stable-baselines3 module: 
Advantage Actor-Critic (A2C) [12], Deep Deterministic Policy Gradient (DDPG) [13], Deep 
Q Network (DQN) [14], Hindsight Experience Replay (HER) [15], Proximal Policy 
Optimisation (PPO) [16], Soft Actor Critic (SAC) [17], and Twin Delayed DDPG (TD3) 
[18]. The reader is referred to each of the papers for details surrounding the mathematical 
formulation and implementation for each algorithm.  
 For the purposes of this study, and computational resource constraints, only one 
algorithm from each family is considered. Unfortunately, DQN cannot be considered as it 
requires a discrete action space, and a continuous action space is used in this study. HER 
would require the definition of an achieved and desired goal within the observation space, 
which for this task might add unnecessary complexities to the implementation. A2C, DDPG 
and PPO are therefore selected for comparison in this study as they are more efficient in 
training compared to their siblings SAC and TD3.  
 A2C is known for its stability and sample efficiency. It updates the policy and value 
function simultaneously, which can lead to faster convergence and more stable learning. It 
can also optimally make use of parallel processing, allowing for more efficient use of 
computational resources and faster training. However, A2C is more challenging to train since 

many policy gradient methods can suffer from high variance in the gradients (overfitting to 
noisy or unrepresentative training data). A2C is also sensitive to hyperparameter choices and 
care should be taken when choosing these for optimal performance. 
 DDPG is designed for problems with continuous action spaces and can handle tasks that 
involve controlling real-valued actions, such as robotics or autonomous driving. It combines 
Q-learning with policy gradients, leading to relatively stable training. DDPG requires many 
interactions with the environment, which can be time-consuming and computationally 
expensive. It may not perform well in tasks where exploration in a continuous action space 
is critical. 
 PPO is more sample-efficient than DDPG as it uses importance sampling and clip-based 
objective functions to stabilise training. It is considered a robust algorithm and has less 
hyperparameters to tune, making it easier to implement. Like A2C, PPO can also benefit 
from parallel environments, enhancing training speed. While PPO is more sample-efficient 
than some other algorithms, it can still be computationally intensive, especially in complex 
environments. PPO still suffers from noisy gradient estimates due to the use of importance 
sampling, which can affect training stability. 

2.3 Simulated Environment  

There are two OpenAI gym environments available which use Pybullet and have defined 
standard manipulation tasks such as reach, push, slide, pick and place, and stack [8, 9] for a 
single robotic arm. Only Zhu et al. [19] (using OpenAI gym and Mujoco) has an option, in 
addition to the standard tasks for single arms, for a two-arm object lifting, peg-in-hole and 
handover. These three potential simulation environments are illustrated in Figure 6. It was 
not possible to use the existing environment created by Zhu et al. [19] as there are errors upon 
installation that are difficult to debug. Initially the panda-gym [9] environment was 
considered as it already had a Panda arm incorporated, but after implementing a second arm 
it appeared that the second arm was purely a mirror of the first. This is due to the inheritance 
of a class which initiates a single robot arm. To modify this class would have taken longer 
than to just create a new custom environment.  
 

 
 

 
 

 

 
(a) Pick-and-place with a Kuka 

arm [8] 
(b) Pick-and-place with a 

Panda arm [9] 
(c) Two-arm handover with a 

Sawyer arm [19] 
Fig. 6. Examples of existing OpenAI gym manipulator environments. (Images reprinted from 
articles with permission under the Creative Commons CC-BY license version 4.0) 
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can also optimally make use of parallel processing, allowing for more efficient use of 
computational resources and faster training. However, A2C is more challenging to train since 

many policy gradient methods can suffer from high variance in the gradients (overfitting to 
noisy or unrepresentative training data). A2C is also sensitive to hyperparameter choices and 
care should be taken when choosing these for optimal performance. 
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involve controlling real-valued actions, such as robotics or autonomous driving. It combines 
Q-learning with policy gradients, leading to relatively stable training. DDPG requires many 
interactions with the environment, which can be time-consuming and computationally 
expensive. It may not perform well in tasks where exploration in a continuous action space 
is critical. 
 PPO is more sample-efficient than DDPG as it uses importance sampling and clip-based 
objective functions to stabilise training. It is considered a robust algorithm and has less 
hyperparameters to tune, making it easier to implement. Like A2C, PPO can also benefit 
from parallel environments, enhancing training speed. While PPO is more sample-efficient 
than some other algorithms, it can still be computationally intensive, especially in complex 
environments. PPO still suffers from noisy gradient estimates due to the use of importance 
sampling, which can affect training stability. 

2.3 Simulated Environment  

There are two OpenAI gym environments available which use Pybullet and have defined 
standard manipulation tasks such as reach, push, slide, pick and place, and stack [8, 9] for a 
single robotic arm. Only Zhu et al. [19] (using OpenAI gym and Mujoco) has an option, in 
addition to the standard tasks for single arms, for a two-arm object lifting, peg-in-hole and 
handover. These three potential simulation environments are illustrated in Figure 6. It was 
not possible to use the existing environment created by Zhu et al. [19] as there are errors upon 
installation that are difficult to debug. Initially the panda-gym [9] environment was 
considered as it already had a Panda arm incorporated, but after implementing a second arm 
it appeared that the second arm was purely a mirror of the first. This is due to the inheritance 
of a class which initiates a single robot arm. To modify this class would have taken longer 
than to just create a new custom environment.  
 

 
 

 
 

 

 
(a) Pick-and-place with a Kuka 

arm [8] 
(b) Pick-and-place with a 

Panda arm [9] 
(c) Two-arm handover with a 

Sawyer arm [19] 
Fig. 6. Examples of existing OpenAI gym manipulator environments. (Images reprinted from 
articles with permission under the Creative Commons CC-BY license version 4.0) 
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2.3.1 Creating a custom environment 

To create the simulated environment, OpenAI gym was used with Pybullet as the physics 
engine which has a Franka Emika Panda arm already available as an asset. The custom 
environment is a Python class which inherits from gym.Env and has five basic definitions to 
complete: __init__, step, reset, render and close. 
 The __init__ definition initialises the global variables, connects the Pybullet simulation 
and defines the action and observation spaces. The action space defines a set of the possible 
actions that the agent can take in the environment. Note that [-1, 1] is commonly used for 
continuous control RL, but it would be too large considering that there are two robot arms. 
Based on the desired task and potential actions a [-0.5,0.5] space would be sufficient. The 
observation space defines a set of possible observations in an environment. It is commonly 
defined as a [-10, 10] multi-dimensional continuous space.   
 The render definition defines the necessary camera related arguments to ensure that the 
simulation window is viewed correctly. This is normally standardised and therefore similar 
to other OpenAI gym environments. We used the same arguments and lines of code as 
defined in the panda-gym environment [9].   
 The close definition has a single line which disconnects the Pybullet simulation.  
 The reset definition is largely used to define the simulation environment by loading the 
different agents and objects as well as defining the initial positions and orientations. The 
simulated environment generated based on the reset definition is shown in Figure 7.  
 The step definition is by far the most important as it defines the actions (with an action 
array as input) that the agent should take, determines the state, and calculates the reward. A 
robot arm action is determined using built-in Pybullet functions. First the current pose is 
determined and then the new action (provided as input into the definition) is calculated in 
cartesian coordinates. This new position array is then used to calculate the inverse kinematics 
to output the joint positions which are then used to set the joint motor control. A step in the 
simulation is then performed and the state of each cobot arm is determined. The most 
important part of this definition is to calculate the reward function.   
 

 
Fig. 7. Custom environment with two Panda arms and an object. 

Object 

Cobot  
Arm 1 

Cobot 
Arm 2 

Table 

 To determine the reward function there are two basic equations that will be considered. 
The first calculates the Euclidean distance between the cobot arm end effector and the object 
and compares it to a threshold (δ):  
 

‖𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜‖ ≤ 𝛿𝛿                                                               (1) 
 
 Reward shaping is also considered as the simulation has difficulty in solving the RL 
problem due to the random nature of the actions. To coax the cobot arm into reaching for the 
object a reward proportional to the distance from the object is given:  
 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 0.25 [1 −  tanh(1 − ‖𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜‖)]                            (2) 
 
 The reward function is the most important component towards ensuring a successful 
simulation of the object handover task. As such we considered three different approaches: 
(1) implementing the reward function defined by Zhu et al. [19] for the two-arm handover 
task; (2) developing a reward function considering only discrete rewards at each intermediate 
goal; and (3) including reward shaping in the defined discrete reward function.  
 With the two arms it was also decided to implement flags within the reward function to 
determine when an arm is active, and therefore performing actions, and when an arm is 
deactivated i.e., remains stationary. This will assist with potential collisions between the two 
arms and increase the probability of a successful simulation.  
 
(1) Zhu et al. [19] Reward Function 
The complete reward function is illustrated in Algorithm 1. The reward function has six steps:  

1. Robot Arm 1 reaching for the object: A reward of [0, 0.25] is given that is 
proportional to the distance between the arm and the object.  

2. Robot arm 1 grasping the object: A reward of 0.5 is given if the arm is gripping the 
object and 0 otherwise.  

3. Robot arm 1 lifting the object: A reward of 1.0 is given if the object is lifted past 
the height threshold of 0.25 from the table and 0 otherwise.  

4. Robot arm 1 moves object to target location: A reward of [1.0, 1.25] is given if the 
arm is actively lifting the object. This reward is proportional to the distance between 
the object and the second arm, and 0 otherwise. A flag is initiated for arm 2 to start 
taking actions and arm 1 to remain stationary. 

5. Object transfer: A reward of 1.5 is given if both arms are gripping the object where 
the first arm is lifting the object above the table, and 0 otherwise.  

6. Robot arm 2 grasping the object: A reward of 2.0 is given when the arm is gripping 
the object and keeps it lifted above the table, and the simulation completes 
successfully.  

 
(2) Discrete Reward Function 
The discrete reward function developed in this study is shown in Algorithm 2. The logic is 
similar to Algorithm 1 but approached in a different way by establishing whether the arms 
made contact with anything, whereas Algorithm1 is purely dependent on the object position. 
The reward function has four steps:  

1. Robot arm 1 grasping the object: A reward of 0.25 is given if the arm grasps the 
object. 

2. Robot arm 1 lifting the object: A reward of 0.5 is given if the arm lifts the object 
above the 0.25 height threshold. Initialise the movement of arm 2 and prevent any 
further movement of arm 1.  
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The complete reward function is illustrated in Algorithm 1. The reward function has six steps:  

1. Robot Arm 1 reaching for the object: A reward of [0, 0.25] is given that is 
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object and 0 otherwise.  
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the height threshold of 0.25 from the table and 0 otherwise.  

4. Robot arm 1 moves object to target location: A reward of [1.0, 1.25] is given if the 
arm is actively lifting the object. This reward is proportional to the distance between 
the object and the second arm, and 0 otherwise. A flag is initiated for arm 2 to start 
taking actions and arm 1 to remain stationary. 

5. Object transfer: A reward of 1.5 is given if both arms are gripping the object where 
the first arm is lifting the object above the table, and 0 otherwise.  

6. Robot arm 2 grasping the object: A reward of 2.0 is given when the arm is gripping 
the object and keeps it lifted above the table, and the simulation completes 
successfully.  

 
(2) Discrete Reward Function 
The discrete reward function developed in this study is shown in Algorithm 2. The logic is 
similar to Algorithm 1 but approached in a different way by establishing whether the arms 
made contact with anything, whereas Algorithm1 is purely dependent on the object position. 
The reward function has four steps:  

1. Robot arm 1 grasping the object: A reward of 0.25 is given if the arm grasps the 
object. 

2. Robot arm 1 lifting the object: A reward of 0.5 is given if the arm lifts the object 
above the 0.25 height threshold. Initialise the movement of arm 2 and prevent any 
further movement of arm 1.  
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3. Robot arm 2 grasping the object: A reward of 0.75 is given if the arm grasps the
object and robot arm 1 releases its grip on the object.

   

4. Robot arm 2 safely moving object away: A reward of 1.0 is given if the arm moves
the object safely away, and the simulation completes successfully.

   

Alg. 2. Object handover discrete reward function developed in this study. 
1:   Initialise the reward to 0. 
2:   if arm 1 has made contact then 
3:      if distance_pickup using Equation (1) < 0.1 then 
4:         reward = 0.25 
5:         if object_height > 0.05 then 
6:            if object_height > 0.25 then 
7:         

    

  reward = 0.5 
8:         

    

  Initialise movement of arm 2 and prevent further movement of arm 1 
9:   if arm 2 has made contact then 
10:    if distance_transfer < 0.1 then 
11:       reward = 0.75 
12:       Open gripper fingers to release object 
13:       if object_height < 0.1 or object_y > 0.2 then 
14:          reward = 1.0 
15:          simulation_done = True 

 

(3) Discrete Reward Function with Reward Shaping
The same discrete reward function (Algorithm 2) is considered but reward shaping is added
as shown in Algorithm 3. The reward function steps are therefore the same as for the discrete
reward function with the addition of reward shaping to coax the arms into reaching for the
object:

1. Robot arm 1 reaching for object: A reward of [0, 0.25] is given proportional to the
distance between the object and arm 1.

  

2. Robot arm 1 is lifting object: A reward of [0.25, 0.50] is given proportional to the
distance between the height threshold of 0.25 and the height of the object. The
movement of arm 2 is initialised, and arm 1 is deactivated to remain stationary.

Alg. 1. Object handover reward function from Zhu et al. [19] 

1:   Initialise the reward to 0. 
2:   Determine the object height from its current state.  
3:   if object_height > 0.25 then 
4:      Initiate movement of arm 2 and prevent further movement of arm 1 
5:      if distance_transfer using Equation (1) < 0.1 then 

 

6:      if distance_pickup using Equation (1) < 0.1 then 
7:         reward = 1.5 
8:      else then 
9:         reward = 2.0 
10:       simulation_done = True 
11:   else then 
12:      reward = 1.0 
13:      distance_object using Equation (1) 
14:      reward_shape using Equation (2) 
15:      reward = reward + reward_shape 
16:   else then 
17:      if distance_pickup using Equation (1) < 0.1 then 
18:         reward = 0.5 
19:      else then 
20:         distance_object using Equation (1) 
21:          reward = reward + reward_shape using Equation (2) 
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3. Robot arm 2 reaching for object: A reward of [0.5, 0.75] is given proportional to 
the distance between the object and arm 2.  

4. Robot arm 2 is moving object: A reward of [0.75, 1.0] is given proportional to the 
distance between the object and the target position, and the simulation is successful 
once the target end position is reached.    

 
Alg. 3. Object handover reward function with reward shaping developed in this study. 
1:   Initialise the reward to 0. 
2:   if arm 1 has made contact then 
3:      if distance_pickup using Equation (1) < 0.1 then 
4:         reward = 0.25 
5:         if object_height > 0.05 then 
6:            if object_height > 0.25 then 
7:               reward = 0.5 
8:               Initialise movement of arm 2 and prevent further movement of arm 1 
9:            else then 
10:              reward = 0.25 
11:             distance_object_height using Equation (1) 
12:             reward = reward + reward_shape using Equation (2) 
13:       else then 
14:          distance_object_arm1 using Equation (1) 
15:          reward = reward + reward_shape using Equation (2) 
16:   if arm 2 has made contact then 
17:      if distance_transfer < 0.1 then 
18:         reward = 0.75 
19:         Open gripper fingers to release object 
20:         if object_height < 0.1 or object_y > 0.2 then 
21:            reward = 1.0 
22:            simulation_done = True  
23:         else then 
24:            reward = 0.75 
25:            distance_object_position using Equation (1) 
26:            reward = reward + reward_shape using Equation (2) 
27:      else then 
28:         reward = 0.5 
29:         distance_object_arm2 using Equation (1) 
30:         reward_shape using Equation (2) 

2.3.2 Integrating with reinforcement learning  

As mentioned in Section 2.2 the stable-baselines3 Python module, which includes several 
DRL algorithms, is used in this study. To integrate the custom environment with DRL is very 
simple and only requires making the gym environment, initialising the DRL algorithm and 
setting up the model to train.  
 Based on literature [8, 9] at least 1 million timesteps are required to reach a successful 
task completion. Each algorithm will run until it either successfully completes the task or 2 
million timesteps are reached.  
 The algorithm implementations as provided in stable-baselines3 was considered with no 
changes made and the default values for the hyperparameters were used. For all DRL’s the 
MultiInputPolicy was considered which allows for handling multiple policy input types using 
a dictionary. For this study, no hyperparameter tuning was considered as the aim was to 
develop a simulation that would result in a successful object handover between the two cobot 
arms. That being said, with hyperparameter tuning the chances of success are increased, 
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however without properly understanding the mathematical implementation it might not be as 
successful, especially with a trial-and-error approach. 

3 Results and Discussion 
A summary of the results from different combinations of reward function and DRL algorithm 
are provided in Table 1. None of the simulations terminated on their own which would have 
been the case if the task was successfully completed. The simulations were therefore stopped 
around 2 million timesteps, except for the DDPG algorithm which was stopped around 1 
million timesteps. None of the simulations terminated on their own which is a clear indication 
that the object handover was not successful. Nonetheless, the different DRL algorithms and 
reward functions are compared and interrogated in the following subsections.  
 
Table 1. Summary of the comparative DRL and reward function results. 

DRL 
Algorithm Reward Function Total 

Timesteps 
Maximum 

Reward Successful 

A2C 

Zhu et al. [15] 2 000 500 30.85 No 
Discrete 2 000 500 0.28 No 
Discrete with 
Reward Shaping 2 006 500 42.14 No 

DDPG 

Zhu et al. [15] 1 337 600 17.84 No 
Discrete 1 185 186 0.04 No 
Discrete with 
Reward Shaping 1 881 483 61.54 No 

PPO 

Zhu et al. [15] 2 000 896 48.5 No 
Discrete 2 004 992 22.07 No 
Discrete with 
Reward Shaping 2 000 896 62.96 No 

3.1 Evaluation of the Deep Reinforcement Learning Algorithms  

It was observed that the DDPG algorithm is more computationally expensive than either A2C 
or PPO. On an Ubuntu 21.10 Virtual Machine with 4 CPUs A2C ran 4 s per 1000 timesteps, 
PPO 5 s, and DDPG 26 s.   
 The maximum reward for the different algorithms is illustrated in Figure 8, where the 
PPO algorithm generally provided the overall best reward, followed by A2C and DDPG. It 
is difficult to say whether this increased reward is indicative of the Panda arms performing 
some aspects of the object handover task, and to what extent. Unfortunately, it was not 
possible to interrogate all the saved models for each considered case as there were errors 
during loading which could not be resolved. However, based on those that could be 
interrogated, only the PPO algorithm (with discrete reward function) managed to grip the 
object, but wasn’t able to lift it to the desired height. Both A2C and DDPG were not even 
close to gripping the object.  
 The overall performance of each algorithm is presented in Figure 9 as a function of the 
different reward functions. The PPO algorithm outperforms both the A2C and DDPG 
algorithms, showing a consistent linear increase in the reward function before converging. 
This is indicative of learning and shows the most promise of being able to successfully 
complete the object handover task. However, a noisy gradient is observed, which can be 
improved upon through hyperparameter tuning to stabilise training. These results clearly 

indicate that PPO is more sample-efficient in complex environments, such as object 
handover.   
 

 
Fig. 8. Maximum reward as a function of the different DRL algorithms and reward functions. 

 

 
Fig. 9. Overall performance of each algorithm as a function of (a) Zhu et al. [19], (b) discrete, and 
(c) discrete with reward shaping reward functions. 

 
 The A2C and DDPG algorithms have a more erratic pattern which is indicative of the 
agent performing actions but not really learning from the associated rewards. As a policy 
gradient method, A2C, can suffer high variance in the gradients as observed in Figure 9. This 
is due to overfitting noisy or unrepresentative training data which can be addressed with 
hyperparameter tuning. A2C also normally performs better for discrete action spaces, 
whereas this study utilised a continuous action space, so the poorer performance is to be 
expected.  
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hyperparameter tuning. A2C also normally performs better for discrete action spaces, 
whereas this study utilised a continuous action space, so the poorer performance is to be 
expected.  
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 DDPG was expected to perform much better than A2C as it is ideally suited to problems 
with continuous action spaces. However, it is computationally expensive and requires a lot 
more timesteps to achieve the desired result.  

3.2 Evaluation of the Reward Functions  

The maximum reward obtained for each of the different reward functions is illustrated in 
Figure 8. The discrete reward function with reward shaping provided the highest reward 
followed by Zhu et al. [19], and the discrete reward function performed poorly. When 
interrogating the models that were able to load, it was found that only the discrete reward 
function with the PPO algorithm was able to grip the object. The discrete reward with reward 
shaping collided with the second arm and was closer to the object but never grasped it. No 
models with the Zhu et al. [19] reward function could be interrogated further.  
 The overall performance of each reward function is presented in Figure 10 as a function 
of the different DRL algorithms. Note that the discrete reward function with shaping was the 
most successful reward function for all three DRL algorithms considered, followed by Zhu 
et al. [19]. Both algorithms had a form of reward shaping which rewards the arm when it is 
close to the object as well, not only for performing certain tasks like the discrete reward 
function. The only difference between Zhu et al.’s [19] reward function and the one 
developed in this study is the way in which the function determines if the object has moved 
or not. Zhu et al. [19] uses the object position to assign rewards, whereas the reward function 
developed in this study determines if the arm has made contact with the object. This approach 
seems to result in more overall success.  
 These results have shown that the choice of reward function is critical to the probability 
of successfully completing the desired task. Moreso than the choice of DRL, as the PPO 
performed well for all reward functions.  
 

 
Fig. 10. Overall performance of each reward function as a function of the (a) A2C, (b) DDPG, and 
(c) PPO deep reinforcement learning algorithms. 

 
 
 
 
  
  

3.3 Summary  

The task is clearly more difficult than initially expected as there are a few intermediate goals 
to achieve, instead of only a simple goal for a single arm. For example, lifting an object is 
more likely to succeed, than lifting an object and moving it. With the addition of a second 
arm the task and learning difficulty exponentially increase. To improve the probability of 
successfully completing the task, the following could be considered: 

• Increase the timesteps: It is possible that at some point the robot will learn the task, 
however, this is highly unlikely as we note a plateau in the results for all algorithms 
after a certain point.  

• Hyperparameter tuning: The default parameters used in this study might not be 
the optimal parameters for this specific task. A sensitivity study on the 
hyperparameters could add value and increase the probability of successful learning. 

• Additional data: Provide additional data to the learning process by means of vision-
based sensors which will give the agent the advantage of knowing where the object 
is instead of randomly taking actions in the dark.  

• Rework the reward function: Improve the definition of the reward function to 
explore more defined points or goals for incremental rewards.  

• Consider other DRL algorithms: Perhaps including Hindsight Experience Replay 
(HER) which assigns small rewards if the agent has achieved or is close to the other 
goals.  

 It is possible that DRL is not the best approach to consider for an object handover task 
as there are few cases where it has been used in literature [6]. In fact, as the task is not 
continuous a model-free approach might not be sufficient. A model-based approach using 
unsupervised learning might be better suited where there is more control over the behaviour 
and a higher probability for success [6].   

4 Conclusions 
This study presented a deep reinforcement learning (DRL) approach for object handover 
between two collaborative robots. The task was simulated using OpenAI Gym and Pybullet 
with two Franka Emika Panda arms facing one another and an object between them. The aim 
of the task is for one robot arm to pick up the object, lift it past a height threshold before the 
second robot arm collects the objects and moves safely away.  
 DRL was considered as the learning mechanism to allow the cobot arms to learn the task 
at hand without any prior knowledge. The cobot arm is therefore rewarded, by means of a 
reward function, when it performs an action in line with achieving the task. Three DRL 
algorithms were investigated: Advantage Actor-Critic (A2C), Deep Determinisitic Policy 
Gradient (DDPG) and Proximal Policy Optimisation (PPO). Three approaches to defining 
the reward function were also considered: Zhu et al. [19] (existing implementation in 
literature) as well as two reward functions developed in this study namely, discrete and 
discrete with reward shaping.  
 The PPO algorithm showed the most promise and consistently improved its reward with 
an increase in timesteps. The DDPG algorithm performed poorly, unable to increase the 
initial zero reward, except for the discrete reward function with shaping.  
 The discrete reward function with shaping, developed in this study, provided the best 
overall performance with the highest rewards across all three DRL algorithms. The choice of 
reward function is critical to the probability of successfully completing the desired task.  
 The contribution of this study is to emphasise the importance of selecting the right DRL 
algorithm and reward function to facilitate successful learning, as well as the algorithmic 
development of a discrete reward function with reward shaping.   
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 The PPO algorithm showed the most promise and consistently improved its reward with 
an increase in timesteps. The DDPG algorithm performed poorly, unable to increase the 
initial zero reward, except for the discrete reward function with shaping.  
 The discrete reward function with shaping, developed in this study, provided the best 
overall performance with the highest rewards across all three DRL algorithms. The choice of 
reward function is critical to the probability of successfully completing the desired task.  
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algorithm and reward function to facilitate successful learning, as well as the algorithmic 
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 Future work will consider hyper parameter tuning to improve PPOs ability to 
successfully complete the object handover task. Additionally, improvements to the reward 
function can be made to explore more discrete goals for incremental rewards.  
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