
A comparative study of over-sampling techniques
as applied to seismic events

Mpho Mokoatle1,2[0000−0001−9252−3914], Toshka Coleman1[1111−2222−3333−4444],
and Paul Mokilane1[0000−0002−2649−8711]

1 Council for Scientific and Industrial Research
Cluster: Next Generation Enterprises and Institutions, Data Science

https://www.csir.co.za/
2 University of Pretoria, Pretoria, South Africa

Abstract. The likelihood that an earthquake will occur in a specific
location, within a specific time frame, and with ground motion intensity
greater than a specific threshold is known as a seismic hazard. Predict-
ing these types of hazards is crucial since doing so can enable early warn-
ings, which can lessen the negative effects. Research is currently being
executed in the field of machine learning to predict seismic events based
on previously recorded incidents. However, because these events hap-
pen so infrequently, this presents a class imbalance problem to the ma-
chine learning or deep learning learners. As a result, this study provided
a comparison of the performance of popular over-sampling techniques
that seek to even out class imbalance in seismic events data. Specifi-
cally, this work applied SMOTE, SMOTENC, SMOTEN, BorderlineS-
MOTE, SVMSMOTE, and ADASYN to an open source Seismic Bumps
dataset then trained several machine learning classifiers with stratified
K-fold cross-validation for seismic hazard detection. The SVMSMOTE
algorithm was the best over-sampling method as it produced classifiers
with the highest overall accuracy, F1 score, recall, and precision of 100%,
respectively, whereas the ADASYN over-sampling methodology showed
the lowest performance in all the reported metrices of all the models. To
our understanding, no research has been done comparing the effective-
ness of the aforementioned over-sampling techniques for tasks involving
seismic events.

1 Introduction

Seismic hazards, such as earthquakes, pose significant risks to human life, in-
frastructure, and the environment. Accurate prediction of these events is crucial
for implementing early warning systems and taking preventive measures to min-
imize their impact. Additionally, accurate prediction of these events informs
crucial decisions on infrastructure development, land-use planning, and disas-
ter preparedness, guiding the implementation of building codes and engineering
practices to withstand earthquakes [3, 21].

Over the years, researchers have turned to machine learning techniques to
forecast seismic events based on historical data. However, due to the rare oc-
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currence of such events, imbalanced data presents a challenge to these machine-
learning models. One specific challenge is the class imbalance problem, where the
number of negative instances (non-seismic events) is significantly outnumbered
by the number of positive instances (seismic events) [9]. This class imbalance can
lead to biased models and limited predictive performance due to the scarcity of
positive instances available for learning and generalization [11].

Several studies [4, 19, 31] have explored the application of machine learning
techniques for seismic hazard prediction. Some of these studies have employed
the publicly available Seismic Bumps dataset, which records energy readings
and bump counts in a coal mine in Poland. Researchers have utilized various
classifiers, including Naïve Bayes, Support Vector Machine (SVM), and neural
networks, to tackle this prediction problem. While existing research has shown
promising results in utilizing machine learning for seismic hazard prediction, one
critical gap remains unaddressed. Little attention has been given to the compar-
ison and evaluation of different over-sampling techniques as a potential solution
to the class imbalance problem in this domain. Over-sampling methods create
synthetic instances of the minority class or modify existing instances to balance
the class distribution [6]. The comparative study proposed in this research aims
to fill this gap by assessing the performance of popular over-sampling techniques
applied to seismic events data. Specifically, this study applies SMOTE, SMO-
TENC, SMOTEN, BorderlineSMOTE, SVMSMOTE, and ADASYN (which are
described in Section 2.2.) to the Seismic Bumps dataset. To evaluate the ef-
ficacy of these over-sampling approaches, various machine learning classifiers
were trained using K-fold cross-validation. By analyzing the impact of these
over-sampling methods, the study seeks to identify the most effective technique
for handling the class imbalance and improving the performance of seismic event
prediction models, helping researchers and practitioners in the field to make in-
formed decisions when building predictive models for rare events like seismic
hazard.

2 Related work

2.1 Review of existing research studies focused on seismic hazard
prediction using machine learning

Numerous research studies have delved into the application of machine learning
techniques for detecting seismic hazards, with several of them utilizing the Seis-
mic Bumps dataset employed in our own study. A noteworthy paper [19] uses the
dataset and proposed a new approach that incorporates negation handling in the
Naïve Bayes classifier to improve accuracy. Experimental results show that the
proposed approach achieves a higher accuracy of 76.98% compared to the tradi-
tional Naïve Bayes classifier without negation handling (64.5%) and the native
MATLAB Naïve Bayes classifier without negation handling (65.09%). Another
research study [31] using the dataset developed a prediction model for detecting
periods of increased seismic activity that pose a threat to miners in coal mines.
Various classification models, including Random Forest, Naïve Bayes Classifier,
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Logistic Regression, and Support Vector Machine (SVM), are applied to evalu-
ate their performance. The experimental results demonstrate that the Random
Forest and SVM models achieve the highest accuracy, with 92.2%, respectively,
for the Seismic Bumps dataset.

Additionally, this dataset was used in another study [4] where the authors pro-
posed two deep temporal convolution neural network (CNN) models: dilated
causal temporal convolution network (DCTCNN) and CNN long short-term
memory hybrid model (CNN-LSTM). DCTCNN utilizes dilated CNN kernels, a
causal strategy, and residual connections, while CNN-LSTM combines the advan-
tages of CNN and LSTM. Both models are designed to extract long-term histor-
ical features from monitoring seismic data. The proposed models were evaluated
using two real-life coal mine seismic datasets and compared with a traditional
time series prediction method, two classic machine learning algorithms, and two
standard deep learning networks. The results demonstrate that DCTCNN and
CNN-LSTM outperform the other algorithms, indicating their effectiveness in
completing the seismic prediction task. However, the issue of class imbalance is
overlooked in these studies [4, 19, 31] and not addressed through any oversam-
pling, undersampling or resampling methods, resulting in models that may not
adequately capture the characteristics of seismic events. Furthermore, different
methods for over-sampling to address this have not yet been compared in tasks
predicting seismic hazards. The study by [15] employed resampling for the Seis-
mic Bumps dataset, but chose a single resampling method without comparing
it against other possible methods for addressing its class imbalance. Previous
studies have demonstrated the shortcomings of traditional machine learning al-
gorithms when faced with imbalanced datasets, including decreased accuracy,
sensitivity, and precision in detecting seismic events.

2.2 Overview of over-sampling techniques for class imbalance

Over-sampling techniques have gained attention as a potential solution to ad-
dress the class imbalance problem [6,16]. These techniques aim to re-balance the
class distribution by generating synthetic instances of the minority class (seismic
events) or modifying existing instances to amplify their representation. By artifi-
cially increasing the number of positive instances, over-sampling methods aim to
provide a more balanced training dataset, enabling machine learning models to
better capture the characteristics of seismic events [6]. We provide descriptions
below of the over-sampling techniques used in this study.

SMOTE: Synthetic Minority Over-sampling Technique SMOTE is a
popular over-sampling approach introduced in 2002. It works by over-sampling
the minority class through creating synthetic instances rather than over-sampling
with replacement. The SMOTE algorithm works by first identifying a minority
class sample and choosing five nearest neighbors of the minority class sample.
Then, for example, if the amount of over-sampling that is required is 200%, then
two nearest neighbors will be selected from the initial five nearest neighbors.
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Finally, the synthetic instance is generated by drawing a line between the two
nearest neighbors and the initial minority class sample [2, 14].

BorderlineSMOTE The BorderlineSMOTE algorithm is a variant of the SMOTE
algorithm and seeks to address the shortcomings of SMOTE. For instance, if
there are minority class samples that are outliers and appears in the major-
ity class, a synthetic instance will be created using the samples of the major-
ity class. BorderlineSMOTE alleviates this problem by classifying any minority
sample as noise if all its neighbors are the majority class samples. The noise
minority samples will be ignored when creating new synthetic instances. Ad-
ditionally, the BorderlineSMOTE algorithm classifiers a few samples as border
points that majority and minority samples as neighbors and creates synthetic
instances completely from these border points [6, 25,28].

Adaptive Synthetic (ADASYN) ADASYN is a universal over-sampling
method. For each of the minority samples it first determines the impurity of
the neighbourhood by taking the ratio of the majority samples in the neighbour-
hood and k. The higher the ratio, the more synthetic examples will be created
for that instance [7].

Synthetic Minority Over-sampling TEchnique-Nominal Continuous
(SMOTENC) Since the dataset used in this study is a combination of contin-
uous and categorical features, a SMOTE variant named SMOTENC was applied
as it is known to generalize well across mixed-data. SMOTENC’s algorithm in-
volves the computation of the median and the nearest neighbors and also pop-
ulates the synthetic instance using the same approach as in SMOTE [2,8].

SVMSMOTE The primary distinction between SVMSMOTE and other SMOTE
is that the technique would use the Support Vector Machine (SVM) algorithm to
determine the mis-classification in the Borderline-SMOTE rather than K-nearest
neighbours [20].

2.3 Previous applications of over-sampling techniques for class
imbalance

Several studies have investigated the effectiveness of over-sampling techniques.
According to some studies, the inclusion of over-sampling techniques has shown
to achieve better True Positive (TP) rates and improve model performance [10].
One study introduced two new minority over-sampling methods, Borderline-
SMOTE1 and Borderline-SMOTE2, which focused on over-sampling only the
minority examples near the borderline. The experiments showed that these ap-
proaches achieved better True Positive (TP) rate and F-value compared to
SMOTE and random over-sampling methods for the minority class [6]. Fur-
thermore, in the prediction of environmental complaints related to construction
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projects, an over-sampling-based method was developed using imbalanced empir-
ical data. The method involved over-sampling techniques combined with machine
learning algorithms to predict complaints due to environmental pollutants. The
study reported performance improvements ranging from 8% to 23% using the
over-sampling-based method compared to non-over-sampling approaches [32].
In the domain of Medical Artificial Intelligence, SMOTE was also used in a
study [30] to address class imbalance in detecting COVID-19 cases. The authors
used SMOTE to generate synthetic samples of the minority class (COVID-19
cases) and improve classifier performance. This study demonstrated the effec-
tiveness of SMOTE in the specific domain of COVID-19 detection. Another re-
search study [18] focused on determining the effective rate of minority class over-
sampling using five over-sampling methods, including SMOTE, SVMSMOTE,
and BorderlineSMOTE. The study aimed to maximize the performance of ma-
chine learning models and found that different datasets required different ef-
fective over-sampling rates. Additionally, a comparative analysis examined the
performance of SMOTE and ADASYN, concluding that both techniques were ef-
fective in handling class imbalance. However, the performance varied depending
on the classifier and the minority class [24]. Drawing from these two studies, we
note that the effectiveness of these over-sampling techniques can vary depending
on dataset characteristics, imbalance severity, and the choice of machine learning
algorithms. Therefore, conducting experiments and evaluating these techniques
within the context of specific applications is crucial to determine the most suit-
able approach.

In the context of seismic hazard detection, the application of over-sampling
techniques to address class imbalance is relatively limited. Limited studies have
explored the use of these techniques specifically for seismic event prediction.
However, insights gained from their application in other domains highlight the
potential benefits of employing over-sampling techniques to improve the perfor-
mance of seismic hazard detection models. Thus, the objective of this study is
to provide a comparative assessment of over-sampling methods. Specifically, this
study applies SMOTE, SMOTENC, SMOTEN, BorderlineSMOTE, SVMSMOTE,
and ADASYN to the Seismic Bumps dataset.

3 Materials and methods

The dataset, the pre-processing procedures, the over-sampling methods, as well
as an overview of the performance indicators used to assess the efficacy of the
various over-sampling methods are all described in this section (Fig. 1).

3.1 Data description and pre-processing

In this study, the Seismic Bumps dataset from Kaggle, which is available to the
public, was used. This dataset, made up of 2584 observations and 19 columns,
contains energy readings and bump counts that were captured during the pre-
ceding shifts in a coal mine in Poland. All input features were used in this
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Fig. 1: This figure illustrates the strategy taken in this study to evaluate the
effectiveness of various over-sampling strategies.

work, with the exception of "nbumps6," "nbumps7," and "nbumps86," which
exclusively contained zero values. The omission of these features was crucial to
prevent their conversion to null during normalization. The target class is a bi-
nary variable where "1" indicates a high energy seismic bump occurred in the
following shift (a "hazardous state"), and "0" indicates no high energy seismic
bumps in the following shift (a "non-hazardous state"). This target variable had
2414 non-hazardous state and only 170 hazardous state, which posed a significant
class-imbalance problem.

For data processing, the scikit-learn LabelEncoder was used to encode the
non-numeric variables then, a data normalization procedure (min-max scaling)
was performed to transform the numeric columns to a standard scale to ensure
that the features with high values do not dominate the learning process.

3.2 Machine learning models

To compare the effectiveness of the different over-sampling methods, seven differ-
ent machine learning models from the scikit-learn library [22] were used: KNeigh-
borsClassifier, DecisionTreeClassifier, RandomForestClassifier, AdaBoostClassi-
fier, MLPClassifier, GaussianNB, and LogisticRegression. Table 1 provides a
description of all the models used.

3.3 Stratified K-Fold cross validation

This study evaluated the classification performance of the models with the over-
sampling techniques after performing 5-fold stratified cross-validation. Stratified
K-Fold cross validation is a variation of the standard K-Fold cross-validation.
As opposed to splitting the data at random, stratified k-fold cross-validation
ensures that the ratio of the target classes is the same in each fold as it is across
the entire dataset. This method is particularly useful in small datasets with class
imbalance problems [23,33].
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Table 1: This table gives a description of the machine learning classifiers
ML model Description

KNeighbors This algorithm makes predictions on new data by assuming
that data with similar characteristics cluster together [5].
In this work, the default metric minkowski [29] was used to compute the distance.

DecisionTree This algorithm is applicable to both classification and regression.
Its structure resembles a tree and is composed
of leaf nodes, internal nodes, branches, and root nodes [12].
In this work, the split’s quality was assessed using the gini default criterion.

RandomForest A type of bagging estimator that fits several decision trees on
various sub-samples of the data then uses
averaging to increase the predictive performance [26]. As with the decision tree,
in this work, the gini criterion was used to measure the quality of a split.

AdaBoost AdaBoost is a boosting technique that trains classifiers sequentially
so as to minimise the errors produced by earlier learners [27].

MLP Multi-layer perceptrons (MLPs), are a sort of feed-forward networks in
which data is only sent in one direction.
This model was trained with 100 neurons, ReLU activation function, and Adam optimizer [13] .

GaussianNB Gaussian Naive Bayes (NB) is a classification algorithm based on the probabilistic method
and Gaussian distribution. GaussianNB assumes that
each independent variable has an independent capacity of predicting the target class [17].

LogisticRegression An algorithm that uses a number of independent variablesto predict a binary target class [1].

3.4 Performance measures

Accuracy, precision, recall, and F1-score measurements were used to assess how
well the over-sampling techniques worked in conjunction with the machine learn-
ing classifiers. These metrics are all defined below in terms of true positives (TP),
true negatives (TN), false negatives (FN), and false positives (FP). The mean
and standard deviation are reported for each metric.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1score =
2TP

2TP + FP + FN
(4)

4 Experimental results

The results of all the models are shown (Table 2, 3, 4,5) in terms of their average
accuracy, F1-score, recall and precision over 5 k-folds.
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When no over-sampling techniques were used on the data, the machine learn-
ing models’ accuracy was quite good. The confusion matrices, however, showed
a considerable bias towards the minority class and some models only predicted
one class label (Table 2 and Fig. 2, 3, 4).

The ADASYN over-sampling approach produced the least accurate classi-
fiers (49-65%), while the SVMSMOTE over-sampling method produced the best
classifiers with an average accuracy of 98-100% and F1 score of 98-100% (Table
3, Fig. 5).

Table 2: Mean accuracy
KNeighbors DecisionTree RandomForest AdaBoost MLP GaussianNB LogisticRegression

No over-sampling 0.93 ± 0.003 0.81 ± 0.07 0.92 ± 0.01 0.83 ± 0.11 0.93 ± 0.003 0.10 ± 0.02 0.93 ± 0.003
ADASYN 0.52 ± 0.03 0.59 ± 0.04 0.65 ± 0.04 0.62 ± 0.05 0.49 ± 0.11 0.49 ± 0.03 0.52 ± 0.12
BorderlineSMOTE 0.83 ± 0.05 0.86 ± 0.06 0.89 ± 0.05 0.82 ± 0.06 0.84 ± 0.08 0.84 ± 0.07 0.83 ± 0.07
SMOTE 0.75 ± 0.05 0.75 ± 0.06 0.82 ± 0.07 0.78 ± 0.06 0.77 ± 0.06 0.78 ± 0.05 0.75 ± 0.06
SVMSMOTE 0.98 ± 0.01 1. 0 ± 0.00 1.0 ± 0.00 1.0 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01
SMOTENC 0.76 ± 0.02 0.81 ± 0.04 0.89 ± 0.03 0.81 ± 0.04 0.80 ± 0.02 0.56 ± 0.09 0.71 ± 0.02

Fig. 2: Mean accuracy vs over-sampling method

Table 3: Mean F1 score
KNeighbors DecisionTree RandomForest AdaBoost MLP GaussianNB LogisticRegression

No over-sampling 0.0 ± 0.0 0.10 ± 0.08 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.12 ± 0.01 0.0 ± 0.0
ADASYN 0.55 ± 0.07 0.60 ± 0.04 0.64 ± 0.03 0.63 ± 0.03 0.45 ± 0.07 0.64 ± 0.03 0.54 ± 0.12
BorderlineSMOTE 0.83 ± 0.04 0.86 ± 0.05 0.88 ± 0.04 0.83 ± 0.05 0.84 ± 0.06 0.84 ± 0.06 0.83 ± 0.06
SMOTE 0.76 ± 0.03 0.76 ± 0.04 0.84 ± 0.04 0.80 ± 0.04 0.77 ± 0.04 0.77 ± 0.03 0.76 ± 0.03
SVMSMOTE 0.98 ± 0.01 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
SMOTENC 0.76 ± 0.02 0.83 ± 0.03 0.89 ± 0.04 0.82 ± 0.03 0.79 ± 0.03 0.69 ± 0.04 0.71 ± 0.02
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(a) No over-sampling-DecisionTree (b) No over-sampling-RandomForest

(c) No over-sampling-AdaBoost (d) No over-sampling-GaussianNB

Fig. 3: Machine learning models’ confusion matrices without the use of an over-
sampling technique

Table 4: Mean recall
KNeighbors DecisionTree RandomForest AdaBoost MLP GaussianNB LogisticRegression

No over-sampling 0.0 ± 0.0 0.11 ± 0.06 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.93 ± 0.07 0.0 ± 0.0
ADASYN 0.62 ± 0.16 0.62 ± 0.09 0.66 ± 0.09 0.66 ± 0.06 0.43 ± 0.07 0.93 ± 0.08 0.60 ± 0.19
BorderlineSMOTE 0.84 ± 0.04 0.91 ± 0.02 0.91 ± 0.03 0.86 ± 0.02 0.83 ± 0.02 0.81 ± 0.04 0.83 ± 0.04
SMOTE 0.78 ± 0.03 0.86 ± 0.04 0.87 ± 0.02 0.83 ± 0.03 0.75 ± 0.06 0.72 ± 0.06 0.75 ± 0.05
SVMSMOTE 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
SMOTENC 0.74 ± 0.05 0.86 ± 0.03 0.91 ± 0.02 0.84 ± 0.03 0.77 ± 0.06 0.99 ± 0.01 0.69 ± 0.05

Since the F1 scores were inadequate when no over-sampling technique was
used, as was expected, the average recall scores and precision were similarly
quite poor as well when no over-sampling technique was applied to the data.
Additionally, across all over-sampling techniques, SMVSMOTE still maintained
the highest average recall and precision scores of 100% respectively, whereas
ADASYN had the lowest recall and precision (Table 4, 5, and Fig. 6, 7).

The confusion matrices of the best performing over-sampling method is shown
(Fig. 8).

5 Discussion

This study presented a seismic hazard prediction problem using machine learn-
ing. More often than not, the machine learning classifiers face a class imbalance
problem as a result of how rarely these types of hazards occur. In an effort to ex-
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(a) No over-sampling-KNeighbors (b) No over-sampling-MLP

(c) No over-sampling-LogisticRegression

Fig. 4: Confusion matrices of the models that predicted a single class label when
no over-sampling technique was used

Table 5: Mean precision
KNeighbors DecisionTree RandomForest AdaBoost MLP GaussianNB LogisticRegression

No over-sampling 0.0 ± 0.0 0.04 ± 0.04 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.06 ± 0.01 0.0 ± 0.0
ADASYN 0.51 ± 0.03 0.59 ± 0.04 0.68 ± 0.06 0.61 ± 0.07 0.51 ± 0.14 0.49 ± 0.02 0.52 ± 0.09
BorderlineSMOTE 0.84 ± 0.09 0.82 ± 0.08 0.87 ± 0.07 0.81 ± 0.10 0.88 ± 0.11 0.87 ± 0.10 0.84 ± 0.11
SMOTE 0.76 ± 0.08 0.72 ± 0.06 0.81 ± 0.10 0.78 ± 0.11 0.80 ± 0.12 0.84 ± 0.11 0.78 ± 0.10
SVMSMOTE 0.97 ± 0.01 1.0 ± 0.0 1.0 ± 0.0 1. 0 ± 0.0 0.99 ± 0.01 0.98 ± 0.0 0.98 ± 0.02
SMOTENC 0.78 ± 0.05 0.79 ± 0.07 0.87 ± 0.06 0.81 ± 0.07 0.84 ± 0.07 0.54 ± 0.06 0.73 ± 0.05

amine strategies for addressing class inequality, this study proposed to evaluate
the influence of five over-sampling techniques—ADASYN, BorderlineSMOTE,
SMOTE, SVMSMOTE, SMOTENC, and no over-sampling. Considering that
the dataset was too small and we did not want to lose any information, which
would have impacted the accuracy of our models, over-sampling was chosen
rather than under-sampling.

To assess the effectiveness of the aforementioned over-sampling methods, this
work trained several machine learning techniques, including KNeighbors, Deci-
sionTree, RandomForest, AdaBoost, MLP, GaussianNB, and LogisticRegression.
Then, the average accuracy, F1 score, recall, and precision for each classifier and
over-sampling technique were reported.

In the first run, all seven models were tested using a dataset that had not
been over-sampled and several observations were made: all the learning algo-
rithms—aside from the GaussianNB model—returned very high accuracies. The
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Fig. 5: Mean F1 vs over-sampling method

Fig. 6: Mean recall vs over-sampling method

F1 scores, recall, and precision scores, however, were incredibly poor. This was an
apparent indication that the class imbalance problem posed a significant issue.

In the second run of the experiments, the dataset was over-sampled with the
above over-sampling techniques. The SVMSMOTE algorithm was the best over-
sampling method as it provided the highest overall accuracy, F1 score, recall and
precision whereas the ADASYN over-sampling methodology showed the lowest
performance in all the reported metrics of all the models.

Although using different methodologies, the dataset used in this work has
previously been applied in prior studies [4, 15, 31] and some of the observations
made in this work are in agreement with those in the literature.

For example, prior to over-sampling, the accuracy in [15] was consistently
good, but the F1 scores, precision, and recall were subpar. Similar to our work,
the performance metrics only increased after accounting for class imbalance.
The sole significant distinction between this work [15] and ours is that only one
sampling strategy was suggested and put to the test while our study examined
several other strategies.
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Fig. 7: Mean precision vs over-sampling method

(a) SVMSMOTE-KNeighbors (b) SVMSMOTE-DecisionTree

(c) SVMSMOTE-RandomForest (d) SVMSMOTE-AdaBoost

Fig. 8: Confusion matrices of some the best over-sampling technique:
SVMSMOTE

A study [31] also used the dataset that was used in this work and a key
difference between our work and theirs is that the models were biased towards
a single class as the authors did not account for class imbalance.

In another paper, the authors [4] employed the same dataset as in our study,
but used a different response variable to describe the seismic hazard problem. For
instance, the authors of this work employed the energy variable as the response
variable, which signifies the total energy of seismic bumps reported within a
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previous shift, whereas our study used the categorical variable hazardous state/
or non hazardous state as the response variable. As a result, this problem was
automatically transformed into a regression problem rather than being modelled
as a classification problem.

6 Conclusion

Predicting seismic hazards is essential for reducing the negative effects of earth-
quakes, such as casualties and property loss. Early warning systems can be cre-
ated, enabling prompt evacuation and disaster response preparation, by precisely
predicting seismic hazards. However, machine learning or deep learning mod-
els face a class imbalance issue because seismic events occur infrequently. This
study therefore offered a comparative evaluation of widely used over-sampling
techniques for the problem of seismic events. This study discovered that clas-
sifiers for seismic hazard can perform noticeably better when machine learning
techniques incorporating SVMSMOTE are used.
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