
Citation: Mboweni, I.V.; Ramotsoela,

D.T.; Abu-Mahfouz, A.M. Hydraulic

Data Preprocessing for Machine

Learning-Based Intrusion Detection

in Cyber-Physical Systems.

Mathematics 2023, 11, 1846. https://

doi.org/10.3390/math11081846

Academic Editor: Huawen Liu

Received: 11 February 2023

Revised: 29 March 2023

Accepted: 6 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Hydraulic Data Preprocessing for Machine Learning-Based
Intrusion Detection in Cyber-Physical Systems
Ignitious V. Mboweni 1,*, Daniel T. Ramotsoela 1 and Adnan M. Abu-Mahfouz 2

1 Department of Electrical Engineering, University of Cape Town, Cape Town 7700, South Africa
2 Council for Scientific and Industrial Research, Pretoria 0184, South Africa
* Correspondence: mbwign002@myuct.ac.za

Abstract: The protection of critical infrastructure such as water treatment and water distribution
systems is crucial for a functioning economy. The use of cyber-physical systems in these systems
presents numerous vulnerabilities to attackers. To enhance security, intrusion detection systems play
a crucial role in limiting damage from successful attacks. Machine learning can enhance security by
analysing data patterns, but several attributes of the data can negatively impact the performance
of the machine learning model. Data in critical water system infrastructure can be difficult to work
with due to their complexity, variability, irregularities, and sensitivity. The data involve various
measurements and can vary over time due to changes in environmental conditions and operational
changes. Irregular patterns and small changes can have significant impacts on analysis and decision
making, requiring effective data preprocessing techniques to handle the complexities and ensure
accurate analysis. This paper explores data preprocessing techniques using a water treatment system
dataset as a case study and provides preprocessing techniques specific to processing data in industrial
control to yield a more informative dataset. The results showed significant improvement in accuracy,
F1 score, and time to detection when using the preprocessed dataset.

Keywords: critical infrastructure; critical water system infrastructure; cyber-physical systems; data
preprocessing; industrial control; intrusion detection systems; machine learning; water treatment system

MSC: 68T07

1. Introduction

Water treatment systems are critical infrastructure elements that play an important
role in public health, wellbeing, productivity, and functionality. By providing access to
safe and clean drinking water, these systems help to ensure that communities are able
to lead healthy, productive, and functional lives. Due to their importance, they need to
be protected using appropriate security measures [1,2]. Cyber-physical systems (CPSs)
combined with communication schemes enhance protection by allowing computerized
monitoring and control of physical components. The use of these advanced technologies is
crucial for the development and growth of “smart cities” in the future.

However, CPS communication schemes introduce vulnerabilities that attackers can
exploit for malicious purposes. In the past, security was based on the belief that systems
were isolated from one another and that security was maintained by monitoring and
controlling them locally [3]. The use of off-the-shelf software and hardware in supervisory
control and data acquisition (SCADA) systems opens up opportunities for threats due to
the inherent vulnerabilities present in legacy control systems and their communication
channels [3,4].

Attacks emanate in CPSs as intrusions, which if successful can compromise the sys-
tem’s integrity, confidentiality, or availability [5]. Preventative security measures do exist,
but they can be defeated; this creates a need for reactive mechanisms that can assist in
the recovery phase, a crucial stage in addressing the consequences of a successful attack

Mathematics 2023, 11, 1846. https://doi.org/10.3390/math11081846 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11081846
https://doi.org/10.3390/math11081846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3672-5022
https://orcid.org/0000-0002-6413-3924
https://doi.org/10.3390/math11081846
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11081846?type=check_update&version=1

Mathematics 2023, 11, 1846 2 of 21

and ensuring that the system returns to a secure state [6]. Anomaly detection (AD) is
a popular behavioural intrusion detection technique that classifies system behaviour as
normal or anomalous by analysing data. This technique allows for the detection of both
known and unknown attacks by creating a profile of normal behaviour for the system
and flagging deviations as anomalous and potentially malicious. Figure 1 provides a
visual illustration of how machine learning (ML) fits together with CPSs and critical water
system infrastructure.

One important part of machine learning modelling is data preprocessing, which speeds
up calculations and results in more accurate models [7]. Sensor and actuator data from
industrial control systems (ICS) can be complex, noisy, and nonlinear; therefore, advanced
processing techniques are necessary. This study proposes the use of machine learning to
detect attacks in critical water system infrastructure, with a specific focus on the processing
of hydraulic component data, such as sensors that measure parameters such as pressure,
flow rate, temperature, and position and actuators such as pumps, valves, and cylinders.
The goal is to formulate ideal preprocessing techniques to improve machine learning
model performance. This is a crucial aspect of ML modelling that is often neglected in the
literature. This will enhance cybersecurity research in cyber-physical systems by offering a
data preprocessing workflow and techniques that can be applied to similar data gathered
from a similar environment to that used in the study of water treatment.

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 21

Attacks emanate in CPSs as intrusions, which if successful can compromise the sys-
tem�s integrity, confidentiality, or availability [5]. Preventative security measures do exist,
but they can be defeated; this creates a need for reactive mechanisms that can assist in the
recovery phase, a crucial stage in addressing the consequences of a successful attack and
ensuring that the system returns to a secure state [6]. Anomaly detection (AD) is a popular
behavioural intrusion detection technique that classifies system behaviour as normal or
anomalous by analysing data. This technique allows for the detection of both known and
unknown attacks by creating a profile of normal behaviour for the system and flagging
deviations as anomalous and potentially malicious. Figure 1 provides a visual illustration
of how machine learning (ML) fits together with CPSs and critical water system infrastruc-
ture.

One important part of machine learning modelling is data preprocessing, which
speeds up calculations and results in more accurate models [7]. Sensor and actuator data
from industrial control systems (ICS) can be complex, noisy, and nonlinear; therefore, ad-
vanced processing techniques are necessary. This study proposes the use of machine
learning to detect attacks in critical water system infrastructure, with a specific focus on
the processing of hydraulic component data, such as sensors that measure parameters
such as pressure, flow rate, temperature, and position and actuators such as pumps,
valves, and cylinders. The goal is to formulate ideal preprocessing techniques to improve
machine learning model performance. This is a crucial aspect of ML modelling that is of-
ten neglected in the literature. This will enhance cybersecurity research in cyber-physical
systems by offering a data preprocessing workflow and techniques that can be applied to
similar data gathered from a similar environment to that used in the study of water treat-
ment.

The rest of this paper is organized as follows: The first section of the paper, titled
�Materials and Methods�, describes the data used in this study and outlines the method-
ology applied. It includes an examination of the data preprocessing techniques that were
investigated and the experiments performed. The following section, �Experiments and Re-
sults�, presents the results of the experiments conducted. The results are then discussed in
depth in the next section, �Discussion of Results�, followed by a conclusion that summa-
rizes the key findings and contributions of the study.

Figure 1. Illustration of connectedness between machine learning and cybersecurity in critical water
system infrastructure [8].

2. Literature Review
Data preprocessing is a crucial step in machine learning and plays a significant role

in the success of intrusion detection systems in CPSs. In this literature review, we focus
on the data preprocessing aspect of machine learning in intrusion detection systems for
critical water system infrastructure.

Data preprocessing involves cleaning, transforming, and preparing data for analysis.
One common preprocessing step is feature selection, which involves choosing the most
important variables that have a significant impact on the outcome. Feature selection has

Figure 1. Illustration of connectedness between machine learning and cybersecurity in critical water
system infrastructure [8].

The rest of this paper is organized as follows: The first section of the paper, titled
‘Materials and Methods’, describes the data used in this study and outlines the methodology
applied. It includes an examination of the data preprocessing techniques that were investi-
gated and the experiments performed. The following section, ‘Experiments and Results’,
presents the results of the experiments conducted. The results are then discussed in depth
in the next section, ‘Discussion of Results’, followed by a conclusion that summarizes the
key findings and contributions of the study.

2. Literature Review

Data preprocessing is a crucial step in machine learning and plays a significant role in
the success of intrusion detection systems in CPSs. In this literature review, we focus on the
data preprocessing aspect of machine learning in intrusion detection systems for critical
water system infrastructure.

Data preprocessing involves cleaning, transforming, and preparing data for analysis.
One common preprocessing step is feature selection, which involves choosing the most
important variables that have a significant impact on the outcome. Feature selection has
proven to be a good strategy through its effectiveness in reducing overfitting. This method
helps in preparing clean and comprehensible data [9]. The review provided by Fan et al. [10]
outlines how feature selection techniques can be divided into three categories, which are
filter, wrapper, and embedded methods. In a study by Ullah et al. [11], feature selection
was performed using a genetic algorithm instead of traditional methods such as filter

Mathematics 2023, 11, 1846 3 of 21

or wrapper methods. This optimized method was found to be less time-consuming and
improved prediction accuracy compared to traditional approaches.

Another important preprocessing step is data normalization, which involves trans-
forming the data into a standard format. This is important in intrusion detection systems
as it reduces the impact of differences in measurement units and scales on the results. For
example, in a study by Ashouri et al. [12], data normalization was performed using the
min–max normalization method to improve building energy performance. Nawi et al. [13]
investigated improving the efficacy of a multilayer perceptron (MLP) model, an artifi-
cial neural network (ANN)-based algorithm, where they evaluated three normalization
techniques—min–max, z-score and decimal scaling—which improved the computational
efficiency of an ANN algorithm. Halimaa A. and Sundarakantham [14] performed -based
intrusion detection and highlighted the importance of preprocessing the dataset to remove
or replace non-numeric or symbolic features before using naïve Bayes and SVM classifiers.

Feature extraction is also an important preprocessing step because for an ML model
to learn from a signal, the raw data need to be transformed into a set of informative
features. Identification of important features for a specific problem, description of those
characteristics, and implementation of a method to extract those features are all necessary
for manual feature extraction. In the context of water treatment systems, feature extraction
can involve the extraction of relevant timestamp, statistical, and temporal and spectral
features associated with physical and chemical parameters. In a study by Liu et al. [15],
various techniques were used to extract time and frequency features, which were used
to train a support vector machine (SVM) as a classifier to perform leakage detection; the
proposed method was found to be effective based on simulation and experimental results.

Handling missing values is another important preprocessing step. Missing values
can occur due to various reasons, such as sensor failures or network disruptions. In
intrusion detection systems, missing values can impact the accuracy of the results and
lead to false alarms. To address this, various imputation methods have been used, such as
mean imputation, median imputation, and linear interpolation. For example, in a study by
Bijlsma et al. [16], a large-scale human metabolomics study was performed on 600 plasma
samples to detect variances in metabolic profiles when associated with a large biological
variation. As part of the preprocessing, they had to deal with missing values that were
caused by missing peak values during the peak picking process.

Noise reduction also plays a big role when dealing with hydraulic component data.
Noise is meaningless data, which corrupt the underlying information in a dataset, and since
data collected from the real world using measurement tools is hardly perfect, many times
data need to be processed to remove or reduce the noise components. If they are not, there is
a possibility of reduced system performance, such as classification inaccuracy and increased
time and resources required to train the classifier [17]. In a study by Kang et al. [18], they
applied a k-nearest neighbours (k-NN)-based filter before resampling data as a new under-
sampling scheme proposed to correct class imbalance problems caused by noisy minority
examples, which result in a decreased performance of a classifier. The proposed scheme
exhibited an improvement in all four under-sampling methods it was implemented on,
namely AdaBoost, RUSBoost, UnderBagging, and EasyEnsemble.

Outliers can have a significant impact on the accuracy of ML models, so it is important
to detect and remove them. Common techniques for outlier filtering include statistical
methods and machine learning algorithms. Li et al. [19] hypothesized that classification
accuracy can be improved if an algorithm is trained on data where outliers have been
removed. They looked at data of multispectral imaging (MSI) implemented on burn tissue.
They developed an outlier detection and removal method based on Z-test, a statistical
hypothesis test used to check that the means of two populations are different when the
variances are known and the sample size is large. They found that the accuracy was
improved from 63% to 76%, a good accuracy that is equivalent to what burn surgeons
achieve when using clinical judgement.

Mathematics 2023, 11, 1846 4 of 21

Finally, we have dimensionality reduction, which is the process of reducing the num-
ber of features in the data. This is important because high-dimensional data can lead to
overfitting, increased computation time, and decreased accuracy. Lam et al. [20] investi-
gated the use of electricity in office buildings and its relationship with weather patterns.
The study used principal component analysis (PCA) to analyse five major climatic condi-
tions, namely dry-bulb temperature, wet-bulb temperature, global solar radiation, clearness
index, and wind speed. Thereafter, they could use regression models to correlate the
revealed components to electricity use, thus proving PCA to be a good dimensionality
reduction method.

In conclusion, data preprocessing is a crucial step in machine learning for intrusion
detection systems in critical water system infrastructure. It involves cleaning, transforming,
and preparing the data for analysis. Appropriate data preprocessing can improve the
accuracy of the machine learning algorithms and reduce false alarms.

3. Materials and Methods
3.1. Data

Secure Water Treatment (SWaT) is a water treatment testbed for cybersecurity research.
It consists of a scaled-down six-stage water treatment process that is almost indistinguish-
able from a real-world treatment plant [21]. It became operational in 2015, and the dataset
used in this study was collected over a 11-day period where 7 days were of normal opera-
tion and 4 days of operation had attack scenarios introduced. During the data collection
process, all network traffic, sensor, and actuator data were collected. The work presented
in this study looks only at sensor and actuator data, a time series dataset consisting of
51 features in the form of continuous waves sampled at a rate of 1 Hz. Stage P1 of the
physical process begins by taking in raw water, followed by chemical dosing (Stage P2),
filtering through an ultrafiltration (UF) system (Stage 3), dechlorination using UV lamps
(Stage P4), and then feeding it to a reverse osmosis (RO) system (Stage P5). A backwash pro-
cess (Stage P6) cleans the membranes in UF using the RO permeate. The six sub-processes,
referred to as stages P1 to P6, are controlled by a set of dual Allen-Bradley PLCs, a primary
and a redundant hot standby. The operation status of the PLCs is monitored by a SCADA
system [21]. Data were collected from an empty state; it took 5 h for SWaT to stabilise while
taking an extra hour to completely fill up the tanks in stages 3 and 4. This is to be accounted
for in the modelling process of the ML algorithm.

A total of 36 physical attacks were introduced. The duration and impact of each attack
varied, with some taking longer to manifest and affect the system dynamics. The attack
types are described as follows:

1. Single stage single point (SSSP): The focus of this type of attack is a single point within
a CPS. The dataset contains 26 instances of this attack.

2. Single stage multi-point (SSMP): This type of attack targets multiple points within
a CPS, but only during a single stage. The set P in this case includes more than one
element selected from any stage in the CPS. There are 4 instances of this attack in the
dataset.

3. Multi-stage single point (MSSP): This attack type is similar to an SSSP attack, but it
targets multiple stages in the CPS. There are 2 instances of this attack in the dataset.

4. Multi-stage multi-point (MSMP): This attack type is an SSMP attack implemented at
two or more stages of the CPS. There are 4 of these attacks in the dataset.

3.2. Modelling Approach

When designing a machine learning model, a model workflow is followed. This
creates a clear structure of the modelling process and provides preliminary insights before
modelling. The model workflow is shown in Figure 2. Since the work conducted in this
study focuses to a great extent on data preprocessing and not the entire ML modelling
process, part 4 is the focus of the study and is discussed in great detail; in support of this,
parts 1 to 3 are also discussed.

Mathematics 2023, 11, 1846 5 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 21

When designing a machine learning model, a model workflow is followed. This cre-
ates a clear structure of the modelling process and provides preliminary insights before
modelling. The model workflow is shown in Figure 2. Since the work conducted in this
study focuses to a great extent on data preprocessing and not the entire ML modelling
process, part 4 is the focus of the study and is discussed in great detail; in support of this,
parts 1 to 3 are also discussed.

Figure 2. ML modelling workflow.

3.3. Problem Exploration
Problem exploration entails using numerical and visual exploration to better under-

stand the problem and how to solve it. When performing exploration, some of the things
that can be inspected are, but not limited to, data types, outliers, distributions, variance
imbalances, histograms, and plots. This step is performed before formulating the problem
to provide enough context to make an informed decision.

For this study, first the attacks in the sensor and actuator data were visualised. Visu-
alisation of the attacks allows the 4 types of attacks to be viewed against the data and
prepare the analyst to apply discretion in how to preprocess the variables. By doing so,
visualisation provides contextual information on the types of attacks present and their
impact on the data.

3.3.1. Visualising Attacks against Sensor and Actuator Data
Visualising the nature of the attacks in the data can provide valuable insight into the

type of attack that is occurring, the frequency and severity of the attack, and any trends or
patterns that may be present in the data. This information can be used to improve the
design of the anomaly detection model and to respond to the attack more effectively.

In the SWaT dataset, one attack in particular occurred on the 28th of December 2015
between times 11:22:00 and 11:28:22; it was an SSSP attack on level transmitter sensor
LIT101, which measures the raw water supply tank level and storage stage (P1). The attack
increased the water level by 1 mm every second to overflow the tank and also damage
pump P101. The attack is visualised in Figure 3.

Observing attacks shows deviation from normal data trajectory, providing an under-
standing of attack impact on variables in the dataset. For example, a short-lived and unu-
sual spike occurred before 11:30. This insight informs the selection of appropriate data
preprocessing techniques.

Figure 2. ML modelling workflow.

3.3. Problem Exploration

Problem exploration entails using numerical and visual exploration to better under-
stand the problem and how to solve it. When performing exploration, some of the things
that can be inspected are, but not limited to, data types, outliers, distributions, variance
imbalances, histograms, and plots. This step is performed before formulating the problem
to provide enough context to make an informed decision.

For this study, first the attacks in the sensor and actuator data were visualised. Vi-
sualisation of the attacks allows the 4 types of attacks to be viewed against the data and
prepare the analyst to apply discretion in how to preprocess the variables. By doing so,
visualisation provides contextual information on the types of attacks present and their
impact on the data.

3.3.1. Visualising Attacks against Sensor and Actuator Data

Visualising the nature of the attacks in the data can provide valuable insight into the
type of attack that is occurring, the frequency and severity of the attack, and any trends
or patterns that may be present in the data. This information can be used to improve the
design of the anomaly detection model and to respond to the attack more effectively.

In the SWaT dataset, one attack in particular occurred on the 28 December 2015
between times 11:22:00 and 11:28:22; it was an SSSP attack on level transmitter sensor
LIT101, which measures the raw water supply tank level and storage stage (P1). The attack
increased the water level by 1 mm every second to overflow the tank and also damage
pump P101. The attack is visualised in Figure 3.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 21

Figure 3. Attacks on level transmitter.

3.3.2. Redundant Variables
Redundant variables in machine learning are features or variables that provide no

additional information or predictive power to the model beyond what is already provided
by other variables. These variables can be removed from the model without affecting its
performance, as they are not contributing to the overall accuracy of the model. Removing
redundant variables can also help reduce overfitting and improve the interpretability of
the model.

The pumps used in SWaT go in pairs; one is the main pump and the other is a backup
pump. The backup pump either pumps alongside the main pump or pumps when the
main pump fails. This purports that they can be considered as a single pump and their
values merged. Since the pump data is logical, with a value of 0 indicating that the pump
is off and a value of 1 indicating that it is on, to merge data from 2 pumps an inclusive OR
operation is used where the output is 1 when at least one of the values is 1 and 0 if both
values are 0. The resultant variable of the merged pump data takes on the name of the
pump whose name has the least numeric value, i.e., pump P101 merged with pump P102
is a new variable called P101.

3.3.3. Dataset Reduction by Correlation Analysis
Correlation analysis is a study to determine whether there is a linear relationship

between variables. This method was used in the study to identify closely related variables
in the dataset, further investigate the relationship, and drop variables from the dataset
should they be directly correlated to others. This exercise ensures that processing tech-
niques are only applied to a reduced dataset with non-redundant variables. Correlation
matrices of plots were generated in MATLAB for this task; histograms of the variables
appear along the matrix diagonal and scatter plots of variable pairs appear in the off di-
agonal. The slopes of the least-squares reference lines in the scatter plots are equal to the
displayed correlation coefficients; high correlation is indicated by Pearson correlation co-
efficient values less than −0.8 and greater than 0.8.
1. Stage P1: Raw water supply and storage

The variables explored were FIT101, LIT101, MV101, and P101. The following obser-
vations were made:

• FIT101 measuring flow into the raw water tank was highly correlated to MV101,
which controls water flow to the raw water tank at a correlation coefficient of
0.97.

• LIT101 measuring the raw water tank level and MV101 share a negative corre-
lation since they share an inversely proportional relationship.

Figure 3. Attacks on level transmitter.

Mathematics 2023, 11, 1846 6 of 21

Observing attacks shows deviation from normal data trajectory, providing an un-
derstanding of attack impact on variables in the dataset. For example, a short-lived and
unusual spike occurred before 11:30. This insight informs the selection of appropriate data
preprocessing techniques.

3.3.2. Redundant Variables

Redundant variables in machine learning are features or variables that provide no
additional information or predictive power to the model beyond what is already provided
by other variables. These variables can be removed from the model without affecting its
performance, as they are not contributing to the overall accuracy of the model. Removing
redundant variables can also help reduce overfitting and improve the interpretability of
the model.

The pumps used in SWaT go in pairs; one is the main pump and the other is a backup
pump. The backup pump either pumps alongside the main pump or pumps when the
main pump fails. This purports that they can be considered as a single pump and their
values merged. Since the pump data is logical, with a value of 0 indicating that the pump
is off and a value of 1 indicating that it is on, to merge data from 2 pumps an inclusive OR
operation is used where the output is 1 when at least one of the values is 1 and 0 if both
values are 0. The resultant variable of the merged pump data takes on the name of the
pump whose name has the least numeric value, i.e., pump P101 merged with pump P102 is
a new variable called P101.

3.3.3. Dataset Reduction by Correlation Analysis

Correlation analysis is a study to determine whether there is a linear relationship
between variables. This method was used in the study to identify closely related variables
in the dataset, further investigate the relationship, and drop variables from the dataset
should they be directly correlated to others. This exercise ensures that processing techniques
are only applied to a reduced dataset with non-redundant variables. Correlation matrices
of plots were generated in MATLAB for this task; histograms of the variables appear along
the matrix diagonal and scatter plots of variable pairs appear in the off diagonal. The slopes
of the least-squares reference lines in the scatter plots are equal to the displayed correlation
coefficients; high correlation is indicated by Pearson correlation coefficient values less than
−0.8 and greater than 0.8.

1. Stage P1: Raw water supply and storage

The variables explored were FIT101, LIT101, MV101, and P101. The following obser-
vations were made:

• FIT101 measuring flow into the raw water tank was highly correlated to MV101,
which controls water flow to the raw water tank at a correlation coefficient of 0.97.

• LIT101 measuring the raw water tank level and MV101 share a negative correla-
tion since they share an inversely proportional relationship.

• LIT101 and P101, which pumps water from the raw water tank, share a negative
correlation since they share an inversely proportional relationship.

Consequently, MV101 is redundant to FIT101 and thus can be dropped, since it is
actuator data and not many explanatory data can be extracted from it.

2. Stage P2: Chemical dosing

The variables explored were AIT201, AIT202, AIT204, FIT201, MV201, P201, P203, and
P205. The following observations were made:

• AIT201, measuring water NaCl content level, and AIT202, measuring water
HCl content level, have high correlation but were within acceptable limits at a
correlation coefficient of −0.76.

• MV201, an actuator that controls water flow to the UF feed water tank, was
highly correlated to FIT201, a sensor that measures water flow, at a correlation
coefficient of 0.91.

Mathematics 2023, 11, 1846 7 of 21

• P203, a NaCl-dosing pump, was highly correlated to MV201, at a correlation
coefficient of 0.98.

• P203 and FIT201 were perfectly correlated at a correlation coefficient of 1.
• P205, a NaOCl-dosing pump, was strongly correlated to 3 features, FIT201,

MV201, and P203, at correlation coefficients of 0.91, 0.9, and 0.91, respectively.

FIT201’s explanation of the events in stage P2 is tantamount to variables MV201, P203,
and P205, and due to this redundancy only FIT201 was retained.

3. Stage P3: Ultrafiltration

The variables explored were DPIT301, FIT301, LIT301, MV301, MV302, MV303,
MV304, and P302. The following observation was made:

• FIT301, a flow sensor measuring the flow of RO rejection, was highly correlated to
three features at correlation coefficients of 0.96, 0.9, and 0.98 respectively, namely
(1) DPIT301, a sensor that transmits differential pressure to control the backwash
process, (2) MV302, a valve actuator that controls the UF backwash drain, and (3)
P302, a pump actuator that pumps water from the UF feed water tank to the RO
feed water tank via UF filtration.

FIT301’s explanation of the events in stage P3 is tantamount to variables DPIT301,
MV302, and P302, and due to this redundancy only FIT301 was retained; this variable
can be processed to extract informative features.

4. Stage P4: Dechlorination

The variables explored were AIT401, AIT402, FIT401, LIT401, P402, P403, and UV401.
The following observations were made:

• Four variables were closely correlated, however, considering that they form part
of the dechlorination process, they were not close enough to drop any of them.
They were (1) AIT402, a sensor that measures ORP to control NaHSO3 dosing by
pump P204 and NaOCl dosing by pump P205, (2) FIT401, a sensor that measures
the flow in order to control the UV dechlorinator, (3) P402, a pump actuator that
pumps water from the RO feed tank to the UV dechlorinator, and (4) UV401, a
dechlorinator actuator that removes chlorine from the water.

• FIT401 is responsible for P402 and UV401, which are closely correlated because
one controls the other.

P402 and UV401 were dropped since they were redundant to FIT401.

5. Stage P5: Reverse osmosis

The variables explored were AIT501, AIT502, AIT503, AIT504, FIT501, FIT502, FIT503,
FIT504, P501, PIT501, PIT502, and PIT503. The following observation was made:

• Seven variables were perfectly correlated at a correlation coefficient of 0.99 be-
tween each other and can all be explained by just one of the variables. These
variables were (1) FIT501, a sensor measuring the inlet flow of the RO membrane,
(2) FIT502, a sensor measuring the RO permeate flow, (3) FIT503, a sensor measur-
ing the RO reject flow, (4) FIT504, a sensor measuring the RO re-circulation flow,
(5) P501, a pump actuator that pumps dechlorinated water to RO, (6) PIT501, a
sensor measuring the RO feed pressure, and PIT503, a sensor measuring the RO
permeate pressure.

Upon observation of the abovementioned variables, it can be hypothecated that the
simple data of P501 can best describe the events of stage P5 in place of variables FIT501,
FIT502, FIT503, FIT504, PIT501, and PIT503, which were dropped from the dataset.

6. Stage P6: RO permeate transfer, UF backwash

In the raw water supply and storage stage (P1), only pump P602, which pumps water
from the UF backwash tank to UF, was used in the data collection process. The other
variable, pump P601, which pumps water from the RO permeate tank to the raw water

Mathematics 2023, 11, 1846 8 of 21

tank, was not used and therefore could be dropped from the dataset. A correlation
matrix plot was not performed since there was only one variable in this stage.

3.4. Problem Formulation

This section aims to answer the questions: What are you trying to achieve? (1) Is it a
regression, clustering, or classification problem? (2) Are you seeking any specific insights?
(3) Is a pattern expected? (4) Is there a specific format for the response? Using information
gathered from the problem exploration stage, these questions can be answered.

In this case, we have a classification problem, as the dataset includes attacks that need
to be identified. Supervised learning is a commonly used approach for anomaly detection
in water treatment systems data. The use of supervised learning is driven by several factors,
including the availability of labelled data, interpretability, high accuracy, fast detection,
and scalability. The advantages and considerations of using supervised learning in this
context are:

a. The success of anomaly detection models depends on the availability of labelled data
with normal and abnormal behaviour, as this allows for the training of supervised
learning models to differentiate between the two [22].

b. Supervised learning models are easy to understand, making it easy to determine
the cause of anomalies. This interpretability is important in real-world applications,
where understanding the source of anomalies is crucial.

c. Supervised learning models have been shown to be accurate in anomaly detection,
especially when the data are well-labelled and the model is designed and optimized
properly [23]. Additionally, these models can detect anomalies in real time, making
them suitable for online monitoring and control applications [24].

d. Supervised learning models are capable of handling large amounts of data and can
be scaled to suit large-scale water treatment systems. This scalability is necessary to
ensure that the anomaly detection system can continue to function effectively as the
water treatment system grows [25].

3.5. Baseline Models

A baseline model is a simple model that will act as a reference for the machine learning
model. To this end, we chose two popular models for classification problems, Fine Decision
Tree and Boosted Trees Ensemble. These models are commonly used for classification
problems and have been seen to be effective in a variety of contexts. Moreover, we selected
these models because they are well-suited for the type of data we are working with, based
on their known performance in similar applications.

a. Model 1: Fine Decision Tree

Decision trees are popular in classification problems due to their simplicity and inter-
pretability [26]. They work by recursively splitting the data into smaller subsets, with each
split corresponding to a decision rule that best separates the target class [27].

b. Model 2: Boosted Trees Ensemble

This model creates an ensemble of medium decision trees using the AdaBoost algo-
rithm [28]. Ensemble learners, which combine multiple base models, have been shown to
perform relatively well as compared to a single algorithm. This is because the combination
of multiple base models reduces the variance of the overall prediction, leading to better
generalisation performance [29].

A second baseline model was performed to verify the experiment results. The baseline
models had no added complexity in the modelling process and served as a benchmark for
comparison, with the same models trained on preprocessed data. The modelling approach
for training and evaluating ML models is depicted in Figure 4 and describes how the data
were first split into training and testing data, followed by the application of the models
and then their evaluation on test accuracy; F1 score, which is calculated from precision and
recall; and the time it takes to detect an attack, referred to as the TTD.

Mathematics 2023, 11, 1846 9 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 21

b. Model 2: Boosted Trees Ensemble
This model creates an ensemble of medium decision trees using the AdaBoost algo-

rithm [28]. Ensemble learners, which combine multiple base models, have been shown to
perform relatively well as compared to a single algorithm. This is because the combination
of multiple base models reduces the variance of the overall prediction, leading to better
generalisation performance [29].

A second baseline model was performed to verify the experiment results. The base-
line models had no added complexity in the modelling process and served as a benchmark
for comparison, with the same models trained on preprocessed data. The modelling ap-
proach for training and evaluating ML models is depicted in Figure 4 and describes how
the data were first split into training and testing data, followed by the application of the
models and then their evaluation on test accuracy; F1 score, which is calculated from pre-
cision and recall; and the time it takes to detect an attack, referred to as the TTD.

Figure 4. Modelling approach for training and evaluating ML models.

Attacks in the test data are shown in Figure 5 and the time to detection (TTD) is eval-
uated on the attack that happened between the 31st of December 2015 at 01:17:08 and the
31st of December 2015 at 11:15:27. TTD involves the calculation of the duration between
the initiation of a security breach and the moment when the breach was detected. Specifi-
cally, TTD is determined by quantifying the temporal discrepancy between the onset of
the attack and the point at which the attack was identified.

Figure 5. Test data attacks.

The parameters applied when training the models are given in Table 1. These model
parameters were carried over to the experiments to maintain consistency and have fair
results. The choice of the parameters was based on the scholarship from the literature re-
view.

Figure 4. Modelling approach for training and evaluating ML models.

Attacks in the test data are shown in Figure 5 and the time to detection (TTD) is
evaluated on the attack that happened between the 31 December 2015 at 01:17:08 and the
31 December 2015 at 11:15:27. TTD involves the calculation of the duration between the
initiation of a security breach and the moment when the breach was detected. Specifically,
TTD is determined by quantifying the temporal discrepancy between the onset of the attack
and the point at which the attack was identified.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 21

b. Model 2: Boosted Trees Ensemble
This model creates an ensemble of medium decision trees using the AdaBoost algo-

rithm [28]. Ensemble learners, which combine multiple base models, have been shown to
perform relatively well as compared to a single algorithm. This is because the combination
of multiple base models reduces the variance of the overall prediction, leading to better
generalisation performance [29].

A second baseline model was performed to verify the experiment results. The base-
line models had no added complexity in the modelling process and served as a benchmark
for comparison, with the same models trained on preprocessed data. The modelling ap-
proach for training and evaluating ML models is depicted in Figure 4 and describes how
the data were first split into training and testing data, followed by the application of the
models and then their evaluation on test accuracy; F1 score, which is calculated from pre-
cision and recall; and the time it takes to detect an attack, referred to as the TTD.

Figure 4. Modelling approach for training and evaluating ML models.

Attacks in the test data are shown in Figure 5 and the time to detection (TTD) is eval-
uated on the attack that happened between the 31st of December 2015 at 01:17:08 and the
31st of December 2015 at 11:15:27. TTD involves the calculation of the duration between
the initiation of a security breach and the moment when the breach was detected. Specifi-
cally, TTD is determined by quantifying the temporal discrepancy between the onset of
the attack and the point at which the attack was identified.

Figure 5. Test data attacks.

The parameters applied when training the models are given in Table 1. These model
parameters were carried over to the experiments to maintain consistency and have fair
results. The choice of the parameters was based on the scholarship from the literature re-
view.

Figure 5. Test data attacks.

The parameters applied when training the models are given in Table 1. These model pa-
rameters were carried over to the experiments to maintain consistency and have fair results.
The choice of the parameters was based on the scholarship from the literature review.

Table 1. Model parameters.

Training data 70% of dataset

Testing data 30% of dataset

Validation scheme Cross validation with 2 folds

Misclassification costs TP = 0, FN = 5, FP = 1, TN = 0

3.6. Data Preprocessing

Here, a systematic method was employed to preprocess the variables that remained
after reducing correlations, where each variable was individually examined and the best
technique was applied. Many of the variables have distinct features, which allowed for
their individual assessment and analysis. The steps for data preprocessing are illustrated in
Figure 6, and common techniques for each step are listed in bullet form. These steps were
not applied to every variable, as each variable has its own unique characteristics, requiring
careful consideration.

Mathematics 2023, 11, 1846 10 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 21

Table 1. Model parameters.

Training data 70% of dataset
Testing data 30% of dataset

Validation scheme Cross validation with 2 folds
Misclassification costs TP = 0, FN = 5, FP = 1, TN = 0

3.6. Data Preprocessing
Here, a systematic method was employed to preprocess the variables that remained

after reducing correlations, where each variable was individually examined and the best
technique was applied. Many of the variables have distinct features, which allowed for
their individual assessment and analysis. The steps for data preprocessing are illustrated
in Figure 6, and common techniques for each step are listed in bullet form. These steps
were not applied to every variable, as each variable has its own unique characteristics,
requiring careful consideration.

Figure 6. Data processing steps.

3.6.1. Imputations
Missing values can be found programmatically using different platforms; in

MATLAB, the function ismissing(A) returns a logical array that indexes the positions in the
input data A that contain missing values. Missing values can be in the form of not-a-num-
ber (NaN) values, not-a-datetime (NaT), an undefined value, or an empty space, and dis-
cretion is applied to determine what constitutes missing values in that dataset. In dealing
with missing values, imputations can be made using various methods, including mean
imputation, regression imputation, k-NN based imputation, Z-Score, DBScan, or Isolation
Forest to handle such outliers before performing imputation. By taking these steps, we
could ensure accurate and reliable imputations for our data. As a finding, the dataset used
in this study has no missing values, and thus no missing value imputations were made.

3.6.2. Outlier Filtering
To observe outliers in a variable, it must be visualised either by plotting the data

points against time to observe values that deviate from the general pattern of the signal or
in a histogram to observe values that are more distant from the mean. Outliers are re-
moved programmatically by removing values that fall within a specified range.

3.6.3. Noise Reduction
Linear filters are an effective way to remove/reduce noise. Filters used in this study

were a median filter, a 1-dimensional digital filter, and a Gaussian-weighted moving av-
erage filter [30]. The choice of a filter requires that the variable be visualised and the type
of filter selected based on the desired result.

Imputations
•Mean imputation ,

regression
imputation, kNN, Z-
score, DBScan,
Isolation Forest

Outlier filtering
•Removal based on

standard
deviation/graph
inspection

Noise reduction
•Time domain: Moving

mean smoothing
•Frequency domain:

Filters

Feature extraction
•Timestamp features
•Spectral features
•Unique features

feature scaling
•Normalization
•Standardization

Dimensionality
Reduction
•PCA

Figure 6. Data processing steps.

3.6.1. Imputations

Missing values can be found programmatically using different platforms; in MATLAB,
the function ismissing(A) returns a logical array that indexes the positions in the input data
A that contain missing values. Missing values can be in the form of not-a-number (NaN)
values, not-a-datetime (NaT), an undefined value, or an empty space, and discretion is
applied to determine what constitutes missing values in that dataset. In dealing with miss-
ing values, imputations can be made using various methods, including mean imputation,
regression imputation, k-NN based imputation, Z-Score, DBScan, or Isolation Forest to
handle such outliers before performing imputation. By taking these steps, we could ensure
accurate and reliable imputations for our data. As a finding, the dataset used in this study
has no missing values, and thus no missing value imputations were made.

3.6.2. Outlier Filtering

To observe outliers in a variable, it must be visualised either by plotting the data points
against time to observe values that deviate from the general pattern of the signal or in a
histogram to observe values that are more distant from the mean. Outliers are removed
programmatically by removing values that fall within a specified range.

3.6.3. Noise Reduction

Linear filters are an effective way to remove/reduce noise. Filters used in this study
were a median filter, a 1-dimensional digital filter, and a Gaussian-weighted moving
average filter [30]. The choice of a filter requires that the variable be visualised and the type
of filter selected based on the desired result.

a. Median filter smoothing

Median filtering is a nonlinear signal-processing technique that is very useful in data
processing to suppress noise. The centre value in a sliding window is replaced by the
median of the values in the window, given a discrete sequence a1, a2, . . . , aN where N is
odd, the median is the number in the sequence where (N − 1)/2 elements are smaller or
equal in value, and

(N − 1)/2 elements are larger or equal in value [31].
In MATLAB, the built-in function medfilt1 is used to perform this task. The function

applies an nth order one-dimensional median filter to the input vector. The order of the
filter impacts its performance, and an iterative process is used to determine the optimal
order of the filter.

b. Moving mean smoothing

Mathematics 2023, 11, 1846 11 of 21

This is a widely used technique that can be applied to time series data of any type. A
sliding window is passed through the time series data to calculate the average values in
the new series. The formula for a simple moving average is

−
y t =

yt + yt−1 + · · ·+ yt−n−1

n
(1)

where y is the variable, t is the time period, and n is the number of time periods in the
averaging window. The MATLAB code for this task uses the smoothdata built-in function,
which is set to use a moving mean technique.

c. Digital filter

A 1-dimensional digital filter was utilised, using a rational transfer function defined
by the numerator and denominator coefficients b and a [32]. The rational transfer function
for the filter operates the input–output vectors in the Z-transform and is as follows:

Y(z) =
b(1) + b(2)z−1 + · · ·+ b(nb + 1)z−nb

1 + a(2)y(n − 1)− · · · − a(na + 1)y(n − na)
X(z) (2)

The rational transfer function handles both finite impulse response (FIR) and infi-
nite impulse response (IIR) filters. Its representation using its direct-form II transposed
implementation is shown in Figure 7, where na = nb.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 21

a. Median filter smoothing
Median filtering is a nonlinear signal-processing technique that is very useful in data

processing to suppress noise. The centre value in a sliding window is replaced by the me-
dian of the values in the window, given a discrete sequence a1, a2,..., aN where N is odd,
the median is the number in the sequence where (N − 1)/2 elements are smaller or equal
in value, and

(N − 1)/2 elements are larger or equal in value [31].
In MATLAB, the built-in function medfilt1 is used to perform this task. The function

applies an nth order one-dimensional median filter to the input vector. The order of the
filter impacts its performance, and an iterative process is used to determine the optimal
order of the filter.
b. Moving mean smoothing

This is a widely used technique that can be applied to time series data of any type. A
sliding window is passed through the time series data to calculate the average values in
the new series. The formula for a simple moving average is

𝑦ത௧ = ௬೟శ௬೟షభା⋯ା௬೟ష೙షభ௡ (1)

where y is the variable, t is the time period, and n is the number of time periods in the
averaging window. The MATLAB code for this task uses the smoothdata built-in function,
which is set to use a moving mean technique.
c. Digital filter

A 1-dimensional digital filter was utilised, using a rational transfer function defined
by the numerator and denominator coefficients b and a [32]. The rational transfer function
for the filter operates the input–output vectors in the Z-transform and is as follows:

𝑌(௭) = ௕(ଵ)ା௕(ଶ)௭షభା⋯ା௕(௡್ାଵ)௭ష೙್ଵା௔(ଶ)௬(௡ିଵ)ି⋯ି௔(௡ೌାଵ)௬(௡ି௡ೌ) 𝑋(𝑧) (2)

The rational transfer function handles both finite impulse response (FIR) and infinite
impulse response (IIR) filters. Its representation using its direct-form II transposed imple-
mentation is shown in Figure 7, where na = nb.

Figure 7. Representation of rational transfer function using its direct-form II transposed implemen-
tation [33].

In MATLAB, the built-in function filter is used to apply the filter to data.
a. Gaussian-weighted moving average filter

A Gaussian filter is a filter whose impulse response is a Gaussian function; its impulse
response is given by

𝑔(𝑥) = ට௔గ 𝑒ି௔௫మ (3)

In MATLAB, the built-in function smoothdata is used to apply this filter.

Figure 7. Representation of rational transfer function using its direct-form II transposed implementa-
tion [33].

In MATLAB, the built-in function filter is used to apply the filter to data.

a. Gaussian-weighted moving average filter

A Gaussian filter is a filter whose impulse response is a Gaussian function; its impulse
response is given by

g(x) =
√

a
π

e−ax2
(3)

In MATLAB, the built-in function smoothdata is used to apply this filter.

3.6.4. Feature Extraction

a. Timestamp Features

Certain events may be described by the time they occur, and thus timestamp features
are extracted from the date/time feature in the dataset [34,35]. Timestamp features can
be extracted in MATLAB using built-in functions. In this study, the hour numbers of the
date/time and the number representing the day of the week were extracted. The built-in
functions for hour and weekday were used to perform this task.

b. Spectral features

To extract frequencies within a time window, an FFT was computed from the data
points. The fft function in MATLAB computes a discrete Fourier transform (DFT) of the
input data using an FFT algorithm. The maximum value of the output represents the
fundamental frequency, and this is the value that was populated in the new data set for the
computed data window.

A Fourier transform can be applied to any type of signal, not just sinusoidal
signals [15,36]. The Fourier transform is a mathematical tool that can be used to

Mathematics 2023, 11, 1846 12 of 21

decompose a signal into its constituent frequency components. This means that it
can be used to analyse any signal, regardless of whether it is sinusoidal or not. It
is important to note that when a signal is non-sinusoidal, the output of the Fourier
transform will be a complex number, so it will give the amplitude, phase, and frequency
information of the signal.

The signal in Figure 8 consists of a noisy sinusoidal structure; it was processed by
smoothing it first using moving mean smoothing and then extracting its FFT. Figure 9 is
a power spectrum computed for the signal at samples 279,053 to 279,729 (676 data-point
window), which shows the signal at a 0.078 Hz normalized frequency.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 21

3.6.4. Feature Extraction
a. Timestamp Features

Certain events may be described by the time they occur, and thus timestamp features
are extracted from the date/time feature in the dataset [34,35]. Timestamp features can be
extracted in MATLAB using built-in functions. In this study, the hour numbers of the
date/time and the number representing the day of the week were extracted. The built-in
functions for hour and weekday were used to perform this task.
b. Spectral features

To extract frequencies within a time window, an FFT was computed from the data
points. The fft function in MATLAB computes a discrete Fourier transform (DFT) of the
input data using an FFT algorithm. The maximum value of the output represents the fun-
damental frequency, and this is the value that was populated in the new data set for the
computed data window.

A Fourier transform can be applied to any type of signal, not just sinusoidal signals
[15,36]. The Fourier transform is a mathematical tool that can be used to decompose a
signal into its constituent frequency components. This means that it can be used to analyse
any signal, regardless of whether it is sinusoidal or not. It is important to note that when
a signal is non-sinusoidal, the output of the Fourier transform will be a complex number,
so it will give the amplitude, phase, and frequency information of the signal.

The signal in Figure 8 consists of a noisy sinusoidal structure; it was processed by
smoothing it first using moving mean smoothing and then extracting its FFT. Figure 9 is
a power spectrum computed for the signal at samples 279,053 to 27,9729 (676 data-point
window), which shows the signal at a 0.078 Hz normalized frequency.

Figure 8. Noisy sensor signal consisting of a sinusoidal structure.

Figure 9. Power spectrum computed from a smoothed sensor signal window.

Figure 8. Noisy sensor signal consisting of a sinusoidal structure.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 21

3.6.4. Feature Extraction
a. Timestamp Features

Certain events may be described by the time they occur, and thus timestamp features
are extracted from the date/time feature in the dataset [34,35]. Timestamp features can be
extracted in MATLAB using built-in functions. In this study, the hour numbers of the
date/time and the number representing the day of the week were extracted. The built-in
functions for hour and weekday were used to perform this task.
b. Spectral features

To extract frequencies within a time window, an FFT was computed from the data
points. The fft function in MATLAB computes a discrete Fourier transform (DFT) of the
input data using an FFT algorithm. The maximum value of the output represents the fun-
damental frequency, and this is the value that was populated in the new data set for the
computed data window.

A Fourier transform can be applied to any type of signal, not just sinusoidal signals
[15,36]. The Fourier transform is a mathematical tool that can be used to decompose a
signal into its constituent frequency components. This means that it can be used to analyse
any signal, regardless of whether it is sinusoidal or not. It is important to note that when
a signal is non-sinusoidal, the output of the Fourier transform will be a complex number,
so it will give the amplitude, phase, and frequency information of the signal.

The signal in Figure 8 consists of a noisy sinusoidal structure; it was processed by
smoothing it first using moving mean smoothing and then extracting its FFT. Figure 9 is
a power spectrum computed for the signal at samples 279,053 to 27,9729 (676 data-point
window), which shows the signal at a 0.078 Hz normalized frequency.

Figure 8. Noisy sensor signal consisting of a sinusoidal structure.

Figure 9. Power spectrum computed from a smoothed sensor signal window.
Figure 9. Power spectrum computed from a smoothed sensor signal window.

c. Unique features

Understanding the physical knowledge of the system aids in establishing distinguish-
ing characteristics of the variables in the dataset. The system from which the data were
collected must be understood such that when the variables are visualised and studied
there is an idea of what distinguishing features can be extracted from the raw data [37].
Features can be a measure of shape such as the slopes or the number and values of local
minima/maxima, statistical measurements such as the mean over a moving window, or
other measurements that can be thought of upon visualising and studying the data.

• Extracting Peaks

Peaks can be used to determine the frequency of a signal, where within a sliding
window frequency = (number of peaks)/(total time for the peaks to occur).

• Approximating slopes: dYdT = ∆y/∆t

In some instances, a signal is composed of lines and vertices and therefore the slopes
of the derivatives can be calculated to determine the changing slopes and populated as a
new feature.

Mathematics 2023, 11, 1846 13 of 21

• Detrending

Detrending a signal can potentially improve a machine learning model by removing
any linear or non-linear trends that may be present in the data [38]. This can help to make
the data more stationary, which can in turn improve the accuracy and stability of the model.
The built-in MATLAB function detrend is used to remove a linear trend in the data by
removing the best straight-fit line from the data.

d. LIT101 data preprocessing

To illustrate the application of the feature extraction techniques, consider LIT101, a
sensor that measures the raw water tank level in stage P1 of SWaT. Figure 10 shows an
SSMP attack, where the aim is to overflow the raw water tank by setting the water level to
a constant 700 mm. The steps taken to process the LIT101 sensor data were:

• Raw data were replaced with a smoothed signal. A median filter was chosen for its
ability to keep edges. A 600th order and a truncate zero-padding method were applied
to compute medians of smaller segments as they reached the signal edges.

• The signal appeared to be periodic, thus high-prominence peaks were extracted and
differences between them populated as a new feature.

• The signal was composed of lines and vertices and therefore the slopes of the deriva-
tives were calculated to determine the changing slopes and populated as a new feature.
This implementation is illustrated in Figure 11. The data were first smoothed using
a 200th order one-dimensional median filter with a truncate zero-padding method
applied. The data were then resampled at a factor of 1/10. The difference between the
resulting data points was computed and then the difference data were resampled at a
factor of 10.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 21

Figure 10. Attacks on level transmitter LIT101.

Figure 11. LIT101 sensor data process for extracting slopes.

3.6.5. Feature Scaling
For data standardisation, a z-score was used, where a data point�s distance from the

mean is measured in terms of the standard deviation [10]. This is performed so that dis-
tance-based algorithms can be trained on features with different units and ranges. To com-
pute the z-score for a value x part of a variable X that has mean µ and standard deviation
σ, the following equation is used:

𝑧 = (௫ିఓ)ఙ 0 (4)

In MATLAB, the built-in function zscore is used to perform this task.

3.6.6. Dimensionality Reduction
PCA was used to reduce dimensionality in the dataset. The principal components

must explain at least 99% of the variance to preserve much of the information.

3.7. Summary
In this section, we examined a systematic process for preparing critical water system

infrastructure data to detect intrusion attacks using machine learning. The process begins
with exploring the problem, where patterns, trends, and relationships in the data are iden-
tified, leading to an understanding of redundancies in the features that could pose issues
of overfitting or increased variance. This information was then used in the problem for-
mulation stage to develop a specific hypothesis about the anomalies being detected, de-
termined to require supervised learning. Baseline models were introduced to set a perfor-
mance target and evaluate the effectiveness of various machine learning algorithms and
models, serving as a starting point for future improvement. Preprocessing then took place,
with any missing values filled using methods such as mean imputation or k-NN-based
imputation if necessary, outliers removed, and noise reduced through linear filters.

Figure 10. Attacks on level transmitter LIT101.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 21

Figure 10. Attacks on level transmitter LIT101.

Figure 11. LIT101 sensor data process for extracting slopes.

3.6.5. Feature Scaling
For data standardisation, a z-score was used, where a data point�s distance from the

mean is measured in terms of the standard deviation [10]. This is performed so that dis-
tance-based algorithms can be trained on features with different units and ranges. To com-
pute the z-score for a value x part of a variable X that has mean µ and standard deviation
σ, the following equation is used:

𝑧 = (௫ିఓ)ఙ 0 (4)

In MATLAB, the built-in function zscore is used to perform this task.

3.6.6. Dimensionality Reduction
PCA was used to reduce dimensionality in the dataset. The principal components

must explain at least 99% of the variance to preserve much of the information.

3.7. Summary
In this section, we examined a systematic process for preparing critical water system

infrastructure data to detect intrusion attacks using machine learning. The process begins
with exploring the problem, where patterns, trends, and relationships in the data are iden-
tified, leading to an understanding of redundancies in the features that could pose issues
of overfitting or increased variance. This information was then used in the problem for-
mulation stage to develop a specific hypothesis about the anomalies being detected, de-
termined to require supervised learning. Baseline models were introduced to set a perfor-
mance target and evaluate the effectiveness of various machine learning algorithms and
models, serving as a starting point for future improvement. Preprocessing then took place,
with any missing values filled using methods such as mean imputation or k-NN-based
imputation if necessary, outliers removed, and noise reduced through linear filters.

Figure 11. LIT101 sensor data process for extracting slopes.

3.6.5. Feature Scaling

For data standardisation, a z-score was used, where a data point’s distance from
the mean is measured in terms of the standard deviation [10]. This is performed so that
distance-based algorithms can be trained on features with different units and ranges. To

Mathematics 2023, 11, 1846 14 of 21

compute the z-score for a value x part of a variable X that has mean µ and standard
deviation σ, the following equation is used:

z =
(x − µ)

σ
0 (4)

In MATLAB, the built-in function zscore is used to perform this task.

3.6.6. Dimensionality Reduction

PCA was used to reduce dimensionality in the dataset. The principal components
must explain at least 99% of the variance to preserve much of the information.

3.7. Summary

In this section, we examined a systematic process for preparing critical water system
infrastructure data to detect intrusion attacks using machine learning. The process begins
with exploring the problem, where patterns, trends, and relationships in the data are
identified, leading to an understanding of redundancies in the features that could pose
issues of overfitting or increased variance. This information was then used in the problem
formulation stage to develop a specific hypothesis about the anomalies being detected,
determined to require supervised learning. Baseline models were introduced to set a
performance target and evaluate the effectiveness of various machine learning algorithms
and models, serving as a starting point for future improvement. Preprocessing then took
place, with any missing values filled using methods such as mean imputation or k-NN-
based imputation if necessary, outliers removed, and noise reduced through linear filters.
Feature extraction was carried out to create a set of informative features for training a
machine learning model. The data were then normalized through z-score normalization
and dimensionality reduction through PCA could be performed if needed. The extracted
features included timestamp, spectral, and unique features.

The workflow described is presented in Figure 12, which researchers working with
similar data can apply.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 21

Feature extraction was carried out to create a set of informative features for training a
machine learning model. The data were then normalized through z-score normalization
and dimensionality reduction through PCA could be performed if needed. The extracted
features included timestamp, spectral, and unique features.

The workflow described is presented in Figure 12, which researchers working with
similar data can apply.

Figure 12. Workflow for treating process data from industrial control systems.

4. Experiments and Results
The work presented in this paper aims to provide ideal critical water system infra-

structure-specific data preprocessing techniques for a resultant informative dataset to im-
prove the performance of machine learning classification models. The output of this study
is a data preprocessing framework that can be applied by researchers working with simi-
lar data. To provide a good framework, experiments were set up to determine the effec-
tiveness of the preprocessing techniques.

4.1. Baseline Models
The trained baseline models described in Section 3 yielded the results provided in

Table 2 below. The success of the data preprocessing steps was evaluated on the ability of
the experiment models to perform better than the baseline models.

Table 2. Baseline model results.

Model Accuracy Precision Recall F1 Score TTD
Tree 95.9% 85.9% 78.4% 82% 2447 s/40.8 min

Ensemble 95.3% 91.7% 66.6% 77.2% 4117 s/68.6 min

4.2. Experiment 1: Models Trained on New Dataset
The data preprocessing steps in Section 3 resulted in a larger dataset with increased

dimensionality, which was meant to increase the informativeness of the dataset and thus
improve the performance of the classifier. In this experiment the models were trained on

Figure 12. Workflow for treating process data from industrial control systems.

Mathematics 2023, 11, 1846 15 of 21

4. Experiments and Results

The work presented in this paper aims to provide ideal critical water system infrastructure-
specific data preprocessing techniques for a resultant informative dataset to improve the
performance of machine learning classification models. The output of this study is a data
preprocessing framework that can be applied by researchers working with similar data. To
provide a good framework, experiments were set up to determine the effectiveness of the
preprocessing techniques.

4.1. Baseline Models

The trained baseline models described in Section 3 yielded the results provided in
Table 2 below. The success of the data preprocessing steps was evaluated on the ability of
the experiment models to perform better than the baseline models.

Table 2. Baseline model results.

Model Accuracy Precision Recall F1 Score TTD

Tree 95.9% 85.9% 78.4% 82% 2447 s/40.8 min

Ensemble 95.3% 91.7% 66.6% 77.2% 4117 s/68.6 min

4.2. Experiment 1: Models Trained on New Dataset

The data preprocessing steps in Section 3 resulted in a larger dataset with increased
dimensionality, which was meant to increase the informativeness of the dataset and thus
improve the performance of the classifier. In this experiment the models were trained on the
new dataset; the approach to conducting this experiment is depicted in Figure 13, where the
dataset was first split using a 70:30 time-based splitting method and the training data was
then used to train the models. The results are evaluated and documented in Table 3. A 70:30
train–test split was employed to ensure effective model training and accurate evaluation of
model performance. This split strikes a balance between having a sufficiently large training
set and a reasonably large test set.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 21

the new dataset; the approach to conducting this experiment is depicted in Figure 13,
where the dataset was first split using a 70:30 time-based splitting method and the training
data was then used to train the models. The results are evaluated and documented in Table
3. A 70:30 train–test split was employed to ensure effective model training and accurate
evaluation of model performance. This split strikes a balance between having a sufficiently
large training set and a reasonably large test set.

Figure 13. Experiment 1 approach.

Table 3. Experiment 1 results.

Model Accuracy Precision Recall F1 Score TTD
Tree 96.5% 99.1% 71.8% 83.3% 3932 s/65.53 min

Ensemble 96.5% 99.1% 71.8% 83.3% 3932 s/65.53 min

4.3. Experiment 2: Feature Scaling
This experiment was conducted to determine the impact of standardisation on the

algorithms� performances. To perform data standardisation, the built-in function zscore
was used, where the input is the data matrix and the output is the z-score for each element
in the input matrix, which are the standardised data.

The approach to conducting this experiment is depicted in Figure 14 and describes how
the dataset was first standardised, thereafter it follows the same process in experiment 1
described previously. The models and the results are evaluated and documented in Table 4.

Figure 14. Experiment 2 approach.

Table 4. Experiment 2 results.

Model Accuracy Precision Recall F1 Score TTD
Tree 96.5% 99.1% 71.8% 83.3% −7 s/−0.1 min

Ensemble 96.5% 99.1% 71.8% 83.3% 3932 s/65.5 min

Figure 13. Experiment 1 approach.

Table 3. Experiment 1 results.

Model Accuracy Precision Recall F1 Score TTD

Tree 96.5% 99.1% 71.8% 83.3% 3932 s/65.53 min

Ensemble 96.5% 99.1% 71.8% 83.3% 3932 s/65.53 min

4.3. Experiment 2: Feature Scaling

This experiment was conducted to determine the impact of standardisation on the
algorithms’ performances. To perform data standardisation, the built-in function zscore was
used, where the input is the data matrix and the output is the z-score for each element in
the input matrix, which are the standardised data.

Mathematics 2023, 11, 1846 16 of 21

The approach to conducting this experiment is depicted in Figure 14 and describes how
the dataset was first standardised, thereafter it follows the same process in experiment 1
described previously. The models and the results are evaluated and documented in Table 4.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 21

the new dataset; the approach to conducting this experiment is depicted in Figure 13,
where the dataset was first split using a 70:30 time-based splitting method and the training
data was then used to train the models. The results are evaluated and documented in Table
3. A 70:30 train–test split was employed to ensure effective model training and accurate
evaluation of model performance. This split strikes a balance between having a sufficiently
large training set and a reasonably large test set.

Figure 13. Experiment 1 approach.

Table 3. Experiment 1 results.

Model Accuracy Precision Recall F1 Score TTD
Tree 96.5% 99.1% 71.8% 83.3% 3932 s/65.53 min

Ensemble 96.5% 99.1% 71.8% 83.3% 3932 s/65.53 min

4.3. Experiment 2: Feature Scaling
This experiment was conducted to determine the impact of standardisation on the

algorithms� performances. To perform data standardisation, the built-in function zscore
was used, where the input is the data matrix and the output is the z-score for each element
in the input matrix, which are the standardised data.

The approach to conducting this experiment is depicted in Figure 14 and describes how
the dataset was first standardised, thereafter it follows the same process in experiment 1
described previously. The models and the results are evaluated and documented in Table 4.

Figure 14. Experiment 2 approach.

Table 4. Experiment 2 results.

Model Accuracy Precision Recall F1 Score TTD
Tree 96.5% 99.1% 71.8% 83.3% −7 s/−0.1 min

Ensemble 96.5% 99.1% 71.8% 83.3% 3932 s/65.5 min

Figure 14. Experiment 2 approach.

Table 4. Experiment 2 results.

Model Accuracy Precision Recall F1 Score TTD

Tree 96.5% 99.1% 71.8% 83.3% −7 s/−0.1 min

Ensemble 96.5% 99.1% 71.8% 83.3% 3932 s/65.5 min

4.4. Experiment 3: PCA Applied

This experiment aimed to determine the effect of PCA. PCA was used to reduce
the increased dimensionality that resulted from the data preprocessing steps and this
experiment aimed to find out if this could be achieved without reducing the performance
of the model. The approach to conducting this experiment is depicted in Figure 15, where
PCA was applied to training data to explain 99% of the variance in the data before they
were used to train the models. The trained models were evaluated on testing data with
matching features to the training data, with reduced dimensionality. The results of this
experiment are evaluated and documented in Table 5.

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 21

4.4. Experiment 3: PCA Applied
This experiment aimed to determine the effect of PCA. PCA was used to reduce the

increased dimensionality that resulted from the data preprocessing steps and this experi-
ment aimed to find out if this could be achieved without reducing the performance of the
model. The approach to conducting this experiment is depicted in Figure 15, where PCA
was applied to training data to explain 99% of the variance in the data before they were
used to train the models. The trained models were evaluated on testing data with match-
ing features to the training data, with reduced dimensionality. The results of this experi-
ment are evaluated and documented in Table 5.

Figure 15. Experiment 3 approach.

Table 5. Experiment 3 results.

Model Accuracy Precision Recall F1 Score TTD
Tree 86.7% 25.3% 5.6% 9.2% 33705 s/561.8 min

Ensemble 95.5% 93.1% 67.4% 78.2% 3932 s/65.5 min

4.5. Experiment 4: Randomly Partitioned Data
This experiment aimed to randomly split the data rather than using the time-based

data split used previously. The data were randomly split into 70% as training data and
30% as testing data. This method resulted in datasets that did not follow a time sequence;
therefore, evaluating the TTD was not as straightforward anymore. To determine the TTD,
a second part of the experiment was set up where the attack was isolated from the dataset
before it was randomly partitioned and then added to the test data. The first part of the
experiment gave an accurate representation of the accuracy similar to the same lengths of
training and testing data in prior experiments used to train the models; the second part of
the experiment gave a satisfactory time to detection evaluation. The approach to this ex-
periment is depicted in Figure 16 and the results are evaluated and documented in Table
6.

Figure 16. Experiment 4 approach.

Figure 15. Experiment 3 approach.

Table 5. Experiment 3 results.

Model Accuracy Precision Recall F1 Score TTD

Tree 86.7% 25.3% 5.6% 9.2% 33,705 s/561.8 min

Ensemble 95.5% 93.1% 67.4% 78.2% 3932 s/65.5 min

4.5. Experiment 4: Randomly Partitioned Data

This experiment aimed to randomly split the data rather than using the time-based
data split used previously. The data were randomly split into 70% as training data and
30% as testing data. This method resulted in datasets that did not follow a time sequence;
therefore, evaluating the TTD was not as straightforward anymore. To determine the TTD,

Mathematics 2023, 11, 1846 17 of 21

a second part of the experiment was set up where the attack was isolated from the dataset
before it was randomly partitioned and then added to the test data. The first part of the
experiment gave an accurate representation of the accuracy similar to the same lengths
of training and testing data in prior experiments used to train the models; the second
part of the experiment gave a satisfactory time to detection evaluation. The approach to
this experiment is depicted in Figure 16 and the results are evaluated and documented in
Table 6.

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 21

4.4. Experiment 3: PCA Applied
This experiment aimed to determine the effect of PCA. PCA was used to reduce the

increased dimensionality that resulted from the data preprocessing steps and this experi-
ment aimed to find out if this could be achieved without reducing the performance of the
model. The approach to conducting this experiment is depicted in Figure 15, where PCA
was applied to training data to explain 99% of the variance in the data before they were
used to train the models. The trained models were evaluated on testing data with match-
ing features to the training data, with reduced dimensionality. The results of this experi-
ment are evaluated and documented in Table 5.

Figure 15. Experiment 3 approach.

Table 5. Experiment 3 results.

Model Accuracy Precision Recall F1 Score TTD
Tree 86.7% 25.3% 5.6% 9.2% 33705 s/561.8 min

Ensemble 95.5% 93.1% 67.4% 78.2% 3932 s/65.5 min

4.5. Experiment 4: Randomly Partitioned Data
This experiment aimed to randomly split the data rather than using the time-based

data split used previously. The data were randomly split into 70% as training data and
30% as testing data. This method resulted in datasets that did not follow a time sequence;
therefore, evaluating the TTD was not as straightforward anymore. To determine the TTD,
a second part of the experiment was set up where the attack was isolated from the dataset
before it was randomly partitioned and then added to the test data. The first part of the
experiment gave an accurate representation of the accuracy similar to the same lengths of
training and testing data in prior experiments used to train the models; the second part of
the experiment gave a satisfactory time to detection evaluation. The approach to this ex-
periment is depicted in Figure 16 and the results are evaluated and documented in Table
6.

Figure 16. Experiment 4 approach.

Figure 16. Experiment 4 approach.

Table 6. Experiment 4 results.

Model Accuracy Precision Recall F1 Score TTD

Tree 96.5% 97.8% 97.8% 97.8% 0 s/0 min

Ensemble 96.5% 95.1% 97.5% 96.3% 0 s/0 min

5. Discussion

This section concludes the study by discussing the results and findings. In the method-
ology, baseline models were set up, forming a benchmark for comparison with the models
applied in the different experiments. The baseline models were trained on unprocessed
data. The aim of the study was to preprocess the data so that they yield improved results
when applied to ML algorithms compared to the baseline models. The results of the four
experiments discussed previously are discussed here.

5.1. Experiment 1: Models Trained on New Dataset

Feature extraction resulted in a larger dataset, and the question was whether the
new dataset would result in improved performance of the models or not; this experiment
aimed to answer this question. This resulted in an improved test accuracy and F1 score
for both models. This was a good result, considering that it can still be improved using
hyperparameters. The Fine Tree algorithm’s TTD did worsen, however, unveiling a trade-
off between classification accuracy and time to detection when using the new dataset. This
can be attributed to the model being trained on irrelevant features, leading to overfitting
and resulting in reduced performance; feature selection should be applied iteratively to
determine the key features to train the model on. Furthermore, it can be noted that the
results of both the Fine Decision Tree and Boosted Trees Ensemble models were found to be
identical, indicating that the data did not have a complex structure that required the use of
an ensemble Boosted Trees method. Therefore, in this case, the simpler Fine Decision Tree
model provided similar performance to the Boosted Trees Ensemble method. Regardless,
the results are satisfactory, and the ML modelling approach requires a careful consideration
of classification algorithm to achieve the best results.

5.2. Experiment 2: Feature Scaling

This experiment was conducted to determine the impact of data standardisation on
the performance of the algorithm. Z-score standardisation was used for this application.

Mathematics 2023, 11, 1846 18 of 21

The results showed that all three models performed better than the baseline models in
accuracy, F1 score, and TTD. The worsened TTD of the Fine Decision Tree algorithm in
Experiment 1 was improved in this experiment, as the attack was now detected 7 s before it
happened and this can be interpreted as that the attack was detected immediately, meaning
feature scaling improved the performance of the model.

Feature scaling will however not always give better results; in some cases such as this,
it yields unchanged results for the Boosted Trees Ensemble algorithm but an improved
TTD for the Fine Decision Tree algorithm. The careful choice of ML algorithms is important
when feature scaling is to be applied, as some algorithms may not be affected at all by
scaling, others may be negatively affected, and others may be positively affected. Distance-
based methods such as k-NN and SVM, as well as deep learning methods such as neural
networks, are positively affected by feature scaling [39]. An interesting observation is
that feature scaling improved the training time compared to the non-scaled data; for this
reason feature scaling should be applied when time is of the essence, especially when
computational resources are limited.

5.3. Experiment 3: PCA Applied

Dimensionality reduction is an important part of ML modelling, and this experiment
aimed to determine the effect of PCA on reducing dimensionality while keeping the
informativeness of the dataset. The results showed that the Fine Decision Tree algorithm
performed worse in all evaluation criteria than the baseline, while Boosted Trees Ensemble
performed better in all aspects. The reduced dimensionality meant that the Fine Decision
Tree algorithm had fewer data to learn on than it required, while the Boosted Trees Ensemble
technique proved to be more robust than a single tree, as the literature review suggested.

5.4. Experiment 4: Random Partitioned Data

In previous experiments, data were split using a time-based method, while this experi-
ment applied random splitting of the dataset into 70% and 30% randomly selected training
and testing datasets, respectively, and this yielded the best results of all the experiments.
All algorithms had improvements in accuracy, F1 score, and TTD.

5.5. What Can Be Learnt from the Results

• Data preprocessing in its entirety is a crucial part of ML modelling, as it has a direct
effect on the results.

• Feature scaling can have a positive, negative, or neutral effect on the performance of
the model and this requires careful judgement on whether to use it.

• While PCA reduces a dataset’s number of features by retaining only the impor-
tant ones, there is still a risk of losing useful information, which can affect other
algorithms negatively.

• Feature selection can be applied after feature extraction on a dataset that contains both
original and new features.

5.6. Limitations and Recommendations

This study focused on the data preprocessing stage of ML modelling; only three
models were applied and hyperparameters were not used. An extension of this research
must include more models to be evaluated and use hyperparameters.

Deep learning algorithms are beyond the scope of the work conducted in this study
and were therefore not applied; they bear an advantage of automatic feature extraction
and as such in future work it will be worth comparing manually extracted features to the
automatically extracted features from deep leaning algorithms.

Although the SWaT dataset was crucial to the fulfilment of this study, it has limitations,
as the data were collected over a set number of days and contained a set number of attacks.
A virtual model or digital twin of a water treatment system can be created with an inclusion

Mathematics 2023, 11, 1846 19 of 21

of disturbances and custom attacks that the user can configure. This way, future researchers
can have access to unlimited and unique data.

6. Conclusions

The goal of this study was to enhance cybersecurity research on cyber-physical systems
in critical water system infrastructure by offering a data preprocessing workflow and
techniques that can be applied to similar data gathered from a similar environment to that
used in the study of water treatment. The techniques outlined in this study, particularly
feature engineering techniques, can be applied to data collected from common process
sensors such as flow, level, and chemical analyser sensors, as well as pump actuators.

The dataset used in this study was collected under ideal conditions, and the added
improvement from the experiments is a good indication of the impact that data preprocess-
ing can have, even on a near-perfect dataset. Feature scaling may improve performance in
some cases and should be considered when dealing with distance-based methods or neural
networks. Having features on a similar scale can improve training time; for these reasons,
feature scaling is a crucial part of data preprocessing and it should always be considered.

PCA is also an important part of data preprocessing; however, it may not always
affect performance positively. It is most effective when variables are strongly correlated
and it does not function effectively to reduce data when the association between variables
is weak. In some cases, applying PCA and discarding some data has a risk of losing the
informativeness of the dataset.

This study revealed that training the models on a randomly split dataset yields the best
results. However, this brings a challenge of accurately evaluating the TTD. An extension
to the research conducted in this study is to shift the focus to identifying a suitable model
for critical water system infrastructure data, which also includes adding complexity to
the models until the best performance is achieved. Following this, evaluation techniques
can be investigated, resulting in workflows for data preprocessing, ML modelling, and
algorithm evaluation for novice and expert researchers in cybersecurity research in critical
water system infrastructure to apply.

Author Contributions: Conceptualization, I.V.M., D.T.R. and A.M.A.-M.; methodology, I.V.M.; soft-
ware, I.V.M.; validation, I.V.M.; formal analysis, I.V.M.; investigation, I.V.M.; resources, I.V.M., D.T.R.
and A.M.A.-M.; data curation, D.T.R.; writing—original draft preparation, I.V.M.; writing—review
and editing, I.V.M., D.T.R. and A.M.A.-M.; visualisation, I.V.M.; supervision, D.T.R. and A.M.A.-M.;
project administration, D.T.R. and A.M.A.-M.; funding acquisition, D.T.R. and A.M.A.-M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in this study are from the iTrust centre of research in
cybersecurity and Singapore University of Technology and Design. More information is available
here: https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/ (accessed on 12 January 2023).

Acknowledgments: We would like to acknowledge the iTrust centre for research in cybersecurity
and Singapore University of Technology and Design for allowing access to their SWaT dataset and the
Telkom Centre of Excellence at the University of Cape Town (UCT) for their resources and support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ramotsoela, D.T.; Hancke, G.P.; Abu-Mahfouz, A.M. Attack detection in water distribution systems using machine learning.

Hum.-Cent. Comput. Inf. Sci. 2019, 9, 13. [CrossRef]
2. Talcott, C. Cyber-physical systems and events. In Software-Intensive Systems and New Computing Paradigms; Springer:

Berlin/Heidelberg, Germany, 2008; Volume 5380, pp. 101–115.
3. Humayed, A.; Lin, J.; Li, F.; Luo, B. Cyber-Physical Systems Security—A Survey. IEEE Internet Things J. 2017, 4, 1802–1831.

[CrossRef]
4. Ericsson, G.N. Cyber security and power system communication essential parts of a smart grid infrastructure. IEEE Trans Power

Deliv. 2010, 25, 1501–1507. [CrossRef]

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://doi.org/10.1186/s13673-019-0175-8
https://doi.org/10.1109/JIOT.2017.2703172
https://doi.org/10.1109/TPWRD.2010.2046654

Mathematics 2023, 11, 1846 20 of 21

5. Zhang, Y.; Lee, W.; Huang, Y.A. Intrusion detection techniques for mobile wireless networks. Wirel. Netw. 2003, 9, 545–556.
[CrossRef]

6. Pfleeger, C. Security in Computing, 5th ed.; ACM, Inc.: Upper Saddle, NJ, USA, 1997. Available online: https://dl.acm.org/doi/
book/10.5555/48805 (accessed on 18 March 2023).

7. Luengo, J.; García-Gil, D.; Ramírez-Gallego, S.; García, S.; Herrera, F. Big Data Preprocessing; Springer: Berlin/Heidelberg,
Germany, 2020.

8. Mboweni, I.V.; Ramotsoela, D.T.; Abu-Mahfouz, A.M. A machine learning approach to intrusion detection in water distribution
systems—A review. In Proceedings of the 47th Annual Conference of the IEEE Industrial Electronics Society (IECON), Toronto,
ON, Canada, 13–16 October 2021.

9. García, S.; Luengo, J.; Herrera, F. Feature selection. Intell. Syst. Ref. Libr. 2015, 72, 163–193.
10. Fan, C.; Chen, M.; Wang, X.; Wang, J.; Huang, B. A Review on Data Preprocessing Techniques Toward Efficient and Reliable

Knowledge Discovery From Building Operational Data. Front. Energy Res. 2021, 9, 652801. [CrossRef]
11. Ullah, Z.; Naqvi, S.R.; Farooq, W.; Yang, H.; Wang, S.; Vo, D.V.N. A comparative study of machine learning methods for bio-oil

yield prediction—A genetic algorithm-based features selection. Bioresour. Technol. 2021, 335, 125292. [CrossRef]
12. Ashouri, M.; Fung, B.C.M.; Haghighat, F.; Yoshino, H. Systematic approach to provide building occupants with feedback to

reduce energy consumption. Energy 2020, 194, 116813. [CrossRef]
13. Nawi, N.M.; Atomi, W.H.; Rehman, M.Z. The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks.

Procedia. Technol. 2013, 11, 32–39. [CrossRef]
14. Halimaa, A.A.; Sundarakantham, K. Machine Learning Based Intrusion Detection System. In Proceedings of the 2019 3rd

International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 873–888.
15. Liu, Y.; Ma, X.; Li, Y.; Tie, Y.; Zhang, Y.; Gao, J. Water pipeline leakage detection based on machine learning and wireless sensor

networks. Sensors 2019, 19, 5086. [CrossRef]
16. Bijlsma, S.; Bobeldijk, I.; Verheij, E.R.; Ramaker, R.; Kochhar, S.; Macdonald, I.A.; van Ommen, B.; Smilde, A.K. Large-scale human

metabolomics studies: A strategy for data (pre-) processing and validation. Anal. Chem. 2006, 78, 567–574. [CrossRef]
17. Zhu, X.; Wu, X. Class noise vs. attribute noise: A quantitative study. Artif. Intell. Rev. 2004, 22, 177–210. [CrossRef]
18. Kang, Q.; Chen, X.S.; Li, S.S.; Zhou, M.C. A Noise-Filtered Under-Sampling Scheme for Imbalanced Classification. IEEE Trans.

Cybern. 2017, 47, 4263–4274. [CrossRef]
19. Li, W.; Mo, W.; Zhang, X.; Squiers, J.J.; Lu, Y.; Sellke, E.W.; Fan, W.; DiMaio, J.M.; Thatcher, J.E. Outlier detection and removal

improves accuracy of machine learning approach to multispectral burn diagnostic imaging. J. Biomed. Opt. 2015, 20, 121305.
[CrossRef] [PubMed]

20. Lam, J.C.; Wan, K.K.W.; Cheung, K.L.; Yang, L. Principal component analysis of electricity use in office buildings. Energy Build.
2008, 40, 828–836. [CrossRef]

21. Secure Water Treatment—iTrust. Available online: https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/ (accessed
on 12 January 2023).

22. Wankhede, S.B. Anomaly Detection using Machine Learning Techniques. In Proceedings of the 2019 IEEE 5th International
Conference for Convergence in Technology (I2CT), Pune, India, 29–31 March 2019.

23. Prasad, N.R.; Almanza-Garcia, S.; Lu, T.T. Anomaly detection. Comput. Mater. Contin. 2009, 14, 1–22.
24. Ariyaluran Habeeb, R.A.; Nasaruddin, F.; Gani, A.; Targio Hashem, I.A.; Ahmed, E.; Imran, M. Real-time big data processing for

anomaly detection: A Survey. Int. J. Inf. Manag. 2019, 45, 289–307. [CrossRef]
25. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining,

Pisa, Italy, 15–19 December 2008; pp. 413–422.
26. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: New York, NY, USA, 1984.
27. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
28. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.

Syst. Sci. 1997, 55, 119–139. [CrossRef]
29. Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [CrossRef]
30. Lyons, R.G. Understanding Digital Signal Processing, 2nd ed.; Prentice Hall PTR: Hoboken, NJ, USA, 2004.
31. Varoslavskiy, L.P. Digital Image Processing. Telecommun. Radio Eng. (Engl. Transl. Elektrosvyaz Radiotekhnika) 1977, 31–32, 42–47.
32. Oppenheim, A.V.; Schafer, R.W.; Buck, J.R. Discrete-Time Signal Processing, 2nd ed; Prentice Hall PTR: Hoboken, NJ, USA, 1999.
33. MathWorks. Filter. Available online: https://www.mathworks.com/help/matlab/ref/filter.html (accessed on 6 January 2023).
34. Han, Z.; Zhao, J.; Leung, H.; Ma, K.F.; Wang, W. A Review of Deep Learning Models for Time Series Prediction. IEEE Sens. J. 2021,

21, 7833–7848. [CrossRef]
35. Rubin, A.; Geva, N.; Sheintuch, L.; Ziv, Y. Hippocampal ensemble dynamics timestamp events in long-term memory. Elife 2015,

4, e12247. [CrossRef] [PubMed]
36. Lakhina, A.; Crovella, M.; Diot, C. Diagnosing network-wide traffic anomalies. Comput. Commun. Rev. 2004, 34, 219–230.

[CrossRef]
37. Vishnoi, V.; Kumar, K.; Kumar, B. A comprehensive study of feature extraction techniques for plant leaf disease detection.

Multimed. Tools Appl. 2022, 80, 367–419. [CrossRef]

https://doi.org/10.1023/A:1024600519144
https://dl.acm.org/doi/book/10.5555/48805
https://dl.acm.org/doi/book/10.5555/48805
https://doi.org/10.3389/fenrg.2021.652801
https://doi.org/10.1016/j.biortech.2021.125292
https://doi.org/10.1016/j.energy.2019.116813
https://doi.org/10.1016/j.protcy.2013.12.159
https://doi.org/10.3390/s19235086
https://doi.org/10.1021/ac051495j
https://doi.org/10.1007/s10462-004-0751-8
https://doi.org/10.1109/TCYB.2016.2606104
https://doi.org/10.1117/1.JBO.20.12.121305
https://www.ncbi.nlm.nih.gov/pubmed/26305321
https://doi.org/10.1016/j.enbuild.2007.06.001
https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
https://doi.org/10.1016/j.ijinfomgt.2018.08.006
https://doi.org/10.1007/BF00116251
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1007/s10462-009-9124-7
https://www.mathworks.com/help/matlab/ref/filter.html
https://doi.org/10.1109/JSEN.2019.2923982
https://doi.org/10.7554/eLife.12247
https://www.ncbi.nlm.nih.gov/pubmed/26682652
https://doi.org/10.1145/1030194.1015492
https://doi.org/10.1007/s11042-021-11375-0

Mathematics 2023, 11, 1846 21 of 21

38. Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M. Breaking with trends in pre-processing?
TrAC Trends Anal. Chem. 2013, 50, 96–106. [CrossRef]

39. Latyshev, E. Sensor Data Preprocessing, Feature Engineering and Equipment Remaining Lifetime Forecasting for Predictive
Maintenance. In Proceedings of the International Conference “Data Analytics and Management in Data Intensive Domains”
(DAMDID/RCDL’2016), Moscow, Russia, 11–14 October 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.trac.2013.04.015

	Introduction
	Literature Review
	Materials and Methods
	Data
	Modelling Approach
	Problem Exploration
	Visualising Attacks against Sensor and Actuator Data
	Redundant Variables
	Dataset Reduction by Correlation Analysis

	Problem Formulation
	Baseline Models
	Data Preprocessing
	Imputations
	Outlier Filtering
	Noise Reduction
	Feature Extraction
	Feature Scaling
	Dimensionality Reduction

	Summary

	Experiments and Results
	Baseline Models
	Experiment 1: Models Trained on New Dataset
	Experiment 2: Feature Scaling
	Experiment 3: PCA Applied
	Experiment 4: Randomly Partitioned Data

	Discussion
	Experiment 1: Models Trained on New Dataset
	Experiment 2: Feature Scaling
	Experiment 3: PCA Applied
	Experiment 4: Random Partitioned Data
	What Can Be Learnt from the Results
	Limitations and Recommendations

	Conclusions
	References

