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MODE, SKEWNESS AND KURTOSIS OF FIBRE
DISTRIBUTIONS AND SOME PRACTICAL
APPLICATIONS

by E. Gee

ABSTRACT

By quantifying the non-symmetrical distribution of fibre diameter and
length of different wool lots, it has been shown that the measures of the mode,
skewness and kurtosis can play a significant role in the spinning performance
of yarns and in determining the regularity and strength properties.

INTRODUCTION

Two important properties of wool fibres are their fineness and their
length. Fineness used to be expressed using the ‘count’ system which was based
on the length of yarn or number of hanks of standard length that could be
spun from a given mass of fibre and staple crimp played an important role in
estimating the count !2. Length was often expressed in terms of staple length
and reflected how long the wool had been growing before it was shorn, e.g. six
months wool or eight/ten months.

Over the years, measurement techniques have developed considerably.
The airflow system and the projection microscope are now widely used to
measure the diameter of fibres3. Many fibres (usually more than three
hundred) are measured and their average value is taken as representative of the
fineness of the sample. Similarly, the lengths of individual fibres are measured
and averaged 4.

For merino wools the average values for fineness and length can be found
in the range of about 17 um to 27 um and 40 to 100 mm, respectively.

Examination of the data on a large number of fibres (say three hundred)
from a sample of wool will reveal that not all the fibres have the same diameter
or length. For an average of 20 pm and 70 mm, individual fibres could range
between, say 12 um and 28 ym and 20 mm to 120 mm . These distributions of
dimensions are characterised by calculating the standard deviations (s.d.) and
hence the coefficient of variation (which is the s.d. expressed as a % of the
mean). Values of CV for diameter and length are commonly about 20% and
40%, respectively.

Experience has shown that the CVs vary from wool to wool, e.g. CV’s of
diameter range, say, from 18% to 26% and of length from 30% to 50%.
Although the mean values are of overriding nnportance, it has also been
shown that the actual values of CV play some role in determining the
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The distributions can be reduced by the Gauss curve to two numbers, the mean
and the CV, and hence their influence on the processing properties of different
wools can be ascertained.

The goodness of fit of this curve to the data can be measured by the Chi-
squared test. A value for Chi-squared is calculated from the observed values of
the number of fibres in each group and their expected value from the equation
according to the formula:

Lo —¢)?

€
where 0 = observed value
¢ = expected value.

Chi-squared =

Because the few values for ‘o’ ... the tails can lead to a large inaccurate
chi-squared value, only the data in groups 7 to 14 are used. This sample gave a
value for Chi-squared of 146.

Statistical tables for degrees of freedom of 7 (8 groups less 1) give a value
of 24,3 at p = .001. The test says, if the curve really represents the data then
we should expect a low value for Chi-squared. However, chance errors can
give a high value, a value as high as 24,3 can be expected once in a thousand
times. Once in twenty we can accept, and could then take the curve to
represent the data. Our Chi-squared of 146 is far too high to accept the notion
that the mean and standard deviation are fair statistical representations of the
data. The operative word here is ‘‘statistical’’. We are still able to work on the
assumption that the mean and CV represent the data, as we have done of for
many years.

A different mathematical curve based on the Pearson system of curves has
been fitted to the data of Table 1 and gave a Chi-squared value of 33. Again,
this was not a good value; the curve was a better fit than the Gauss curve but
was still not statistically acceptable. However, for a series of 88 diameter
samples, and making the test more strict by accepting observations as few as 10
instead of 20, more than one half were statistically significant at p = .05. Only
two of the Gauss curves had these low Chi-squared values.

These curves based on the Pearson®’ system of frequency curves are
evolved from the formula:

dlogy) . x+ a

dx by + byx + bx?
where y is the number of members having a value of x.

In order to calculate the parameters of the Gauss curve the first moment
and the second moment, about the mean of the data have to be calculated.
These are:
X

(1) the mean = N= 1st moment = X
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—-%)2
(2) (standard deviation)® = HXN—)-()— = 2nd moment = V,

The Pearson system requires the 3rd and 4th moments where:

—%)3
3) -E—()% = 3rd moment = V,

—3)
C)) %—X)— = 4th moment

I
=

Because the raw data set is data counted in groups, Sheppard’s
corrections have to be made. These corrections are made to the 4th and 2nd
moments in turn:

U =V, - BV, + 7/240

U, =V,
U2 = Vz - 1/ 12
Consequently:

o (standard deviation) = VU,

Two further terms are derived from these values, namely:
Bl — ng/ U23
and B, = U,/U?

Now G, (= v/B_1 ) is called skewness and has a negative value when U, is
negative and G, (= B,) is called kurtosis.

From B, and B, we calculate K,
where

N B, (B, + 3
4 (4B, - 3B,)(2B, - 3B, - 6)

The numerical value of K determines the particular curve

If K < 0 the curve is type I

If 0 < K < 1 the curve is type IV

If K < 1 the curve is type VI

If K = 0 the curve is the Gauss curve or type li or VII;
Type Il when B, < 3 and type VII when B, >3-
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A few points concerning skewness and kurtosis can be made. Skewness is
related to the 3rd moment and kurtosis to the 4th moment. A histogram of
Table 1 would show more steps for fibres thicker than the average and fewer
for those less than the average. The distribution is not symmetrical. As the
Gauss curve is always symmetrical, it can not be entirely suitable. If the long
tail of the asymmetrical distribution is to the coarser diameter end then the
skewness is positive as is the third moment.

Kurtosis describes the sharpness or breadth of the distribution. The Gauss
curve has B, = 3. If B, is greater than 3 the distribution is more sharply peaked
and less than 3 reflects a broader curve. The equations for these Pearson
curves, using the mean as the origin for mathematical convenience, are given
in the Appendix.

This discussion has been in te.ms of fibre diameter. The curves can
similarly be applied to fibre length.

It has been suggested earlier that the Pearson curves give a better fit to the
data than the usual Gauss curve. For instance the diameter at the mode is
probably a better parameter than the mean to characterise a sample. The CV
value obtained from the Gauss curve gives an indication of the spread of
results. It is not ideal but it is one measure that is available. The Pearson
curves have no equivalent to this standard deviation measurement. One
approach to obtain an equivalent is to consider certain attributes of the
standard deviation.

Between the mean and one standard deviation below the mean is 68% of
the number of fibres whose dimensions are less than the mean and similarly for
the area above the mean. The ordinate or y-value or the number of fibres
having a dimension of mean less one standard deviation, is 0,61 of the number
at the mean. (Note the ordinate Z = .399atx = 0OandZ = .242atx = 1,fora
normalised distribution).

Equivalent parametres from the Pearson curves could be:

(a) the fibre dimensions at 68% of the area below the mode and above it
(b) the fibre dimensions where the number of fibres are 61% of those at the
mode, above and below again.

Both (a) and (b) will give a range. For instance, the sample quoted above
gave:
mean = 20,2 um, standard deviation = 4,37 um and MODE = 18,0 um

The diameters at 68% areas were 15,5 pm and 22,0 pm and those at
61% of the mode were 14,0 um and 24,5 pm .

Hence where the Gauss curve gave a range of 2 x 4,37 um or 8,74 um the
Pearson curve gave 6,5 um or 10,5 um .

If a processing problem requires knowledge of the numbers of coarse (or
fine, or long or short) fibres then the Pearson curve areas can be determined
appropriately. These curves tend to fit the tails of the distributions better than
does the Gauss curve.
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EXPERIMENTAL

Included in SAWTRI’s data bank is information on 88 samples
collectively known as BR wools. These were collected for a study on different
breeds of sheep and have been previously reported®. For this current study the
test data for fibre diameter, by the projection microscope method, and for
single fibre length of wool tops was used. The number of fibres measured for
each sample was up to four thousand, the lowest number being about six
hundred.

Physical properties of the fibres in the tops which were considered were:

Mean fibre diameter X4
CV of diameter CV,y
Diameter Mode My
Diameter Skewness Gy
Diameter Kurtosis G,

plus the corresponding fibre length values, identified by the suffix £, and
measured by the single length method. Crimp of the raw wool was also
included. The number of fibres in the cross-section of the yarn was deénoted by
Z. Tex was calculated from the formula:

Tex = Z.X12[1 +(CV,/100)12]/972

Spinning Potential

The objectives of the investigation were to assess the importance of the
skewness and kurtosis parameters of fibre diameter and length distributions in
explaining observed variations in the mean spindle speed at break (MSS).
Could higher spinning speeds be obtained by judicious choice of starting
material? This objective was pursued by means of regression equations, the
criterion being that if an increased % fit was obtained by a certain model then
a better prediction of the spinning performance could be made, the relevant
parameters identified and their influence assessed.

The choice of models was guided by previous work!? the best equation
which was based on 251 wool lots giving an 80,9% fit.

The following Table 2 briefly identifies the various starting models uspd in
this investigation and indicates their degree of success by the % fit obtained.

Note that the parameters ‘‘means”’, etc., refer to both diameter and len_gth.
Tables 3—7 give the various best fit regression equations and various
predictions of MSS.
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Yarn Properties

Many of these samples were made into yarns and have been reported’!.

Seven yarn properties, namely:
Irregularity (CV %)
Thin places (per 1 000 m)
Thick places (per 1 000 m)
Neps (per 1 000 m)
Breaking Strength (cN)
Elongation at Break (%)
Hairiness (Hairs/m)

were regressed (log-log) against mean fibre diameter and length and their CV’s
and crimp for each of three yarn types, S380, S640 and 7610, which had
nominal tex values of 50, 50 and 25. These are called ‘“Old’ regression
models.

The regressions for these data sets were repeated using as independent
variables, the Mode, CV, G, and G, for diameter and for length plus crimp,
and are identified as ‘‘New’’ regressions. Significant regression equations were
also obtained when various range values were included. These did not give as
good or a betier fits than .G, and G, and are therefore not discussed further.
Tabie 8 lists the % fits given by the two models for the different yarns and
their properties. It will be seen ihat the new models which incorporate the
mode, G, and G, give, in general, better fits.

Table 9 gives the details of the best fit log-log regression equations for the
S380 yarns. The neps property has been excluded because the fit was still low.
The hairiness property is not given because the new parameters did not
feature. Crimp appeared to be the determining factor for hairiness.

The values of the fibre properties are given in Table 10. Table 11 shows
the equations for the linear and interactions model for S380 yarns.

DISCUSSION

Of the 88 diameter distributions, 49 were type I, 16 type IV and 23 were
type VI. All had positive tails i.e. positive third moments. Henc. the mode was
always less than the mean. On average it was 1,75 um lower ranging from 0,6
pm to 3,2 um lower. The range of skewness was from 0,1 to 1,3, the average
being 0,7. Average kurtosis was 3,9, ranging from 2,8 to 6,8. The mean
diameter was 22,9 pm . .

The fraction of fibres finer than the mode was, on average, 36%.

Eightynine length distributions were analysed. Seventyfour were of Type
I, 10 of Type 11, 3 of Type VI and 1 each of Types VI and VII. Sixtyone had
negative tails. The position of the mode could be up to 29 mm longer or 16 mm
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shorter than the mean. By way of illustration, three wools whose mean lengths
were 78 mm, had their modes at 69, 88 and 100 mm, respectively. The
skewness ranged from —0,8 to +0,5, the average being —0,1. Kurtosis
averaged 2,6 ranging from 1,9 to 4,0. The average length was 93 mm .

The fractional area shorter than the mode rar: 1 from 40% to 65%.

Spinning Potential

Computational restrictions imposed a limit on the number of terms which
could be considered in a starting model. It is possible that not all useful
interactions have been considered. For instance, no interactions with crimp
were used. However, the regressions enable the usefulness of the influence of
skewness and kurtosis to be assessed.

The log-log regressions tended to give an inferior fit to the data compared
with the linear regressions, as the Table 2 shows.

This table also indicates that the ‘““modes’’ models tend to be marginally
better than the ‘““means’’ models, although the differences in fit are not large.

TABLE 2
;’70 FITS OF VARIOUS MODELS
Model Parameters Linear Log-log
1&5 Z + means 75,2 67,4
3&7 Z + Modes 75,6 71,5
2&6 Tex + Means 71,6 68,8
4&8 Tex + Modes 69,7 71,4

Linear Models, CV versus Modes, etc.

Table 3 gives the coefficients of the significant terms for regressions 1,2, 3

and 4.
Models 1 and 3 show that longer wools with more fibres in the yarn cross-

section can be spun at higher speeds. The influence of fibre diameter and its
distribution is more complex.

SAWTRI Technical Report, No. 512 — April 1983 9



TABLE 3

COEFFICIENTS OF LINEAR REGRESSION EQUATIONS FOR MODELS
1, 2, 3 AND 4 FOR MSS

Model 1 Model 2 Model 3 Model 4
Parameter| Coeff. Cozotri- Coeff. Cozotri- Parameter| Coeff. Cozutri- Coeff. COYIotl'i-
bution bution bution bution
zZ 590 26 y4 473 28
Tex 857 38
X, 264 16 | 174 15 Mg.Z |—12,1 9
X4 NS — 464 7 CVy |-66,9 1 | -149| 1
Z.X4. | —16,1 10 Gy  |-2124 6 NS
Tex.X,. -12,2| 4 |M.CV¢| 09 25 1 11
Tex. X, -3 3
X.CVq | —9,5 9 |-1,5 1 M,;.Ga | 96,2 5 -122| 17
CVy | 22,5 6 NS M¢Gua | NS -141| 1
Tex.My -88| 9
Tex.Gyg 143 29
Crimp | —438 | 7 |—-410 | 3 Crimp (-298 | 3 -250| 1
Constant |— 10981 5797 ‘Constant | 3260 16747
% fit 75,2 71,6 | % fit 75,6 69,7

The equation of model 1 suggests that short coarse wools give higher MSS
values if the CV is high, even though a high CV usually worsens the MSS. The
equation of model 3 suggests that increasing the diameter of wools, or their
diameter kurtosis, will lower the MSS. However, when high values for both
mode and kurtosis occur together in a wool, a better MSS can be obtained.
The following tables (4 and 5) calculated from these equations illustrate the

effects.

Regression 1 suggests that coarse (23 to 28 pm), short (50 mm) wools
having a high CV of diameter (26) are odd in that, contrary to expectations
they give a higher MSS. Similarly, regression 3 suggests that coarse wool of
high diameter kurtosis (5,5) will give a higher MSS. To reconcile these findings

10
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is not easy. It is suggested that although a high CV of diameter is loosely
related to a low kurtosis (breadth of distribution), in fact the opposite appears
to be the case. Examination of the predictions from the equation previously
published!o shows that an increase in CV of diameter from 18 to 26 will
increase the MSS by about 1 200 rev/min for wool of 50 mm length but will
descrease it by 300 and 1 800, respectively, at 70 mm and 90 mm length. The
effect therefore appears to be consistent. On the other hand, examination of
the experimental data shows a sparsity of data points in these regions. A
suitably designed experiment involving artificial blends could perhaps resolve
this apparent anomaly.

VALUES OF MSS PREDICTED FROM MODEL 1 REGRESSION

TABLE 4

CVy 18 26

Diameter Length

50mm 11 260 10 700
18um 90mm 14 980 11 380

50mm 10 060 10 400
23um 90mm 13 780 11 080

S0mm 9 350 10 230
28um 90 mm 13 070 10 907

Calculated at Z = 40

VALUES OF MSS PREDICTED FROM MODEL 3 REGRESSION

TABLE §

Kurtosis of diameter 2,5 5,5

Diameter Mode 15 12 373 10 340
Diameter Mode 20 11 166 10 566
Diameter Mode 25 9 948 10 792

Calculated at Z = 40, CV,; = 22, CV, = 40, crimp = 3,9, M, = 50.
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Log-log Models, Means and CV versus Modes, Skewness and Kurtosis

Table 6 gives the coefficients of the significant terms in the regression
equatjons for models 5 to 8

TABLE 6
COEFFICIENTS OF LOG-LOG EQUATIONS FOR MODELS 5—8 FOR
MSS
Para-< Model 5 Model 6 Model 7 Model 8
meter
Coeff. |% Contri-| Coeff. |% Contri-| Coeff. |% Contri-| Coeff. % Contri
bution bution bution bution
Z 0,815 49 ‘ 0,773 54
Tex 0,811 34 0,758 32
X4 1,837 25
My — 0,081 1 |-1,402 27
X, 0,487 18 | 0,464 8
M, 0,355 14 (0,340 | 7
CV, —0,272 1 — 0,429
G 0,088 4 10,099 3
Crimp 0,114 1
Con-
stant 1,857 5,034 2,281 4,846
% fit [ 67,4 68,8 71,5 71,4

The number of fibres in the cross-section and the length of the wool are of
major importance in determining the MSS; more of each give higher MSS.
High length skewness also contributes to higher MSS values. Thus, of two
samples having the same length mode and spun to the same number of fibres in
the cross-section, the sample having a positive skewness of length (relatively
more long fibres) will give a higher MSS than the one with a lower skewness. A
10% increase in MSS can be expected for a change in G1,from -0,5to +0,5.

Models 6 and 8 which replaced Z by Tex, correspond very closely to
models 5 and 7 when the relation between Z and Tex, is considered.
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The effect on MSS of changing the values of the parameters in these log-
log regressions is illustrated by the following table 7.

TABLE 7

CHANGE IN MSS FOR GIVEN CHANGES IN FIBRE PROPERTIES
Property Change from Increase in MSS
Mean diameter 25t0 20 pm 50%

or mode or 40%
Mean length 50 to 90 mm 30%

or mode or 20%
CV diaimeter 25to 20 about 8%
Crimp 7t03 10%

or
Length Skewness -0,5to +0,5 10%
Tex 10 to 30 about 140%

The skewness of length factor shows that an improvement in MSS can be
made by having a positively skewed length distribution. This can be explained
by the fact that more long fibres supplement the effect of fibre length. Thus if
a small quantity of a longer wool lot is blended with a shorter wool lot a better
spinning performance should be obtained. This suggests that the principle of a
long fibre carrier as used in short staple processing can also be useful in the
worsted processing system. It will be noted that the linear equations and log-
log equations are not consistent. However, the new parameters do appear in
‘both models.

Yarn Properties

. Table 8, which gives the % fits of the best log-log equations, shows that
inclusion of the skewness and Kurtosis terms gave better fits than means and
CVs alone. Hence these must be relevant properties to consider. Further,
linear models plus certain interaction terms, gave even better fits for the S380
yarn.

Table 9 gives the coefficients of the log-log regressions and %
contribution of the independent variables for the S380 yarns while Table 10
shows the linear plus interactions equations.
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TABLE 8

% FIT OF OLD MODELS AND NEW MODELS (LOG-LOG)
INCORPORATING ROOT G, and G,

Yarns S380 50 tex $640 50 tex 7610 25 tex
Regression Original New Multi Original New Original New
Models linear

Yarn

Properties:

Irregularity 79,8 84,5 | 85,1 86,0 89,6 89,9 88,7
Thin places 58,6 62,1 | 78,7 59,0 67,4 84,4 83,5

Thick places 56,8 61,0 | 68,4 55,9 60,2 77,1 78,0

Neps 16,9 32,8 | 35,6 15,7 15,7 26,8 47,3
Breaking

Strength 48,9 58,6 | 64,3 56,7 61,7 70,8 68,6
Extension 66,1 68,1 | 73,1 76,5 77,1 69,0 71,1
Hairs 79,5 77,8 | 72,9 64,0 60,0 88,8 87,3
Irregularity

The following equations were found for irregularity:

0,94 diameter®® x crimp?®’ (79,8% fit)

Irregularity v .
1,11 diameter mode -#8 x diameter skewness 12!.'(84,5% fit)

and Irregularity

Interpreting these equations we can say that the mean or mode play similar
roles. Of more interest, however, is the second term, crimp and

diameter skewness. The first equation suggests that more crimpy wools, of the
same diameter give worse irregularity. At the mean diameter, increasing crimp
from 2 to 7,5 change the irregularity from 14,9 to 16,9, not a large effect. The
second equation suggests that the skewness of the diameter distribution is
more important than crimp; crimp was rejected in favour of G,. At the average

14 SAWTRI Technical Report, No. 512 — April 1983



‘[PPOW Y} UI POpN[OUI JOU SeM 2
Ky1adoid ay) ey Sajediput  ysep,, 3L "uonenbs 1saq oy} 03 a1nqLIIU0S J0u PIp A11adoxd jey; Jey) S1eDIpUL SUMIN[OD 27} UI syuelq :AILON &

= %8 - %L1 %8 %S°€ _
189 | €T€'9 TSL0— £19°0— 08€°0— 9IL‘T
%L %L1 %Zy
199 | +9L'S 099°0— §99°0— 697z — uosuaxyg |
%t _ %01 i %L | omLg _
9°8¢ 190°c | 9LI°0 L0Z'0 PET‘0— TLLO—
} _ _ _ %11 _ _ %t _ %€ qISusng
68y | 00I‘v 0TT0— S62°0— 86L°0— Supyearg
_ %t - %6 %8Y —
019 | €TeL— SST1— 9I¥'1 Eh's
_ _ — _ %< _ _ _ %bS saoed
€95 | 9LL'Y— €Th1 — 95€°9 oMY,
_ _ %9 % %6 %Tb
179 | €sL'0T— 881°C |vI6'E—| 61T°C €9°L1 _
_ _ - %8 - - o %0S 30|
9‘8S | $68CT— £V8°C yIZ'91 uyL,
s %6 %SL _
SP8 | 9¥0°0 121°0 888°0
%¢ %SL
8°6L | 8z0‘0— | — — — L600 | — — — £98°0 Ayrey
-n3axxy
% v D [T+ AD |9pol | meay i i AD | PO | usopy
dunx) fndoag
Psuay JIdwei(q wex

L4 FHL OL NOILQMTALNOD % JIAHL ANV
SINADIILIF0O3-SNOILVNOA NOISSTIOTA ‘S0T-90T SNAVXA 08€S
6 HTEV.L

SAWTRI Technical Report, No. 512 — April 1983



diameter mode, a skewness change from 0,28 to 1,49 increased the irregularity
from 14,3 to 17,5. The correlation between crimp and diameter skewness in
this data set was 0,5 which should not cause confusion.

Hence the results from the log-log models suggest that although at first
sight it appeared that crimp could affect irregularity, it is more likely to be due
to the influence of the distribution of the fibre diameters. The more skewed the
distribution, the more coarse fibres present, the worse is the irregularity.
However, the linear plus interactions model (see Table 12) showed that both
diameter skewness and crimp can affect the irregularity of a yarn.

Thin Places

The characteristics of the distribution of fibre diameter affect the number
of thin places, length was not important. From the equation given in Table 9

TABLE 10

MEANS AND STANDARD DEVIATION OF THE LOGS OF DATA
VALUES OF THE INDEPENDENT VARIABLES

Property Mean Standard Deviation
Diameter:
Mean 1,355 0.065
Mode 1,325 0.070
Cv 1,337 0.039
G, -0,190 0.181
G, 0,577 . 0.143
Crimp 0,591 0.143
Length:
Mean 1,845 0.065
Mode 1,877 0,082
Cv 1,608 0,055
G +1 -0,113 0,163
G, 0,401 0,064

NOTE: Because some of the G, values for the length data were negative, one
was added to the value before its log was taken. All the diameter

values had positive tails; positive G, values.

16
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the following equation represents the number of thin places at the average
diameter (mode) of 21 pm and crimp of 3,8.
Thin places = 4771. G, 329G, 3914

Low skewness and high kurtosis give very few thin places, while a highly
skewed distribution having low kurtosis will give about 380 thin places for this

S380 yarn.

Thus a widely spread distribution of diameter with a coarse tail will give
far more thin places than a narrow symmetrical distribution. Perhaps this is

related to the ‘‘coarse edge’’ which is a term used in the trade.

TABLE 11
EQUATIONS FOR “LINEAR AND INTERACTIONS’’ MODELS FOR
S380 YARNS:
COEFFICIENTS OF SIGNIFICANT TERMS AND THEIR %
CONTRIBUTION
lrregularit& Thin Thick Breaking Extension
Strength
My 0,612 18,33 9,27 —14,2 —-0,56
72% 25% 60% 44% 3%
My.Gy 0,715 —-25,4 -3,41 -2,3
10% 18% 7% 25%
Crimp 0,297 -13,8 -2,46
2% 8% 19%
Gyq 859 55,9 39,5
19% 9% 19%
G14.Gy -70,7
10%
M,;.Gyy 3,1
7%
G] 7 - 3 Py 5 3
MM, 0,031 il
6%
Gy 2,34
3%
Constant -0,84 - 652 -209 691 38,3
17
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Thick Places

The model which includes G, and G, terms gave:

Log(Thin Places) = 8,342 Mode, — 1,255 Mode, + 1,416 G,y —7,323

The influence of diameter and length is as in earlier models which showed
that coarse short wools can cause many more thick places than fine long
wools. The skewness of the diameter distribution also affects the number of
thick places; the coarser diameter tail can increase the number from 5 to 50 at
the average mode values.

Breaking Strength

The influence of each independent variable on breaking strength is
illustrated in the following Tables 12 and 13 by considering the lowest and
highest values of a variable while the others are held at their mean values.

TABLE 12
PREDICTED VALUE OF BREAKING STRENGTH FOR DIFFERENT
LEVELS OF THE INDEPENDENT VARIABLES

Level of Property Mean Diameter Crimp CV of Diameter
x — 20, low 421 384 349
X + 20, high 261 287 316

Fine, low crimped wools having a low CV gave the best breaking strength
values.

The equation having a higher fit is illustrated by the following values:

TABLE 13
PREDICTED VALUE OF BREAKING STRENGTH FOR DIFFERENT
LEVELS OF THE INDEPENDENT VARIABLES

Level of Diameter Lerigth Diameter Length
Property Mode Mode Skewness Kurtosis
(G1d) (Gy)
X — 20, low 427 308 298 316
X + 20, high 260 360 373 351
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Fine wools with few coarse fibres (low skewness) gave the better breaking
strength as did long wools from a sharp (high kurtosis) length distribution.
Coarse wools with more coarse fibres in the tail plus short wools of broad
distribution gave a low breaking strength.

A lower diameter skewness would give more fibres in the cross-section
and more friction while a higher length kurtosis would suggest a better
interlocking during twisting by fibres having a more uniform length and hence
produce a stronger yarn.

Extension at Break

Greater extension is obtained from fine, low crimped wools having a low
CV of length. The introduction of skewness and kurtosis into the model
revealed that diameter distributions which have a longer positive tail adversely
affected the extension at break. The equations suggest that, at the mean value
for the other variables, the effect over the range of skewness in the data is to
halve the extension (about 23% to 12%).

A multilinear model with interaction terms gave an improved fit (73,1%
c.f. 68,1% for log-log) and the effect of skewness was similar (about 21% to
11%). Note, the measured extensions in the data spanned the range 8% to
28%.

SUMMARY AND CONCLUSIONS

Wool fibres in a lot vary over a wide range of diameter and length. For
marny years the Normal or Gauss curve has been used to characterise the
distribution of diameter and length in a wool lot, the mean and coefficient of
variation being the appropriate measures. The Gauss curve represents a
symmetrical distribution while very few of the wool lots show this symmetry.
Hence the Pearson system of frequency curves have been considered. These
are more general, non-symmetrical curves of which the Gauss curve is a special
case. They are characterised by the values for the mean and second, third and
fourth moments of the distribution. The latter three terms combine to give a
measure of skewness (non-symmetrical tail) and kurtosis (sharp or flat
distribution). In this work detailed procedures are given to determine (a) the
skewness and kurtosis of the fibre diameter and length distribution and (b) the
parameters of the appropriate Pearson curve which fits these experimental
data better than does the more usual Normal or Gauss curve.

This work has shown that mode, skewness and kurtosis of the diameter
and length distributions play a role in determining the spinning potential of
these particular wool lots. The diameter properties tend to decrease, and
length properties to increase the spinning potential. They also help to account
for variations in yarn properties.
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Of the new distribution parameters considered for a 50 tex S380 yarn
structure, the analysis showed that the irregularity, thin and thick places, the
breaking strength and extension were each influenced to varying degrees by the
mode skewness and kurtosis.

The results of this study indicate that a positive tail in the diameter
distribution (coarse edge) generally has an adverse effect on spinning
performance and yarn properties while a positive tail in the fibre length
distribution (i.e. a relatively higher proportion of long ‘‘carrier’’ fibres) tended
to have a beneficial effect.

ACKNOWLEDGEMENTS

The author thanks the S.A. Wool Board for permission to publish this
report and is grateful to Miss C. I. Watermeyer, who patiently processed the
data through the computer.

REFERENCES

Duerden, JE, J T 1 1929 p.T93
Turpie, D W F, SA Journal of Science Vol 71, June 1975 p.183
IWTO 8—66 Method for determining wool fibre diameter by projection
microscope
4. IWTO 5—66 Method for determining wool fibre length distribution using
a single fibre length measuring machine
Gee, E SAWTRI Tech Rep. 361
Pearson E S and Hartley, H O, Biometrika Tables for Statisticians Vol 1.
p.79—84 CUP 1956.
7. Elderten, W P and Johnson N L, Systems of Frequency Curves. CUP
1969
8. Pearson E S, and Hartley H O, Biometrika Tables for Statisticians Vol 1.
CUP 1956 Table 34
9. Hunter L, Turpie D W F, and Gee E, SAWTRI Tech Rep. 502
10. Turpie D W F and Gee E, 6th Quinquenial INT. Wool Textile
Res. Conf. Vol III, p.293
11. Hunter L and Gee E, 6th Quinquenial INT. Wool Textile
Res. Conf. Vol III., p.327.

W N =

2l

20 SAWTRI Technical Report, No. 512 — April 1983



APPENDIX

The following equations are based on Elderton and Johnsons’ treatment.

Type I
y =Yy 0 + x/A)M,.(1 — x/A)™M,

The curve extends from — A, to + A,

NOTE: the symbol 1 is used to denote the raising to a power, e.g. x2 means x
to the power 2.

Type VI is somewhat similar:
Yy =Y 0+ x/A)T-Q.. (1 + x/ANTQ,

The curve extends from A; — A, to infinity.

If U, is negative, the curve extends from minus infinity to A; — A,.

Type IV
Y=Yl + /A —=V/R)12% (~M).e t (Vtan—! (*/A — V/R)) ...(1)

The curve has unlimited range in both directions.

Type I1

Y =Y, [l — ¥/A)t2]*M and the range is between — A and +A..(2)

Type VII

Y =Y [l + */A)12]1 (—M) and has unlimited range .......... €))
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Preliminary calculations are required from the test data before the
particular curve parameters are determined.

Calculate U,, U; and U, (which include Sheppard’s corrections). Use
values of ym or mm and not the group number. Calculate B, B, and K as
indicated above.

Calculate R = 6 (B, — B, — 1)/(6 + 3B, — 2B,).

Some values of B, and B, can give a very large value for R. This occurs
when B, is very nearly equal to three. Now B, and B, are subject to
experimental error. If B, equals approximately zero and B, approximately 3
then values of 0 and 3 should be used and hence K = 0 gives the Gauss curve.
To check the values of B, and B, in this respect statistical tables are used®. This
process can be incorporated into a calculation programme as an automatic
feature by taking the 5% point from the tables for root B, or G, and for B,
together with the N (number of fibres) and obtaining log regressions.

These are:

absolute G; = 0,416 — 0,0425 log. N r = 0,987
absolute (B, — 3) = 0,863 — 0,0885 log. N r= 0,982

Values of G, less than about 0,01 and of B, between about 2,8 and 3,2 are
assumed to be zero and 3 respectively, i.e. a Gauss curve.

If root B, or G, was not significantly different to zero but B, was
significantly different to 3, then curves or Type II or VII would be applicable;
Type II for B, less than 3 and Type VII for B, greater than 3. This
differentiation between types II and VII and Gaussian is justified on the
grounds that lower Chi-squared values are obtained by their use.

For non-zero values of K, the appropriate Pearson curve parameters are
determined.

Type 1

ConditionK < 0
A+ A, =%SQR[U;(B}(R +2f + 16 R + )]

M, and M, from % {R ~2TRE® +2)SQR [B/(BR + 27 + 16@R + 1))]}(4)
M, is the positive root when Usj is positive.

MODE = MEAN —1/2.Us/Up.(R + 2)/(R ~ 2)

M, + 1/A, = M; + /A, = M, + M; + /(A + A) = RIA + A) ... 0)
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The final term to be calculated is y,, the expected number of fibres at the
mean. This calculation is somewhat involved; GAMMA (T) functions are
used. The expression for y, is:

Yo = N/(A; + A)). M; + DTM,.(M; + DIM,/M; + M, + 2)t(M; + M,). G
where G = TM; + M; + 2)/T(M, + 1)/TM, + 1)

Because the various parts of this expression can involve very large
numbers it is better to evaluate y, in log terms.

An adequate approximatation for the GAMMA function is:

logy T(x + 1) = log,,V27 + (x + .5) logiex — (x — 1/12 x) log,ee
The error when x = 2,4 is about 0,5%; at 4,4 the error is 0,004%.
Type IV |
Condition 0 < K < 1
Put R = -R
M =R + 2)2

V = —RR - 2)SQR[B,/(16(R-1) - B,(R — 2)12)]
A = SQR [Uy/16(16(R — 1) — B,R — 2)12)]

If V and U, have the same signs, both positive or both negative then the
sign of V is reversed.

Y, is calculated from:-
where F (R,V) = ef(— Vx/2). GR,V)
T
and GR,V) = { sinR 6. 94d6
0
Summatation by computer in steps of 0,1 radians is adequate.
3,1
i.e.log F(R,V) = I [R.logsin 8 + log,o(etV(8 — 7/2))]—1 ..(7)
0,1

MODE = MEAN - 1/2. Uy/U,. R — 2)/R + 2)
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Type VI

Condition K> 1

Q2 =R -2/2+RR +2/25QR [B/(B/(R + 2)12 + 16QR + 1))]
Q=Q+2-R

A=12SQR[U,,BR + 22+ 16(R+ 1))] ....coviiiiiiat 8)

If U, is negative then change the sign of A to negative.
AA=AQ -1)VQ -Q -2
v Z e Y iReat s g - o
o + 1t - - 29MQ, — / - Q.G
where G = T(Ql)/T(le - Q22— 11)/T(sz + 1 T @@ 1
MODE = MEAN - 1/2.U;/U,.R + 2)/(R — 2)

GAUSS Curve
B,=0;B,=3;K=0
Y, = N/QTUYS e &)
Y = Y,.et(— x12/2U,) — for origin at the mean
Type 11
Condition B, = 0, B, less than 3.
Calculate:
M = (5B, — 9)/2(3 — By
A? = 2U,B,/(3 — By
Y, = N/A/VT . T.M + 1,5/TM + 1)

The curve extends from minus A to plus A, about the mean.

Type VII
Condition is B, = 0, B, greater than 3.
Calculate:

M = (5B, — 9)/2/(B, — 3)

A2 = 2U2B2/(B2 - 3)

Y, = N/AVT.T.M)/TM - 1/2)

The curve has unlimited range in both directions.
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