

WU1/11/6

13/63

5675

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA.

TECHNICAL MEMORANDUM NO. 13 OF 1963.

REPORT ON DUST COLLECTOR TESTS AT HIGHVELD POWER STATION, BOILER NO. 6, OCTOBER 24TH 1962.

> BY: T.C.ERASMUS.

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA.

REPORT ON DUST COLLECTOR TESTS AT HIGHVELD POWER STATION, BOILER NO. 6, OCTOBER 24th 1962.

TECHNICAL MEMORANDUM NO.13 OF 1963.

INTRODUCTION:

The tests reported herein were carried out on behalf of Messrs. Davidson & Co. (Africa) Ltd., the suppliers of the Dust Collector plant, for the purpose of determining the efficiency of the installation.

A preliminary test was carried out on the dust collectors of No. 6 boiler, on the 24th October, 1962. A M.C.R. test only was performed. The test was carried out during a boiler trial.

PART I. DESCRIPTION OF APPARATUS AND TEST METHOD.

The operation of the dust collector was judged by weighing the total quantity of fine ashes collected by the equipment over a set period and by assessing the dust emitted from the boiler by sampling the flue gases at the dust collector outlet.

1.1 Fine Ash Collected.

Determination of the quantity of fine ashes collected, consisted of weighing all the dust caught by the primary and secondary collectors. To this effect, temporary pipes were run from the two primary and the two secondary collector outlets (after the dust valves) to within a few feet of the floor.

The dust emitted from each of these valves was collected in dust-bins, closed with a tightly fitting lid, connected by a flexible canvas sleeve to the valve outlet.

The filled bins were weighed and a sample of approximately a half pound taken from each bin.

The ashes collected at the right and left-hand sides of the boiler were weighed at regular intervals, the results being given in Tables No. 1 and 2.

1.2 Flue Dust Sampling Equipment.

Flue dust sampling was carried out iso-kinetically and in accordance with B.S. 893 : 1940. For this . purpose, the sampling head illustrated in <u>Figure 1</u>, was used. The equipment comprises a Pitot tube, by means of which the flue gas velocity is determined and a sampling probe, through which the gas is exhausted at a velocity closely corresponding to that deduced from the Pitot tube indication. The gas then passes a miniature cyclone, in which most of the dust is precipitated, then a glass-wool filter and finally a small shaped nozzle, installed for the purpose of measuring the quantity of flue gas aspirated. For details of the construction see <u>Figure 2</u>.

In /../

In addition, the sampling head contains a thermocouple by means of which the flue gas temperature may be determined.

The complete assembly is supported by a thin walled steel tube of 2 in. diameter, through which the exhaust pipe, and measuring tubes and the thermocouple wires are passed.

The equipment was designed to pass through 4"x7" sampling ports in the duct. During the test, the port is closed by a heavy steel cover to which a tubular guide for the thin walled tube is welded. A clamping device ensures that the sampling head may be rigidly fixed in any desired position.

The exhaust line, measuring tubes and thermocouple leads are extended to the measuring equipment, mounted in a case. This apparatus contains -

- (a) a sliding vane type exhauster with control valves;
- (b) an inclined gauge (0 to 20 mm. by 0.2 mm water column), connected to the Pitot tube, indicating the flue gas velocity head;
- (c) a U-tube connected to pressure taps on both sides of the orifice plate; this gauge thus indicates the pressure drop across the orifice.
- (d) a U-tube, connected to the Pitot-static line and the atmosphere, indicating the draught or suction in the flue;
- (e) an aneroid barometer and a clock;
- (f) a spot-light galvenometer, connected by copper leads to two terminals embedded in an aluminium block upon which the thermocouple leads terminate.

The temperature of the block was measured by means of a mercury thermometer.

2. SAMPLING PROCEDURE:

In principle the test procedure is as follows:-The sampling head is inserted in the duct in a suitable position, which in this test was situated before the I.D. fan intake, and properly aligned in one of the sampling points (situated on a grid as illustrated in Figure 3). The .../

- 3 -

The exhaust line and all measuring tubes are temporarily closed during insertion by means of clamps (so as to avoid an untimely flow through the cyclone and damage to the pressure gauges). The measuring tubes are opened as soon as the equipment is in position. When the apparatus has after approximately 15 minutes - attained the flue gas temperature, sampling may start. The aspiration velocity is set at the estimated speed and the quick acting clamp on the exhaust line opened at the beginning of the sampling period. The speed is then readjusted to the correct value, corresponding to the Pitot tube indication and sampling is continued for the required period - 10 minutes in the present case. If necessary, the suction is re-adjusted from time to time; observations are recorded at 5-minute intervals. At the end of the sampling period, the exhaust is quickly closed and the sampling head transferred to another position. When all sampling points have been treated in this manner, the apparatus is finally withdrawn and opened. Any dust adhering to the interior of the apparatus is carefully transferred to the cyclone beaker (the dust collector proper) which together with the glasswool filter is weighed after drying.

From the data thus obtained, the dust burden of the flue gas may be calculated, which in conjunction with the amount of dust recovered from the hopper, permits assessment of the collector performance.

The success of the operation therefore depends to a large extent on the accuracy with which the observer can adjust the exhaust velocity to the gas velocity in the duct. For correct isokinetic sampling, the pressure drop p_0 across the nozzle, has to be adjusted in a definite relation to the velocity head p_v measured by means of the Pitot tube.

In practice, however, the operator usually has little time available for this calculation, especially when conditions are not quite steady. He is thus provided with a table or diagram giving him the ratio $p_0 \div p_v$ for an anticipated .../

- 4 -

anticipated average condition, and for the particular probe, in this case $\frac{3}{8}$ ", based on information collected during preliminary tests. This generally, adequately, covers the requirements of B.S. 893:1940, which allows the exhaust velocity to deviate by plus or minus 10% of the gas velocity.

Observations taken during the tests are presented in Tables No. 3, 5, and 6.

3. CALIBRATION OF EQUIPMENT.

The thermocouples are continuous from the hot junction to the terminals in the cold junction, which largely eliminated parasitic thermal electro-motive forces.

The thermocouples were calibrated (together with their galvanometers) by inserting them in small cavities in a copper block, previously heated to 200°C and left to cool. The temperature of the copper block was measured by means of a mercury thermometer, that of the cold junction by the thermometers installed on the apparatus. Readings, as set out in Table No. C.1 were taken at appropriate intervals.

During sampling, the flue gas temperature is thus found as the sum of cold junction temperature and galvanometer deflection, converted to degrees of temperature.

3.2 Nozzle Calibration.

(a) Introductory Remarks:

The purpose of this calibration is to establish the relationship between the volume rate of flow through the cyclone and the pressure drop occurring in the nozzle. By calculation, this relation can then be converted into that between pressure drop and linear velocity in the probe.

Though conditions during calibration differ from those during actual use, (as the calibration is carried out, using air at room temperature and pressure) these differences have usually no significant effect.

(b) Method of Calibration:

The experimental set-up during calibration is indicated in <u>Figure 4</u>. It will be noted that calibration was .../

- 5 -

was effected on the complete sampling head, i.e., the orifice was preceded by the probe and the filter; the pressure drop during calibration does thus not differ materially from that experienced during the test.

The volume rate of flow was measured by means of a Fisher and Porter Rotameter (No.B4-21-10 with stainless steel float No. BSVT-45). According to the manufacturer's calibration data, the flow rate is proportional to the instrument reading in the range from 8% to 100% of the maximum flow, where 100% corresponds to a flow rate of $2.48 \text{ ft}^3/\text{minute}$ of air at 70°C . and $14.7 \text{ lbs/in}^2 \text{ abs}$. These statements were verified and found to be substantially correct. (c.f. Table C.3.) The manufacturerers further state that viscosity effects are negligible and that adjustments for other conditions are to be made on the basis of the density.*

During calibration, nozzle pressure drop, rotameter reading, pressure at rotameter intake, air pressure and temperature were recorded. (The humidity during these tests was so low that the air density was not appreciably affected).

(c) Evaluation of Orifice Calibration Test Data.

These test data are tabulated in Table No. C3, and are evaluated as follows:

The rotameter flow rates listed in Table C2, are those for the atmospheric conditions operative during the experiment. As, however, a slight pressure drop, p_r occurs at .../

*In principle, the rotameter is a slightly tapered vertical tube through which the fluid is passed from bottom to top. In doing so, the medium has to force its way past the float, which then assumes such a position that the pressure difference across the annular space between float and tube wall balances the float weihgt W, hence

$$W = \frac{K \gamma}{2g} v_a^2$$

where γ is the density of the fluid, K a constant and v the velocity in the annulus. Hence it follows that if the density γ_1 at a particular test differs from that at the standard condition

 γ_0 (70°C, 14.7 psia, air), the actual volume flow rate Q₁ for a particular deflection, say 100% has to be derived from the "standard" quantity at 100% according to the equation $Q_1 = Q_0 \sqrt{\gamma_0/\gamma_1}$

- 6 -

at the rotameter point of entry, the air in the rotameter is a little lighter than at the probe entry. Consequently, the flow rate Q_1 , as indicated by the rotameter is a little higher than that at the probe entry, Q, the latter following from the former according to the equation:

$$Q = Q_1 \sqrt{\frac{B - p_r}{B}}$$

where B equals the absolute air pressure, p_r the pressure drop at the rotameter, expressed in the same units. As

$$p_{r} \ll B \qquad Q = Q_{1} (1 - \frac{p_{r}}{2B})$$

Table No. C.4 then shows the corrected flow rate, expressed in terms of the linear velocity v_2 in the probe in relation to the pressure drop across the nozzle. As both $\frac{1}{2}$ " and $\frac{3}{8}$ " nominal bore probes may be used, data for both probes are incorporated.

(d) Use of Test Data.

In practice, during the actual sampling procedure the velocity v_2 in the probe has to be made equal - as nearly as possible to the gas velocity v_1 at the sampling point. However, v_1 is not determined directly, but by means of the dynamic pressure $p_V = \frac{\gamma}{2g} v_1^2$ generated in the Pitot tube, and thus related to v_1 by a square law.

Likewise, the probe velocity v_2 follows indirectly from the nozzle pressure drop p_0 , which is related to v_2 , if not exactly by a square law, by an equation closely resempling such a law.

It thus appears expedient to relate the two quantities p_0 and p_v , which are observed directly, to each other, as p_0 and p_v may be expected to stand to each other in a nearly, though not necessarily absolutely constant ratio.

One would thus express po in terms of the velocity head in the probe, i.e. one would put

$$p_0 = \beta \frac{\gamma}{2g} v_2^2 = \beta p_V'$$

As already mentioned the operator is provided with a table giving him the value of p_0 to be maintained in relation to the velocity head p_v .

3.3/

3.3 Further Calibrations.

(a) All pressure gauges used during the test were compared with an Askania micro-manometer reading to 0.01 mm. water column. It appeared that the inclined gauges, used for measuring the velocity head were sufficiently accurate to take their indications at face value, provided they were properly levelled; theodolite type spirit levels were consequently fixed to these instruments

(b) A brief investigation was carried out for the purpose of establishing -

- (i) whether the gas flow in the duct was seriously disturbed by introduction of the sampling apparatus.
- (ii) whether the cyclone and filter affected the Pitot tube.

The first point was investigated by mounting a Pitot tube in a small wind tunnel (30" x 30", air speed 30 to 40 ft/sec.) and fixing the sampling head and supporting tube approximately 6" down stream in various positions. When using technical pressure gauges (i.e. instruments reading to 0.01" or 0.2 mm. water column), no disturbance could be detected.

The second point was investigated as follows:

Two Pitot tubes were mounted in the wind tunnel and their total head pressure tubes connected in opposition to a pressure detector, the Pitot tubes being so positioned that a zero pressure reading was obtained. The sampling head was then held in various positions close to one of the Pitot tubes. It appeared that no disturbance was caused as long as the static holes of the Pitot tube were not interfered with, a condition easily satisfied in practice.

4. PROVISIONAL ASSUMPTION OF FLUE GAS CONDITION.

It was assumed that a coal of the following composition would be used:

С	-	76%
H		5%
0		7%
N		1.5%
S	-	0.5%
H ₀ O		10%
		,

above/

- 8 -

above data referring to the coal as fired but on an ash free basis.

Assuming 30% excess air, the composition of the wet flue gas would be:

(with air of $30\sqrt{6}$ relative humidity at 27° C).

At 0° C and 760 mm. Hg. the (fictitious) density of such a flue gas would be 1.328 kg/m³. (0.0829 lbs/ft³).

5. TEST RESULTS:

The actual tests were performed on the lines set out in the previous paragraphs. The test results are represented in Tables 1 to 8, these being derived from the data sheets completed during the tests.

6. GAS VOLUMES AND ASH QUANTITIES:

6.1 Calculation of Gas Velocity in Duct.

This velocity follows directly from the Pitot tube readings taken at the various sampling points. Denoting the velocity head by p_v , the velocity v_1 in the duct follows from the equation:

$$v_1 = \sqrt{\frac{2g}{\gamma}} p_v$$

where γ equals the specific gravity of the flue gas under test conditions and g the acceleration due to gravity. As p_v was determined in mm H₂O, the velocity follows in m/sec. when g and γ are expressed in the appropriate metric units (m/sec². and kg/m³); conversion to feet per second requires multiplication by the factor 3.2808.

As the actual flue gas composition is not known at the present stage, a flue gas as indicated in paragraph 4, has been assumed to exist, with a fictitious density of 1.328 kg/m^3 (0.0829 lbs/ft³) at 0°C and a pressure of 760 mm Hg.

The .../

- 9 -

The data of Tables 3 and 4 have been treated as follows:-

(a) For each sampling point, the mean value of $\sqrt{p_v}$, resulting from the three readings taken at this point, has been obtained, using the indications of the inclined gauge.

(b) The density under actual conditions, γ_1 is then calculated from the assumed figure γ_0 = 1.328 kg/m³ at 0°C, 760 mm.Hg by means of the conversion

 $\gamma_1 = \gamma_0 \frac{B}{760} \quad \frac{273}{T}$

6.2 Calculation of the Aspiration Velocity.

For each sampling point the average value of the three pressure drop readings across the nozzle has been determined, the readings as tabulated in Tables 3 and 4 being used for this purpose.

Using the diagrams of Figure Cl, the value p_v' , the velocity head in the probe may be read off for each value of p_o . The correction for the viscosity effect could be introduced at this point; it is, however, more convenient to do so in the final stage, i.e. when calculating the total quantity of gas aspirated.

From $\sqrt{p_v}$ ' the velocity v' may be calculated in the same manner as in section (1), the results being shown in Tables 7 and 8.

6.3 <u>Calculation of Flue Gas Volume and Gas Quantity</u> Aspirated.

(a) The velocity at each of the 24 sampling points is considered to be representative for the area in the centre of which this point is situated. As it is desired to calculate only the gas volume emitted by the boiler during the actual sampling period (24 x 10 minutes), the gas volume Q follows from the equation -

 $Q = 240 \Sigma \frac{A_i}{144} \times 60 v_i = 100 \Sigma A_i v_i$

where v_i equals the flue gas velocity (expressed in feet per second) in the sampling point i, and A_i the area of the surface (expressed in square inches) in which point i is situated, c.f. Table 9.

The .../

The calculations are summarized in Table 10.

(b) The quantity of gas aspirated, Q_2 , follows from the consideration that sampling occurred through the area of the probe for a period of 600 seconds in each of the sampling points.

Consequently, in the point i, the volume $Q_i = 600 \ A_p \cdot v_i$ is aspirated, where A_p denotes the probe area in ft². (c.f. Table C.4) and v_i the aspiration or probe velocity in feet per second. The total volume, exhausted during the test, thus equals $Q_2 = 600 \ A_p \Sigma v_i$, where Σv_i is obtained from Tables 7 and 8.

The results of the calculation are shown in Table 11.

This table also indicates the ratio Q : $Q_2 = R$ (gas volume emitted to gas volume sampled) as well as the theoretical value R', following from the ratio of duct area to probe area, and the correction factor K, by means of which the quantity of dust, collected in the sampling equipment, has to be multiplied.

6.4 Gross Collector Efficiency and Dust Burden.

The collector efficiency follows from the equation:

 $\eta = \frac{W_1}{W_1 + W_2} \quad 100\%$

where W₁ equals the quantity of dust collected, W_2 the quantity of dust emitted, where both W_1 and W_2 have to be determined for identical periods. The latter may be calculated from $W = wQ/Q_{K} = wRK$, where w equals the weight of the dust collected in the sampling apparatus which has been indicated in Table 10. This, thus covers dust sampled in an active sampling period of 4 hours, but because of the time involved in changing the position of the probe every 10 minutes, the total sampling time t is longer than 4 hours.

As the ash deposited in the collector hoppers is being weighed without interruption, the collector ash quantity actually weighed has to be adjusted.

During .../

During the test, the periods were : L.H. side : 8.32 to 15.00, ash collected 42393.25 lb. and R.H. side: 8.32 to 17.00, ash collected 45176.50 lb.

Tables No. 12 and 13 indicates the final results.

(SIGNED) T. C. ERASMUS. <u>TECHNICAL OFFICER</u>.

PRETORIA. 6/5/63 /JH.

TABLE NO. C 1

THERMOCOUPLE CALIBRATION.

Date: 28-8-1957

Temp	erature, ^o	C	Milliv	olts	µV∕	o C
Hot junction	Cold junction	Diff.	Couple No.l	Couple No.2	Couple No.l	Couple No.2
185.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0	18.3 18.3 18.4 18.5 18.6 18.7 18.8 18.9 18.9 18.9 19.0 19.0 19.1	166.7 151.7 141.6 131.5 121.4 111.3 101.2 91.1 81.1 71.0 61.0 50.9	9.30 8.50 7.93 7.35 6.77 6.18 5.60 5.03 4.49 3.90 3.33 2.80	9.10 8.27 7.72 7.17 6.58 6.00 5.44 4.90 4.36 3.80 3.26 2.70	55.6 55.6 56.0 55.7 55.4 55.4 55.3 55.1 55.1 55.4 55.0 55.0 55.0	54.6 54.5 54.6 54.5 54.2 54.0 53.8 53.8 53.8 53.8 53.6 53.4 53.0

Average:

55.4 54.0

The thermocouples are calibrated together with the millivoltmeters (multiple reflection light spot type) with which they are to be used.

TABLE NO. C2.

ORIFICE CALIBRATION.

(Observed Data).

Test>		a	a	Ъ	b
	Rotameter Reading	Pressure drop at Rotameter Inlet	Pressure drop across Orifice	Pressure drop at Rotameter Inlet	Pressure drop across Orifice.
	%]	mm H ₂ O		
Orifice No.l, [‡] "dia.	20 30 40 50 60 70 80 90 100 Date:	7 18 33 52 70 93 120 149 182 7/10,	2.87 5.91 10.07 15.21 21.27 28.11 36.07 44.72 54.47	9 20 34 52 74 96 124 152 1,80 8/10	2.44 5.60 10.26 15.32 21.71 28.57 36.39 45.37 54.86
	Temp. Baro.	21.5 25.7	°C "Hg.	24.3 25.7	°C "Hg.
Orifice No.2, ¹ / ₄ "dia.	20 30 40 50 60 70 80 90 100	10 22 38 56 83 110 126 150 188	2.65 5.56 9.84 15.42 21.48 28.89 36.37 45.79 55.82	10 21 36 55 76 100 126 154 193	2.21 5.58 9.94 15.45 21.48 28.72 35.98 45.34 56.00
	Date. Temp. Baro.	7/10, 24.8 [°] 25.6'	/57 ⁹ C ' Hg.	8/10 24.3 25.7	/57 ° _C " Hg.

TABLE No. C3.

ROTAMETER MAXIMUM FLOW RATE AND AIR DENSITY UNDER CALIBRATION CONDITIONS.

Orifice Tes No. Dia. No		Test No.	Max.Flow Rate		Velocity in ^닃 " probe		Air D	ensity
			ft ³ /min	litres/min.	ft/sec.	m/sec.	lbs/ft ³	kg/m ³
l	1.99 4.99	a b	2.678 2.691	75.8 76.2	31.99 32.18	9.75 9.81	0.0642 0.0636	1.029 1.019
2	1 4 11	a b	2.698 2.691	76.4 76.2	32.91 32.84	10.03 10.01	0.0633 0.0636	1.014 1.019

Standard Data and Conversion Factors:

AIR	DENS	ITY:
In the local division of the local divisiono	and the second se	and the second se

At 14.7 psia, 70°F (Rotameter Standard) or 760 mm.Hg, 21.1°C 1.200 kg/m³ At 760 mm.Hg, 0°C

0.0700 lbs/ft³ 0.0807 lbs/ft³ 1.293 kg/m³

Air density conversion:

 $Y_1 = Y_0 \frac{p_1}{p_0} \frac{T_0}{T_1} = 11.795 \frac{B}{T}$

where B = air pressure in inches Hg. $T = abs. temp. in {}^{O}K$

ROTAMETER:

```
Flow rate at maximum (100%) indication
```

 $Q_0 = 2.48 \text{ ft}^3/\text{min.}$ air of 14.7 psia, 70° F

Under other conditions

$$Q_1 = Q_0 / \frac{\gamma_0 / \gamma_1}{\gamma_0 / \gamma_1}$$

PROBES:

No.	Diam	eter	Area	l/Area
	Nominal	Actual	cm ²	cm ⁻²
1		1.284 cm.	1.295	0.7722
2		1.274	1.270	0.7874
1		0.955	0.7163	1.3961
2		0.953	0.7133	1.4019

CONVERSION FACTORS:

 $1 \text{ ft}^3 = 28.317 \text{ litres}$ $1 \text{ kg/m}^3 = 0.06243 \text{ lbs/ft}^3$ $1 \text{ gram/m}^3 = 0.4370 \text{ grains/ft}^3$ 1 kg = 2.20462 lbs.1 gram = 15.432 grains.

1	mm H ₂ O		l kg/m	<u>.</u>
1	m		3.2808	ftA
1	cm ²	=	0.1550	in ²

TABLE NO. C4. ORIFICE CALIBRATION.

ORIFICE NO. 1., 4"

1			The second se	0		
R <mark>otameter</mark> Reading	Correction	Velocity in Probe	Velocity Head p _v	Pressure dro across Orifice p _o	<mark>Velocity</mark> Head p _v	Remarks.
%	%	m/sec.	mm.H ₂ 0	mm.H ₂ O	mm.H ₂ 0	
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90	0 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.6 0.7 0.9	1.95 2.93 3.89 4.87 5.83 6.80 7.75 8.71 9.66 1.96 2.94 3.91 4.90 5.87 6.84 7.80 8.75	0.199 0.450 0.794 1.245 1.784 2.427 3.153 3.982 4.899 0.200 0.449 0.795 1.249 1.792 2.433 3.164 3.981	2.87 5.91 10.07 15.21 21.27 28.11 36.07 44.72 54.47 2.44 5.60 10.26 15.32 21.71 28.57 36.39 45.37	0.650 1.471 2.595 4.069 5.830 7.931 10.30 13.01 16.01 0.654 1.467 2.598 4.082 5.856 7.951 10.34 13.01	Ratio of Velocity Head $\frac{3}{8}$ " probe to $\frac{1}{2}$ " probe. $(\frac{1.284^4}{0.955}) = 3.268$ $\gamma = 1.029$ $p_v = \frac{v^2}{19.05} = 0.0524 v^2$ $\gamma = 1.019$ $p_v = \frac{v^2}{19.23} = 0.0520 v^2$
100	1.1	9.71	4.903	54.86	16.02	
OF	IFICE	NO. 2,	<u> </u>			
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100	0 0.1 0.2 0.3 0.4 0.6 0.7 0.9 1.1 0 0.1 0.2 0.3 0.4 0.6 0.7 0.9 1.1	2.01 3.01 4.00 5.00 6.98 7.96 8.95 9.92 2.00 3.00 3.99 4.98 5.98 6.96 7.94 8.92 9.89	0.209 0.468 0.827 1.293 1.861 2.519 3.276 4.141 5.088 0.208 0.468 0.828 1.290 1.860 2.519 3.278 4.138 5.086	2.65 5.56 9.84 15.42 21.48 28.89 36.37 45.79 55.82 2.21 5.58 9.94 15.45 21.48 28.72 35.98 45.34 56.00	0.670 1.500 2.651 4.144 5.965 8.073 10.50 13.27 16.31 0.666 1.500 2.654 4.134 5.961 8.073 10.51 13.26 16.30	Ratio of Velocity Head $\frac{3}{8}$ " probe to $\frac{1}{2}$ " probe. $(\frac{1.274}{0.953})^4 = 3.205$ $p_v = \frac{v^2}{19.33} = 0.0517 v^2$ $\gamma = 1.014$ $\gamma = \frac{v^2}{19.23} = 0.0520 v^2$ $\gamma = 1.019$
	Image: second secon	i i i	a b	init init <th< td=""><td>Image Image <th< td=""><td>$\frac{1}{2}$</td></th<></td></th<>	Image Image <th< td=""><td>$\frac{1}{2}$</td></th<>	$\frac{1}{2}$

TABLE NO. 1.

DUST COLLECTED .

DUST COLLECTOR TEST AT HIGHVELD POWER STATION, BOILER NO. 6.

DATE: 24/10/62

LOAD MCR

RIGHT HAND SIDE.

TIME hr.min.	WE1 INCREMENT	GHT, lbs.	TIME hr.min.	INCREM	EIGHT, ENT	lb's. CUMULATIVE
8.32	155 151 99.5 100 131 139 99.5 92 75 70 126 129 124 99 140 156 114 117	306.0 306.0 5 506.0 5 776.5 968.5 1113.5 1368.5 1591.5 1888.0 2119.0	9.45	138.5 78 87.5 77 79.5 102.5 97.5 84.5 80.0	124 83 86.5 73.5 81 90.5 90 91 72.5	6266.5 6427.5 6601.5 6752.0 6912.5 7105.5 7293.0 7468.5 7621.0
0.00	99 101 105 103 47 55 108 115 90 82	2319.0 2527.0 2629.0 2852.0 3024.0		99 63.5 89.5 92 94	98 60.5 91.5 84 87	7818.0 7942.0 8123.0 8299.0 8480.0
9.00	93 93 91 102.5 107 89.0 82 99.5 95 91.5 99 101 85 99 97 85 93	3208.0 3417.5 3588.5 3783.0 3973.5 4160.0 4356.0 4534.0	10.00	82.5 94.5 67.5 94.5 102.5 76 89 85	81,5 79 84.5 84.5 90.0 88.5 81 85	8644.0 8817.5 8969.5 9148.5 9341.0 9505.5 9675.5 9845.5
9.15	96 87 115 101 96.5 98 91 105 92 85 96.5 90 76 74	<pre>.5 4717.5 4934.0 5128.5 5324.5 5501.5 5688.0 5838.0</pre>	10.15	99 85 84 106.5 58 91.5 94.5	93 88 83 91 56.5 89.5 83.0	10037.5 10210.5 10377.5 10575.0 10689.5 10870.5 11048.0

	<u>UR</u> ,		RIGHT HAN	D SIDÈ.			
TIME r.min.	INCREN	WEIGHT, MENT	lbs. CUMULATIVE	TIME hr.min.	INCREN	VEIGHT, J MENT (C	bs. SUMULATIV
9.30	84.5	81.5	6004.0	10.30	80	82.0	11210,0
	117	108	11435.0		84	72	16336.
	77.5	67.5	11580.0		79	73.5	16488.
	.9.4.5	78.5	11757.0		99.5	89.5	16677.
	68.5	61	11882.5		90	77	16844.
	86.5	82	12051.0	4	71	64.5	16980.
	88	76.5	12215.5		89	78.5	17147.
	107	96	12418.5		91	83.5	17322
0.45	76	72	12566.5	11.43	83.5	60.5	17466.
	86.5	86	12739.0		97	94	17657.
	84	73	12896.0		81	67	17805.
	82	79	13057.0		83.5	71.5	17960.
	86	77	13220.0		91.5	83	18134.
	101	70	13391.0		85	73.5	18293.
	81.5	86.5	13559.0	10.00	99	88.5	18480.
11.00	92 5	68.5	13883 5	12.00	103	22 93.5	18801.
	75 5	68	14027.0		86.5	73.5	18961.
	93 5	88 5	14209.0		65	55	19081.
	76	66	14351.0		95	81.5	19258.
	89 5	80.5	14521 0	=	98	86	19442
	85 5	73 5	14680 0		69	58	19569
	80.5	72.0	14832.5	An	124	109	19802
1.15	97	95	15024.5	12.15	81	79	19959
	77	63.5	15165.0		89.5	76.5	20125
	90.5	78	15333.5		84.5	69	20278
	102	86.5	15522.0		82.5	82.5	20443
	62.5	54	15638.5		.94	84	20621
	102.5	91	15832.0		95	73	20789
	80	73	15985.0		94.5	82	20966
1.30	101	94	16180.0	12.30	96	84.5	21146

TABLE NO. 1 (Continued)

p.

TABLE NO. 1. (Continued)

DUST COLLECTED.

-

~

4

DUST	COLLECTO	DR TEST A	T HIGHVELD	POWER ST	FATION,	BOILER N	10.6.
DATE:	24/10/	/62	2			i.	
LOAD	MCR		RICHT HAND	STDE			
			NIGHI HAND		alay Editor (<mark>Assan and Alasan) _{Manada} Managa And Sabir Value a</mark>		stration and the statement of the statement
TIME		WEIGHT,	lbs.	TIME		WEIGHT,	lbs.
hr.min.	INCRF	EMENT	CUMELATIVE	hr.min.	INCRE	MENT	CUMULATIVE
12.30	85	76	21307.5		84	72.5	26314.5
	83	62	21452.5		81.5	75.0	26471.0
:	94.5	65	21612.0		90.5	75.5	26637.0
	87,5	100	21799.5		94	74.5	26805.5
	90	70	21959.5		97	75.5	26978.0
	. 79	72.5	22111.0	3	83.5	83	27144.5
	92.5	70	22273.5		134.5	137	27416.0
12.45	153	158	22584.5	13.45	79	78	27573.0
	71	78.5	22734.0		96	77.5	27746.5
	97	70	22901.0		80.5	70.5	27897.5
	97.5	104	23102.5		73.5	67.5	28038,5
	93.5	89 5	23285.5		87.5	71.5	28197.5
	85.5	76	23447.0		82	79	28358.5
	84 90	83	23774.5		10	16.)	
	50			14.00	87	69.5	28665.5
13.00	47.5	38.5	23860.5		95.5 70	(0.) 71	2007.5
	82		24018.5		10	14 81	20309.9
	8(.)		2410).0		82 5	70	29311.5
	00	82	24517.0		87	73.5	29472.0
	88 5	70	24675.5		83.5	70	29625.5
	85.5	81	24843.0		78	74	29777.5
13 15	89.5	77 5	25009:0	14.15	93	81	29951.5
± / • ± /	88.5	80.5	25178.0		91.5	78	30121.0
	86	74.5	25338.5		66.5	61	30248.5
	81	76	25495.5		86.5	68	30403.0
	89	76.5	25661.0		125	121.5	30649.5
	93	76.5	25830.5		144	144.5	30938.0
	86.5	80	25997.0		72	65.5	31075.5
	-				97	86	31258.5
13.30	85	76	26158,0				
			:			,	

TABLE NO. 1. (Continued)

DUST COLLECTED.

DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER No. 6.

<u>DATE:</u> 24/10/63

LOAD: MCR

RIGHT HAND SIDE.

ጠፒእጦ	1	WEIGHT,	lbs.	TIVE		WEIGHT,	lbs.
hr.min.	INCRE	MENT	CUMULATIVE	hr.min.	INCF	REMENT	CUMULATIVE
							0(771 0
14.30	88	76.5	31423.0	15.30	80	6'7	26371.0
	84.5	73	31580.5		77.5	71	36519.5
	87.5	78	31746.0		73	73.5	36666.0
·	84	76	31906.0		94.5	73	36833.5
	91.5	77.5	32075.0		87	79	36999.5
	88	78	32241.0		86,5	79	37165.0
	86	72.5	32399.5		82	76	37323.0
14.45	86.5	77.5	32563.5	15.45	90.5	77	37490.5
	87:5	76	32727.0		86.	80	37656.5
	90.5	75	32892,5		81	75.5	37813.0
*	83	76	33051.5		78.5	73	37964.5
	92	76	33219.5		75.5	67	38107.0
	92.5	81	33393.0		82.5	77.5	38267.0
	81	74	33548.0		78.5	73.5	38419.0
	89	78.5	33715.5		101	90	38610.0
15.00	84.5	78	33878.0	16.00	99.5	96	38805.5
	86	76	34040.0		97	92 ·	38994.5
	83	73	34196.0		110	98	39203.5
	85	77	34358.0		123.5	112.5	39438.5
	83.5	72.5	34514.0		105.5	100:5	39644.5
	88	74	34676.0		105	94	39843.5
	85,5	74	34835.5		136	141.5	40121.0
		an an angle and a second and			119	107.5	40347.5
15.15	77.5	73.5	34986.5				
	155	144	35285.5	16.15	110	113.5	40571.0
	98	107.5	35491.0		108	98	40777.0
	66.5	55	35612.5		110	105	40992.0
	105	70.5	35788.0		96.5	87	41175.5
	78	76	35942.0		122	114.5	41412.0
	72.5	60	36074.5		103	91	41606.0
	77	72.5	36224.0		111	98.5	41815.5
		and a count of					
۰ د د د مواد هاد از د مرود مور مور و هم و مورو و هم و مورو مورو مرود و ما د مان و معرف مورد مرود مرود مرود مرود			!				

TABLE NO. 1. (Continued).

DUST COLLECTED.

	DUST	COLLECTO	R TEST .	AT HIGHVELD	POWER S	STATION. BOILER	NO. 6.		
	<u>DATE</u> : LOAD:	MCR	0)	RIGHT HANI	RIGHT HAND SIDE.				
3	WEIGHT,		lbs.	TIME	WEIGHT,	lbs.			
	hr.min.	INCF	REMENT	CUMULATIVE	hr.min	INCREMENT	CUMULATIVE		
	16.30	97 105.5 106.5 152.5 138 122.5	99 93 93 149.5 111 106.5	42011.5 42210.0 42409.5 42711.5 42960.5 43189.5 43421.5					
	16.45	1)1 110 86 63.5 77 96.5 106	101 103 71.5 64 63.5 91 98	43634.5 43792.0 43919.5 44060.0 44247.5 44451.5					
	17.00	101.5 110.5 119.5 47	99 91 111 45.5	44652.0 44853.5 45084.0 45176.5					

TABLE NO. 2.

DUST COLLECTED.

DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER NO. 6. 24/10/62. DATE: LOAD: MCR LEFT HAND SIDE. WEIGHT lbs. WEIGHT lbs. TTME TIME CUMULATIVE hr.min INCREMENT CUMULATIVE hr,min INCREMENT 6141.0 153.5 118.25 109.5 8.32 147.25 300.75 60 6272.0 71 137.5 138.5 576.75 63.5 63 6398.5 138 142.5 857.25 83.5 6552.5 151.5 1149.75 70.5 141 94.5 93.5 6740,5 97.75 89 1336.5 9.40 78 76.5 6895.0 136.5 126.5 1599.5 114 86.5 76.25 7057.75 113 1826.5 65.5 54 7177.25 129 122.5 2078.0 7350.25 105 95 2278.0 88.5 84.5 53.5 7459.75 25.05.5 9.50 56 8.50 127 100.5 7650.25 8,52 96 94.5 97.5 88.25 2691.25 64.5 8.54 64.5 7779.25 41 40 2772.25 72.5 8.56 124.5 102.5 2999.25 88.5 7940.25 8.58 75.5 66.5 8082.25 95 84.5 3178.75 92.5 81.5 81.5 8245.25 9.00 101.5 3372,75 10.00 9.02 95.5 88 3556.25 77 59.25 8381.50 9,04 85.5 79.25 68 8528.75 91 3732.75 9.06 85.5 81.5 3899.75 53.5 47 8629.25 74.5 9.08 9.2.5 75 4067.25 75 8778.75 9.10 75.5 70.5 10.10 91.5 85.5 8955.75 4213.25 113.5 105 4431.75 70 62 9087,75 74.5 65.5 4571.75 9203.75 57 59 96 87.5 4755.25 78.5 62 9344.25 92.5 4932.75 85.5 9518.25 85 88.5 9.20 105 76.5 77.25 9672.0 88 5125.75 10.20 75.5 68,5 9814.25 5269,75 70 72.25 102 86 5457.75 77 76.5 9967,75 61.5 69 5588.25 90 67 10124.75 79.5 71 85.5 85.5 10295.75 5738.75 9.30 92.5 82 5913.25 88.5 83.5 10467.75 10.30

TABLE NO. 2. (Continued)

DUST COLLECTED.

DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER NO. 6.

DATE: 24/10/62

LOAD: MCR

		energen andere ander	WEIGHT	lbs.		T	WEIGHT I	Lbs.
	TIME hr.min.	INCR	EMENT	CUMULATIVE	TIME hr.min	INC	CREMENT	CUMULATIVE
		88.5 66.5 86.5	88.25 66.5 86.5	10644.5 10777.5		84 63 99	82 60 101	15274.75 15397.75 15597.75
Ċ	10.40	88.5 75.5	90.75 61	11129.75 11266.25	11.40	76 79	69 82	15742.75 15903.75
7		81.5 70.5 77	81 64 75.5	11428.75 11563.25 11715.75		88 61 .92	72 7 6 76	16063.75 16200.75 16368.75
	10.50	110.5 64 86	107 66.5 74	11933.25 12063.75 12223.75	11.50	83.5 79 79	69 68 71.5	16521.25 16668.25 16818.75
	11 00	72,5 74 71	58 101 66.5	12354.25 12529.25 12666.75		73.5 73 75	69.5 67 78	16961.75 17101.75 17254.75
C	11.00	85 82 80 79.5	87.5 64 77.5 70	12859.25 12985.25 13142.75 13292.25	12.00	90 75 73 85	70 65 74.5 72	17414.75 17554.75 17702.25 17859.25
	11.10	70.5 77 85 82.5	67 62 89 61	13429.75 13568.75 13742.75 13886.25	12.10	95 61 82.5 78	89.5 56 71 81	18043.75 18160.75 18314.25 18473.25
	11.20	67 80 85	63.5 77 62.5	14016.75 14173.75 14321.25	12.20	92 81 83	61.5 77 83.5	18626.75 18784.75 18951.25
		82.5 87 79 70	80 93 74.5 66.5	14483.75 14663.75 14817.25 14953.75	100	94.5 69 102.5	69 71 86 79	19114.75 19254.75 19443.25
	11.30	83	72	15108.75	12.30	86	70	19763.75

TABLE NO. 2. (Continued).

DUST COLLECTED.

DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER NO. 6.

DATE: 24/10/62

LOAD: MCR

	TME		WEIGHT,	lbs.	ΨŦMΈ	WEIGHT,1		S.
	hr.min.	INCE	REMENT	CUMULATIVE	hr.min.	INCI	REMENT	CUMULATIVE
		75	66	19904.75		69	70	24405.75
		81	72	20057.75		82	78	24565.75
7		78	73	20208.75		77	78	24720.75
		72	60	20340.75		92	79	24891.75
	12.40	84	91	20515.75	1.40	77	79	25047.75
1		62	67	20644.75		64	50	25161.75
		95	89	20829.75		82	71.5	25315.25
	•	84.5	69.5	20983.75		87	69	25471.25
		74	84	21141.75		89	101	25661.25
	12.50	85	67	21293.75	1.50	147	123	25931.25
		76	61	21430.75		81	73	26085.25
		98	99	21627.75		58	45	26188,25
		87	78	21792.75		81	70	26339.25
	A	66	56	21914.75		83	67	26489.25
	1.00	78	68 .	22060,75	2.00	77	68.	26634.25
		42	43	22145.75		85	66	26785,25
		81	64	22290.75		72	66	26923.25
		73	72	22435.75		- 75	74.5	27072.75
-		82	67	22584.75		65	52	27189.75
	1.10	91	89	22764.75	2.10	64	53	27306.75
		73	60	22897.75		83	91	27480.75
		78	70	23045.75		75.5	58	27614.25
		90	89	23224.75		84	71	27769.25
		67	58	23349.75		71	72	27912.25
	1.20	77	85	23511.75	2.20	81	74	28067.25
		72	60	23643.75		87	64	28218.25
		77	68	23788.75		79	77	28374.25
		86	87	23961.75		87	.74	28535.25
		74	60	24095.75		99	81.5	28715.75
	1.30	90	81	24266.75	2.30	70	69	28854.75
				a) -				
	- E							
					a a contrato a			
					2			

TABLE NO. 2. (Continued).

DUST COLLECTED.

DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER NO. 6

<u>DATE: 24/10/62</u>

LOAD: MCR

TUME	UME r min INCRE		WEIGHT, lbs.		WEIGHT, lbs. INCREMENT CUMULATIV		
TTT. • 111 TT •				111. • 11171. •	THOT		CONCINCTATION
	90	72	29016.75		70	68	33760.25
	79	74	29169.75		. 83	75	33918,25
	85	79	29333.75		68	66 -	34052.25
	78	75	29486.75		64	63	34179.25
2.40	85	75	29646.75	3.40	104	76	34359.25
1	74	64	29784.75		64	65	34488.25
	82	70	29936.75		84	70	34642.25
-	81	• 77	30094.75		85	82	34809.25
	76	66	30236.75		86	87	34982.25
2.50	78	64	30378.75	3.50	84	73	35139.25
	91	87	30556.75		74	60	35273.25
	80	69	30705.75		76	74	35423.25
	110	122	30937.75		82	78	35583.25
	148	131	31216.75		70	73	35726.25
3.00	79	57	31352.75	4.00	102	83	35911.25
	62	54	31468.75		106	110	36127.25
	77	80	31625.75		96	93	36316.25
	60	47	31732.75		98	75	36489.25
	68	68.5	31869.25		97	96	36682.25
3.10	89	76	32034.25	4.10	99	95	36876.25
	77	68	32179.25		85	73	37034.25
	72	69	32320.25		125	124	37283.25
	86	75	32481.25	<u>n</u>	126	96	37505.25
	147	135	32763.25		98	88	37691.25
3.20	92	92.5	32947.75	4.20	128	135	37954.25
	62,5	55	33065.25		122	98	38174.25
	75.5	70	33210.75		98	110	38382.25
	65	55	33330.75		128	106	38616.25
	76	75.5	33482.25		115	88	38819.25
3.30	72	68	33622.25	4.30	82	80	38981.25
				*			
				-			
	•					k	

TABLE NO. 2. (Continued).

DUST COLLECTED.

DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER NO. 6. DATE: 24/10/62 MCR. LOAD: LEFT SIDE. HAND WEIGHT, lbs. WEIGHT, lbs. TIME TIME INCREMENT hr.min. INCREMENT CUMULATIVE hr.min. CUMULATIVE 118 39198.25 99 39386.25 99 89 39611.25 112 113 117 104 39832.25 4.40 116 92 40040.25 142 132 40314.25 144 142 40600.25 150 148 40898.25 4.47불 115 110 41123.25 4.49 60 46 41229.25 4.50불 84 74 41387.25 4.52 74 69 41530.25 4.54 102 41717.25 85 4.56 94 41889.25 78 4.58 110 120 42119.25 5.00 104 76 42299.25 48 46 42393.25

TABLE NO. 3.

DUSI	COLLECT	OR TEST .	AT HIGHVELI	D POWER STA	TION. B	OILER NO). 6
DATE LOAI	2: 24/10): MCR.	/62	LEFT HAND	APPARATUS N CYCLONE BEA FILTER NO. SIDE.	<u>0</u> . l. KER NO. 3.	3.	
SAMPLING POINT	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
	hr.min.	mm H ₂ 0	mm H ₂ 0	mm Hg.	mV	o ^C	in. Hg.
A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3	09.45 09.50 09.55 09.56 10.01 10.06 10.07 10.12 10.17 10.21 10.21 10.26 10.31 10.32 10.37 10.42 10.43 10.43 10.43 10.43 10.43 10.48 10.53 11.00 11.05 11.10 11.11 11.16 11.21 11.22 11.27	7.5 7.5 7.6 8.0 8.2 8.6 6.5 7.0 7.2 6.8 7.2 7.6 7.8 8.0 7.8 8.0 7.8 8.0 7.8 8.2 6.4 6.4 6.6 6.4 7.0 6.8 7.2 7.0 7.8 8.2 6.4 6.6 6.4 7.0 6.8 7.2 7.2 8.2 6.4 6.6 6.4 7.0 6.8 7.2 7.2 6.8 7.2 7.6 7.8 8.2 6.4 6.6 6.4 7.2 9.2 8.2	26.5 26.5 26.5 28.00 28.00 28.00 23.5 25.0 25.0 25.0 26.5 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	28.00 28.00 30.00 30.00 36.00 40.00 40.00 50.00 54.00 68.00 68.00 68.00 68.00 68.00 70.00 64.00 70.00 64.00 70.00 64.00 70.00 68.00 76.00 76.00 72.00 68.00 84.00 82.00	5.2 5.2 5.2 5.2 5.2 5.20 5.05 5.05 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	25.5 25.6 25.6 25.8 25.8 25.8 25.9 25.8 26.0 26.0 26.0 26.0 26.0 26.1 26.2 26.3 26.3 26.3 26.3 26.4 26.7 26.9 26.9 27.1 27.4 27.5 27.8 28.1	251/4
	11.32	8.6	30.0	92.00	5.10	28.4	

DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER NO. 6.

<u>DATE</u>: 24/10/62

LOAD: MCR

APPARATUS NO. 1. CYCLONE BEAKER NO.3 up to D3/No4

FILTER NO. 3 upper D3/No.4 ---

SAMPLING	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR	FLUE GAS TEMP.	AMB. TEMP.	BARO.
POINT	hr.min.	mm H ₂ O	mm H ₂ 0	mm Hg	mV	0 ^C	in Hg.
D.1	11.38	9.40	33.50	92.0	4.90	28.2	25 1
	11.43	9.60	33.50	102.0	5.00	28.3	
	11,48	9.60	33.50	106.0	5.00	28,3	
D.2	11.51	9.60	33.50	110.0	5.05	28.5	
	11.56	9.50	33.50	114.0	5.05	28.6	
	12.02	9.50	33.50	118.0	5.05	28.9	
D.3	12.03	9.00	32.00	125.0	5.10	29.0	
	12.08	9.00	32.00	154.0	.5.10	29.0	
	12.13	8,90	32.00	145.0	5.10	29.10	
E.l	12.55	10.00	35.00	38.0	5.10	29,00	
	01.00	10.00	35.00	25.0	5.10	28,90	
	01.05	9.80	35.00	22.0	5.10	28.50	
E.2	01.10	9.20	32.00	22.00	5.15	28.40	
	01.15	9.50	33,50	24.00	5.15	28,30	
	01.20	9.40	33.50	24.00	5.20	28.00	
E.3	01.21	9.20	32.00	22.00	5.25	27.80	
	01.26	9.00	32.00	26.00	5.25	27.50	
	01.31	9.02	32.00	25.00	5.30	27.50	N
F.l	01.42	9.00	32.00	24.00	5.05	27.40	
	01.47	9.02	32.00	28.00	5.05	27.40	
	01.52	8.90	32.00	28.00	5.05	27.50	
F.2	01.53	8.50	30.00	28.00	5.10	27.40	
	01.58	8.40	30.00	30.00	5.10	27.20	
	02.03	8,50	30,00	32.00	5.10	27.20	
F.3	02.04	9.00	32.00	34.00	5.10	27.30	
	02.09	8.90	32.00	35.00	5.10	27.40	
	02.14	9.00	32.00	34.00	5.10	27.50	
						gan - a	
			5				

	DUST	COLLECI	OR TEST	AT HIGHVEI	LD POWER ST	FATION. B	OILER NO	. 6		
	DATE: 24/10/62APPARATUS NO. 1.LOAD: MCRCYCLONE BEAKER: NO. 4.FILTER NO. 4.LEFT HAND SIDE.									
	SAMPLING	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.		
	POINŤ	hr.min.	mm H ₂ O	mm H ₂ 0	mm Hg.	mV	°C	in. Hg		
	G.1	02.20	10.20	35.00	28.00	5.00	27.70	25 <u>1</u>		
-		02.25	9.85	25.00 35.00	32.00	5.05	27.80			
	G.2	02.31	8.90	32.00	32.00	5.10	27.80			
		02.36	9.20	32.00	34.00	5.15	27,90	2		
		02.41	9.20	32.00	33.00	5.20	27.90	2		
	G.3	02.42	9.10	32.00	36.00	5.20	27,80			
		02.47	9.00	32.00	36.00	5.20	27.60			
		02,52	8.90	32.00	34.00	5.20	27.50			
	H.l	02,55	9.40	33.50	32.00	5.05	27.50			
		03.00	9.80	35.00	32.00	5.10	27.30			
	TT O	03.05	9.50	33,50	32.00	5.10	27.20			
	H.2	03.06	9.00	32.00	30.00	5.10	27.20			
		03.11	8.90	32.00	34.00	5.10	27.10			
-	υz	03.10	8.95	32.00	35.00	5.10	27.10			
	п.)	02.17	9.00	32,00	24.00. ZC 00	5.10	27,10			
		03 27	0.90	22.00 32.00	26.00 36.00	5.12 5.00	27.10 27.20			
		07.21	0.90)2 . 00	70.00	7.22	< • C U			

TAB	LE	NO.	4.
do not the second	No. of Academy	and the second se	100 100

DUST C	DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER NO. 6.						
DATE: LOAD:	24/10/62 MCR	2	APP/ CYCI	ARATUS NO). 2 Mer NO. 1		
			<u> </u>	TER NO. 7	•		
RIGHT HAND SIDE.							
SAMPLING	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
POINT	hr.min.	mm H ₂ 0	mm H ₂ 0	mm Hg.	mV	°C	in Hg.
A.l	9.39	7.0	25.0	20.0	6.65	26.0	253/16
	9.44	7.7	20.5	20.0	6.65	20.5	
A 0	9.49	6.0	20.5	20.0	6.60	26.5	
A . 2	9.50	6.7	22.5	22.0	6.50	20.5	
	9.00	7.0	25.0	24 0	6 50	26.6	
Δ 3	10.00	6.2	22.0	24.0	6 50	26.7	
A, J	10.01	6.2	22.0	25.0	6.45	26.8	
	10.11	6.4	23.5	28.0	6:45	27.0	
B.1	10.12	8.3	30.0	30.0	6.45	27.0	
2.1	10.17	8.5	30.0	29.0	6.55	27.0	
	10.22	8.5	30.0	36.0	6.55	27.2	
B.2	10.23	7.4	26.5	35.0	6.50	27.2	
	10.28	8.0	28.5	43.0	6,53	27.2	
	10.33	8.0	28.5	43.0	6.55	27.2	
B.3	10.34	7.5	26.5	42.0	6.50	27.3	
	10.39	7.5	26.5	46.0	6.50	27.4	
	10.44	7.5	26.5	46.0	6.50	27.5	
C.l	10.46	7.5	26.5	35.0	6.55	27.5	
	10.51	7.5	26.5	46.0	6.60	27.5	
	10.56	7.5	26.5	48.0	6.55	27.5	
C.2	10.57	6.2	22.0	44.0	6.55	27.4	8
	11.02	6.5	23.5	52.0	6.55	27.4	
	11.07	6.4	23.5	55.0	6.55	27.4	
C.3	11.08	7.0	25.0	58.0	6.50	27.4	
	11.13	7.0	25.0	54.0	6.50	27.3	
	11.18	7.0	25.0	63.0	6.50	27.3	
						8	
				a state of the sta			

र्म

DUST C	COLLECTOR	R TEST AI	HIGHVELD	POWER ST	ATION. B	OILER NO). 6	
DATE; LOAD:	24/10/6 MCR	52	API CYC FII	<u>APPARATUS NO. 2</u> . <u>CYCLONE BEAKER</u> : NO. 1. FILTER NO. 7.				
			RIGHT HAN	ND SIDE.	·	•		
SAMPLING	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.	
POINT	hr.min.	mm H ₂ 0	mm H ₂ 0	mm Hg	mV	°C	in. Hg	
D.l	11.19 11.24	8.5 8.8	30.0 31.5	39.0 52.0	6.55 6.60	27.2	255/16	
D.2	11.29	9.0	31.5 30.0	60.0 40.0	6.60 6.60	27.5		
D.3	11.40	9.0	31.5 31.5	66.0 59.0	6.60 6.65	27.5		
	11.46	8.5 8.5	30.0 30.0	60.0 67.0	6.50 6.50	27.3 27.3	9	
E.l	12.12	9.5	33.5 33.5	24.0	6.55 6.60	27.7		
E.2	12.22	9.7 9.5 9.4	22.5 33.5 33.5	27.0	6.70 6.70	27.8		
E.3	11.33 11.34	9.0	31.5 31,5	35.0 33.0	6.70 6.60	27.8		
	11.39 11.44	9.4 9.5	33.5 33.5	43.0	6.60 6.55	27.9		
F.1	11.48	8.2	28.5	43.0	6.65 6.65	27.9		
F.2	11.59 1.04	8.0 8.0	28.5 28.5	39.0 57.0	6.70 6.70	27.9		
F.3	1.09 1.10	8.0 9.0 9.0	28.5 31.5 31.5	60.0 49.0 63.0	6.65 6.60 6.60	27.6		
	1.20	9.0	31.5	50.0	6.65	27.2		

TABLE NO. 4 (Continued).

TABLE NO. 4 (Continued).

DUST COLLECTOR TEST AT HIGHVELD POWER STATION. BOILER NO. 6. DATE: 24/10/62 APPARATUS NO. 2. CYCLONE BEAKER NO. 2. LOAD: MCR. FILTER NO. 5. RIGHT HAND TEST. VELOC. ORIFICE STATIC FLUE AMB. TIME BARO. SAMPLING HEAD P.DROP GAS TEMP. PR. TEMP. POINT. oC mV in.Hg hr.min. mmH₂O mm H₂O mm Hg 25¹/ 16 G.1 1.36 31.5 31.0 9.0 6.7 27.0 1.41 31.5 58.0 6.7 27.0 9.0 1.46 31.5 27.0 63.0 6.7 9.0 G.2 1.48 8:4 30.0 6.7 27.0 58.0 1.53 8.5 30.0 62.0 6.7 26.8 1.58 8,5 30.0 69.0 6.7 26.8 G.3 1.59 8.0 28.5 64.0 6.65 26.8 3.04 8.0 26.8 28.5 67.0 6.60 3.09 7.5 26.5 69.0 6.60 26.8 3.11 H.l 8.5 30.0 43.0 6,60 27.0 3.16 8.5 30.0 65.0 6.60 27.0 3.21 31.5 27.2 9.0 68.0 6.65 H.2 3.22 9.0 31.5 65.0 6.65 27.2 3.27 9.4 33.5 70.0 6.70 27.2 3.32 9.0 31.5 70.0 6.70 27.2 H.3 3.33 9.0 31.5 45.0 6.70 27.2 3.38 31.5 9.0 73.0 6.70 27.4 3.43 31.5 9.0 78.0 6.70 27.3

TABLE NO. 5.

DUST COLLECTOR TEST AT HI	GHVELD POWER	STATION, BOILER NO.6.
LEFT HAN Container No. 3. 89.6740 <u>65.9583</u> 23.7157	<u>D SIDE</u> :	Oven for 24 Hours. 89.5941 65.9583 23.6358
<u>Filter No. 3</u> . 57.0521 <u>42.3020</u> <u>14.7501</u>	П	57.0454 <u>42.3020</u> <u>14.7434</u>
<u>Filter No. 4 + Spider</u> 67.0639	Spider	$ \begin{array}{r} 67.0603 \\ \underline{19.0573} \\ 48.0030 \\ \underline{45.6079} \\ \underline{2.3951} \\ \underline{} \\\underline{} \\ \underline{} \\\underline{} \\\phantom{$
<u>Container No. 4 (Dust</u> <u>from thread</u>). 66.1088 <u>65.7676</u> <u>-3412</u>		66.0693 65.7676
<u>Container No. 5 (In Probe</u> 66.6779 <u>65.7311</u> .9468)	66.6099 <u>65.7311</u> = <u>±8788</u>
<u>LEFT HAND SIDE</u> : Total weight of Dust		23.6358 14.7434 2.3951 .3017 .8788 41.9548

n,

TABLE NO. 6.

DUST COLLECTOR	TEST AT HIGHVELD POWE	R STATION, BOILER NO. 6.							
Cyclone	<u>RIGHT HAND SIDE</u> : Cyclone Beaker and All Loose Dust.								
Container No. 1 106.0301 67.5231	Desiccator 3 days 105.9939 <u>67.5231</u>	Oven for 24 hours 105.9708 <u>67.5231</u>							
<u>38.5070</u> <u>Filter No. 5</u> .	<u>38.5070</u> <u>38.4708</u> <u>Filter No. 5</u> .								
59.8186 51.3902 8.4284	59.8183 51.3902 8.4281	59.8138 51.3902 8.4236							
<u>Filter No. 7</u> . 56.6283 <u>51.7567</u> 4.8716	56.6282 <u>51.7567</u> 4.8715	56.6254 51.7567 4.8687							
<u>Container No. 2 (P</u> = 0.0515	robe)								
Tota	Total Weight of Dust.								

TABLE NO. 7.

VELOCITIES IN DUCT AND PROBE.

LOAD: MCR		DATE: 24,	/10/62	RIGHT HAND SIDE.		
Samp- ling Point	Average Tempera- ture	Mean Velocity Head	Mean Velocity in Samp.Point V ₁	Mean Orifice Pressure Drop	Mean Velocity in Probe V ₂	
No.	°A	mm H ₂ 0	m/Sec.	mm H ₂ 0	m/Sec.	
No. A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3 E.1 E.2 E.3 F.1 F.2 F.3 G.1 G.2	°A 423.7 421.6 421.8 423.1 422.2 422.9 423.5 423.4 422.3 423.8 425.0 423.3 424.7 425.9 424.7 425.9 424.8 425.9 424.8 425.9 426.7 424.5 426.0 425.9	$\begin{array}{cccc} \text{mm} & \text{H}_2\text{O} \\ & 7.56 \\ & 6.70 \\ & 6.26 \\ & 8.43 \\ & 7.80 \\ & 7.50 \\ & 7.50 \\ & 7.50 \\ & 6.36 \\ & 7.00 \\ & 8.76 \\ & 8.73 \\ & 8.66 \\ & 9.50 \\ & 9.50 \\$	m/Sec. 14.34 13.47 13.03 15.14 14.55 14.27 14.29 13.16 13.78 15.45 15.45 15.44 15.35 16.15 15.94 15.93 15.10 14.81 15.67 15.69 15.21	mm H_20 26.66 24.00 22.50 30.00 27.83 26.50 26.50 23.00 25.00 31.00 30.50 30.50 30.50 32.83 32.83 29.50 28.50 31.50 30.00	m/Sec. 13.86 13.06 12.48 14.75 13.86 13.79 13.80 12.79 13.38 15.01 14.96 14.93 15.69 15.59 15.58 15.16 14.35 15.22 15.28 14.98	
G.3 H.1 H.2 H.3	423.3 424.1 425.2 426.3	7.83 8.66 9.13 9.00	14.59 15.36 15.79 15.70	27.83 30.50 32.16 31.50	14.23 14.90 15.33 15.48	

TABLE NO. 8.

VELOCITIES IN DUCT AND PROBE.

LOAD: MCR.

DATE: 24/10/62

Samp- ling Point	Average Tempera- ture	Mean Velocity Head	Mean Velocity in Samp. Point Vi	Mean Orifice PressureDrop	Mean Velocity in Probe V ₂
No.	° A	mm H ₂ 0	m/Sec.	mm H ₂ 0	m/Sec.
A.l	426.5	7.53	14.37	26.50	13.81
A.2	425.7	8.26	15.03	28.66	14.42
A.3	426.8	6.90	13.76	24.50	13.25
B.1	424.2	7.20	14.01	25.00	13.41
B.2	427.6	7.86	14.69	28.00	14.26
B.3	403.3	8.26	14.63	29.33	14.17
C.1	424.5	6.46	13.27	23.50	13.11
C.2	423.3	7.00	13.80	25.00	13.40
C.3	426.2	8.66	15.40	30.0 0	14.80
D.1	423.8	9.53	16.11	, 33.50	15.66
D.2	426.7	9.53	16.16	33.50	15.71
D.3	427.2	8.96	15.68	32.00	15.32
E.1	427.0	9.93	16.50	35.00	16.06
E.2	428.7	9.36	16.05	33.00	15.57
E.3	430.4	9.07	15.84	32.00	15.38
F.1	425.4	8.97	15.66	32.00	15.29
F.2	425.4	8.46	15.21	30.00	14.79
F.3	425.5	8.96	15.65	32.00	15.29
G.1	425.8	10.01	16.55	35.00	16.04
G.2	427.9	9.10	15.82	32.00	15.37
G.3	428.9	9.00	15.75	32.00	15.39
H.1	425.5	9.56	16.17	34.00	15.90
H.2	425.2	8.95	15.64	32.00	15.33
H.3	425.4	8.93	15.62	32.00	15.33

TABLE NO. 9.

DUCT AREA.

• POS	ITIONS.	DIMENSIONS.	AREA (Each) in. ²
A.l,A.2,A.3, C.l,C.2,C.3, G.l,G.2,G.3.	B.l, B.2, B.3, F.l,F.2,F.3, H.l,H.2,H.3.	20" × 15%"	317.50
	D.1, D.2, D.3. E.1, E.2, E.3.	20½" × 157/8 "	325.44

TABLE NO. 10. FLUE GAS VOLUME

Vol.Q 10,000 ft³ in 4 hours. 2823.18 1028.62 3851.80 SIDE HAND LEFT 367.37 m/sec. 96.34 m/sec. 316.07ft/sec 1205.27ft/sec 271.03 m/sec 889.19ft/sec Σ Vi m/sec. Vol.Q 10,000 ft.³ in 4 hours 2749.45 1006.42 3755.87 SIDE RIGHT HAND 263.95 m/sec. 94.26 m/sec. 865.97ft/sec. 358.21 m/sec. 309.25ft/sec. ll75.2lft/sec. Σ Vi m/sec. AREA EACH 325.44 317.50 in.² A.l, A.2, A.3, B.l, B.2,B.3 C.l, C.2, C.3, F.l, F.2,F.3 G.l, G.2, G.3, H.l, H.2,H.3 T.OTAL: POINT Number D.l, D.2, D.3 E.l, E.2, E.3 SAMPLING M.C.R.

TABLE NO. 11.

VOLUME ASPIRATED.

5 h

-	Side Probe Area (Ap)		Σνι	Volume Sampled (Q_2)	Ratio Emitt Volum	Volume ed to e Sampled.	Cor- rec- tion Factor
		X10 ⁻³ Ft ²	M/sec.	Ft. ³	Actual (R)	Theoreti- cal (R)	K
. C. R.	R.H.	0.767	348.46 m/sec. 1143.23ft/sec.) 526.11)	71380	69420	1.03
. M.	L.H.	0.767	357.06 m/sec. 1171.44ft/sec.) 539,10)	71440	69420	1.03

TABLE NO. 12.

DUST EMISSION.

		Unit	R. H.	L. H.	Total
	Weight of ash Sampled (W)	Gram	51.7915	41.9548	93.7463
В.	Weight of ash Emitted (E)	lb.	8394.77	6806.00	15200.77
M. C.	Weight of ash collected) in 4 hours.)	lb.	21259.8	19950.15	41209.9

TABLE NO. 13.

Grain Size	Emitted Ash	Mass of Ash	Collected Ash	Mass of Ash	Fractional
and the second se	Analysis	Emitted	Analysis	Collected	Efficiency
(Microns)	(%)	(lbs.)	(%)	(1bs.)	(%)
0 - 1.4	12.05	1011.57	1.28	272.12	21.20
1.4 - 3.4	32.07	2692.20	3.50	744.09	21.65
3.4 - 5.0	31.28	2625.88	7.64	1624.25	38,22
5.) - 7.5	1.6.80	1410.32	10.68	2270.55	61.68
7.5 -11.6	5.65	474.30	15.58	3312.28	87.47
11.6 -19.2	2.15	180.48	16.22	3448.34	95.03
19.2 -23.8	0	0	7.33	1558.34	100
23,8 -26.7	0	0	3.25	690.94	100
> 26.7	Ο,	0	34.56	7347.39	100
TOTAL	100.00	8394.75	100.04	21268.30	71.7

RIGHT HAND

18

¥

LEFT HAND.

Grain Size	Emitted Ash Analysis	Mass of Ash Emitted	Collected Ash Analysis	Mass of Ash Collected	Fractional Efficiency
(Microns)	(%)	(lbs.)	(%)	(lbs.)	(%)
0 - 1.4	12.59	856.87	1.39	277.31	24.45
1.4 - 3.4	32.39	2204.46	4.12	821.95	27.16
3.4 - 5.0	30.32	2063.58	7.19	1434.42	41.01
5.0 - 7.5	16.52	1124.35	10.27	2048.88	64.57
7.5 -11.6	5.83	396.79	14.97	2986.54	88.27
11.6 -19.2	2.35	159,95	16.23	3237.91	95.29
19.2 -23.8	0	0	7.33	1462.34	100
23.8 -26.7	0	0	3.21	640.40	100
> 26.7	0	0	35.31	7044.40	100
TOTAL	100.00	6806.00	100.02	19954.15	74.5

SOUTH AFRICAN COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH NATIONAL MECHANICAL ENGINEERING RESEARCH INSTITUTE.

PARTICLE SIZE ANALYSIS ON FOUR SAMPLES OF FLY-ASH FOR: FUEL RESEARCH INSTITUTE OF SOUTH AFRICA.

Description of Samples.

The four samples were designated as follows: -

- (a) Right hand probe sample
- (b) Left hand probe sample
- (c) Dust caught by dust collector, right hand
- (d) Dust caught by dust collector, left hand.

Method of Analysis.

As requested, the analysis was performed in a Bahco Centrifugal Dust Classifier.

The two probe samples (a) and (b) weighed about 38 grams and 25 grams respectively upon receipt. These were each split into two parts and each part was analysed as a whole.

The samples from the dust collectors, (c) and (d) were supplied in quantities of several pounds. From each of these a portion weighing about 15 grams was collected by means of a sampling tube, and the analysis performed on these smaller samples.

In order to calibrate the Bahco Centrifugal Dust Classifier a further analysis was performed on a sample of standardised dust of known particle size distribution. From this information the following formula was derived for the actual grain size limits:-

$$l = \frac{d!}{1.5\sqrt{\rho}}$$

where d = actual particle diameter in microns

- d' = ideal particle diameter in microns, as supplied by the manufacturers of the instrument
- ρ = particle density.

In this connection attention should be drawn to the following recommendation by the manufacturers:

"When handling dust samples originally having more than 30 per cent of their particles below 6 microns, the accuracy of fractionation should be attested by examination of the fractions under a microscope".

For this purpose a portion of each fraction of the probe samples was collected and handed over to the Fuel Research Institute.

Results: .../

Results:

· · · · ·

- 50

(a) <u>Right hand probe sample</u>

Particle Density: $\rho = 2.17 \text{ g/cc}$

	lst Analysis	<u>2nd Analysi</u> s
Sample Weight, G _u grams	18.1769	20.3724
Residue on Screen, Grgrams	0.0020	0

	Grain Siz micro	ze Limit, ons	-	Residue	Cumulative weight % above grain			
Spac- ing	Ideal	Actual	lst Ana	lst Analysis		alysis	size limit	
Piece No.	diameter, d'	$diameter,$ $d = \frac{d'}{1.5\sqrt{\rho}}$	Ga	G _a +G _f	Ga	G _a + G _f	lst Analy- sis	2nd Analy- sis
18.5	3.2	1.4	16.0291	16.0311	17.8745	17.8745	88.2	87.7
1 17	7.4	3.4	10.4800	10.4820	11.0602	11.0602	57.7	54.3
16	11.0	5.0	4,6282	4.6302	4.8547	4.8547	25.5	23.8
14	16.5	7.5	1.4309	1.4329	1.5757	1.5757	7.9	7.7
12	25.7	11.6	0.3905	0.3925	0.4372	0.4372	2.2	2,2

(b) Left hand probe sample

Particle Density: $\rho = 2.17 \text{ g/cc}$

	<u>lst Analysis</u>	2nd Analysis
Sample Weight, G _u grams	16.2630	8.7233
Residue on Screen, G. grams	в О	0

-	Snac-	Grain Size Limit, microns			Residue, grams				ative nt % grain
	ing	Particle	Particle	lst An	alysis	2nd An	alysis	size limit	
	Piece No.	diameter, d'	diameter, $d = \frac{d'}{1.5\sqrt{\rho}}$	Ga	G _a + G _f	Ga	G _a + G _f	lst Analy- sis	2nd Analy- sis
	18.5	3.2	1.4	14.1943	14.1943	7.6458	7.6458	87.3	87.6
	17	7.4	3.4	9.0809	9.0809	4.6649	4.6649	55.8	53.2
	16	11.0	5.0	4.1009	4.1009	2.0698	2.0698	25.2	23.7
	14	16.5	7.5	1.3547	1.3547	0,6892	0.6892	8.3	7.9
	12	25.7	11.6	0.3941	0.3941	0,1940	0.1940	2.4	2.2

24.2

(c) Dust caught by dust collector, right hand

Particle Density, $\rho = 2.17 \text{ g/a}$ Sample Weight, G_u = 18.0120 grams Residue on Screen, $G_f = 0.0074$ grams

	Grain Size Li	mit, microns	Residue	Cumula-	
Spacing Piece No.	Ideal Particle diameter, d'	Actual Particle diameter, d = $\frac{d'}{1.5\sqrt{\rho}}$	Ga	G _a + G _f	tive weight % above grain size limit
18.5	3,2	1.4	17.7817	17.7891	98.8
17	7.4	3.4	17.1513	17.1587	95.3
16	11.0	5.0	15.7752	15.7826	87.6
14	16.5	7.5	13.8515	13.8587	76.9
12	25.7	11.6	11.0450	11.0524	61,4
8	42.5	19.2	8.1238	8,1313	45.1
4	52.5	23.8	6.8029	6.8103	37.8
0	59.0	26.7	6.2170	6.2244	34.6

Dust caught by dust collector, left hand (d) Particle Density, $\rho = 2.17 \text{ g/cc}$ Sample Weight G_u 15.1915 grams Residue on Screen, G_f 0.0047 grams

	Grain Size Limit, microns		Residue, grams		Cumulative
Spacing Piece No.	Ideal Particle diameter, d'	Actual Particle diameter, d = $\frac{d'}{1.5 \sqrt{\rho}}$	Ga	G _a + G _f	weight % above grain limit
18.5	3.2	1.4	14.9798	14.9845	98.6
17	7.4	3.4	14.3543	14.3590	94:5
16	11.0	5.0	13.2623	13.2670	87.3
14	16.5	7.5	11,7025	11.7072	77.1
12	25.7	11.6	9.4282	9.4329	62.1
8	42.5	19.2	6.9619	6.9666	45.9
4	52.5	23.8	5.8479	5.8526	38.5
0	59.0	26.7	5.3595	5.3642	35.3

FIGURE: 1.

GLASS WOOL FLITER CARTRIDGE DISTRINCE RING WITH DISC. FILTER HOUSING MEASURING TUBES RUBBER PACKING 6AS SUCTION PIPE SCREW CAP NOZZLE FILTER HEAD AND NOZZLE F16. 2

