

WUI101414

BRANDSTOFNAVORSINGSINSTITUUT

VAN SUID-AFRIKA

FUEL RESEARCH INSTITUTE

OF SOUTH AFRICA

TEGNIESE MEMORANDUM

NO. 17 OF 1971

PREPARATION OF AND CARBONISATION TESTS ON LOW ASH BLEND COKING COALS FROM THE WITBANK NO. 2 SEAM

OUTEUR: AUTHOR:

OUTEUR: S.F. STREICHER AND W.J. SANDER

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA

TECHNICAL MEMORANDUM NO. 17 OF 1971

PREPARATION OF AND CARBONISATION TESTS ON LOW ASH BLEND COKING COALS FROM THE WITBANK NO.2 SEAM

INTRODUCTION

At a meeting held on 24th March, 1970, it was decided to form a co-ordinating group consisting of members of the staffs of Iscor, T.C.O.A., and the F.R.I. to study the production and utilisation of low ash blend coking coals from the No. 2 seam in the Witbank coal-field.

It was decided that:

- 1. The T.C.O.A. would be responsible for the taking and delivery at the F.R.I. pilot plant in Pretoria of bulk samples of about 100 tons each of $l_4^{\frac{1}{4}}$ " x 0 r.o.m. coal from eight selected collieries in the Witbank coal-field.
- 2. The F.R.I. would prepare these samples to the required specifications in the pilot plant.
- 3. Iscor and F.R.I. jointly would be responsible for carbonisation tests and coke testing.

Part A of this report, compiled by S.F. Streicher, deals with the preparation of the samples, while Part B, written by W.J. Sander, comprises the results of the carbonisation tests and coke testing.

PART A: PREPARATION OF LOW ASH BLEND COKING COALS

A.1 Coals Treated

The eight coals initially selected for the test programme were:

Greenside

Douglas

Koornfontein

T.N.C.

Landau

Van Dyksdrift

Springbok

Tweefontein

At the request of Iscor two consignments of coal from Phoenix colliery were also included. Two samples of Springbok

coal were washed due to the fact that the first consignment of this coal was not tested in the Iscor ovens. Washing results on a sample of New Clydesdale coal are also included in this report although this coal was intended to be part of a subsequent investigation of coals for formcoke production. Duplicate tests were also carried out on samples from Greenside colliery. Table Al gives a list of the coals treated in chronological order.

A.2 Washing Procedure

In general, the preparation of the $l\frac{1}{4}$ " x 0 r.o.m. coal consisted of:

- l. Producing a $1\frac{1}{4}$ " x 0.5 mm low ash coal with a maximum ash content of 7% and a minimum swelling index of $2\frac{1}{2}-3$.
- 2. Rewashing the discard from the primary separation to produce a middlings product suitable for power station consumption, and a discard product.
- 3. Discard all the -0.5 mm material.

The required cutpoints to produce acceptable products for the operations above were supplied by the T.C.O.A. from washability tests carried out by the Association. In some cases the low ash products had to be washed to ash contents lower than 7% in order to achieve the required swelling index.

In view of the fact that the cyclone washer in the pilot plant can only handle coal to a top size of $\frac{1}{2}$ ", the following procedure had to be adopted in treating the samples:

- 1. Screen the coal as received at ½" square aperture.
- 2. Wash the $l\frac{1}{4}$ " x $\frac{1}{2}$ " size fraction in the Drewboy washer at about S.G. 1.35.
- 3. Rewash the discard from the primary Drewboy washer at about S.G. 1.60 to produce a middlings product and a discard.
- 4. Wash the $\frac{1}{2}$ " x 0.5 mm size fraction of the r.o.m. coal in the cyclone at a low specific gravity.
- 5. Rewash the discard from the cyclone primary wash at a high specific gravity to product a middlings product and a discard.

- 6. Discard all -0.5 mm material.
- 7. Blend the two primary low ash products for carbonisation tests and the two middlings products for power station tests.
- 8. Despatch both blends.

On account of the fact that washing operations cannot be carried out simultaneously in the pilot plant, the above operations resulted in excessive handling of the coal.

All the samples were tested in the manner described above except that:

- a) In the case of the Phoenix coal, Iscor indicated that they were not interested in the production of a middlings product and that all the coal could be crushed to $-\frac{1}{2}$ ", and washed in the cyclone only. As will be noted in most of the tables, the Phoenix coal was received and dealt with in two batches.
- b) The T.N.C. sample contained a very small proportion of $+\frac{1}{2}$ " material and permission was obtained to crush the $+\frac{1}{2}$ " size fraction to $-\frac{1}{2}$ " before washing in the cyclone washer.

All the different products from the individual washing operations, except the -0.5 mm material, were weighed before despatch. Owing to the difficulty of recovering all the -0.5 mm material from the system after each operation, this figure had to be arrived at by difference. The figures reported for the percentage of -0.5 mm material may therefore be slightly high because they include any possible small losses of coal, together with degradation products from the excessive handling operations described above.

Initially, some difficulties were encountered when washing in the Drewboy at low specific gravities, due to instability of the medium. This however could be rectified by occasional additions of superfine magnetite.

A.3 Washing Results

Washing results obtained in all the different individual operations, together with cutpoints and efficiencies are

reported in Table A2. Table A3 gives the yields of the combined final products as percentages of the raw coal received, and Table A4 represents the analyses of the different individual products and the calculated analyses of the blends.

PART B. CARBONISATION TESTS ON LOW ASH BLEND COKING COALS

B.1 Introduction

The investigation regarding the carbonisation of the T.C.O.A. low ash coals had to be run concurrently with an investigation on behalf of the Natal Associated Collieries. The approval of the N.A.C. had to be obtained to run the investigations concurrently because this organisation had been informed that the Institute would regard its programme of investigation as being of national importance and would give it priority.

B.2 Execution of the Programme

The programme was carried out in the following way, viz.: dry charges consisting of 100 per cent by weight of low ash Witbank coal as well as blends of 75 per cent by weight of this low ash coal and 25 per cent by weight of D.N.C. coal were carbonised, both in the narrow and the wide oven of the Institute's experimental coke ovens at a flue temperature of 1150°C.

Of the coals mentioned in paragraph A.1, charges of 100 per cent coal were carbonised in all cases except Greenside coal which was left out because of a misunderstanding, and New Clydesdale coal, which was intended for formcoke investigations.

Blend coking tests were carried out on all low ash coals except Greenside, New Clydesdale, Phoenix, and a wide oven test using T.N.C. The reason for the latter two coals not being tested was that there was insufficient coal for the charges required.

B.3 Experimental Results

All relevant available data pertaining to the coking investigation are summarized in Tables Bl to B5.

Table Bl contains the analytical details of the coals used in the charges. In Table B2 details are given of the

/unblended

unblended charges (i.e. 100 per cent coal) and the carbonisation conditions. Table B3 comprises details of the blends charged and the carbonisation conditions. The characteristics of cokes made from unblended charges are presented in Table B4, and the characteristics of cokes produced from blends in Table B5.

B.4 <u>Discussion of the Results</u>

A detailed discussion of the results obtained is not possible at this stage because all the data on the laboratory coking properties and the microscopic analyses are not yet available. Consequently only a few general observations are recorded.

B.4.1 Unblended charges

Promising results were obtained with Landau, Springbok No. 2 (first batch), and Douglas coals. Referring to Table B4 it appears as if Landau, Springbok No. 2 and possibly Douglas coals may be used as such to produce an acceptable coke. A further observation is that the quality of the cokes produced from the two different batches of Springbok No. 2 seam coal differs more than could be reasonably expected. It is not possible to explain this difference as there is not enough information available on the two batches.

B.4.2 Blends

It seems as if most of the low ash coals investigated would be suitable as blend coking coals when blended with D.N.C. coking coal. The order of merit of the quality of cokes made from the different unblended coals is also followed in the case of the blends. When Table B5 is consulted it can be seen that the most promising results were obtained with Landau coal. The first batch of Springbok No. 2 seam coal and Tweefontein coal also produced good cokes and the coke obtained from the Douglas coal blend appears to be acceptable. The other coals did not give such good coke; T.N.C. coal gave the poorest coke.

B. 5 Conclusion

In conclusion it may be stated that the preliminary results have indicated that

i) some of the low ash coals may be utilised as such to /produce

produce an acceptable coke, and

ii) most of the low ash coals may be good blend coking coals.

It has to be borne in mind that these conclusions are arrived at by means of the results obtained at pilot plant coke ovens. The ultimate test for deciding whether a coke is acceptable is its behaviour in the blast furnace. The results of this Transvaal low ash coal investigation nevertheless give a fairly reliable indication that some of the coals investigated may be used for coke manufacture. In this respect the investigation thus far has proved to be of considerable value.

(SIGNED) S.F. STREICHER
PRINCIPAL RESEARCH OFFICER

W.J. SANDER SENIOR RESEARCH OFFICER

PRETORIA. 2nd April, 1971. /TW

TABLE Al
LIST OF COALS TREATED (CHRONOLOGICAL ORDER)

Colliery	Date received	Tonnage
Greenside	19.3.70	40
Landau	15.4.70	126
Douglas	23.4.70	106
Van Dyksdrift	19.5.70	132
Phoenix	29.6.70	150
Koornfontein	15.6.70	101
Phoenix	1.7.70	200
T.N.C.	20.7.70	128
Springbok	3.8.70	117
Greenside	24.8.70	130
New Clydesdale	15.9.70	142
Tweefontein	6.10.70	120
Springbok	16.10.70	120

/TABLE A2

TABLE A2
INDIVIDUAL WASHING RESULTS

Coal	Washing operation	Size fraction	Test No.		coal, eld	Disc yie		Cutpoint	E.P.
	Operation	Traction	NO.	Tons	%	Tons	%		
Greenside	Primary Primary Secondary Secondary	1½" x ½" ½" x 0,5 mm 1½" x ½" ½" x 0,5 mm	497 499 498 500	4.8 4.3 9.0 6.7	25.0 30.2 74.0 72.9	14.3 9.9 3.2 2.5	75.0 69.8 26.0 27.1	1.35 1.38 1.61 1.63	0.002 0.013 0.013 0.017
Landau	Primary Primary Secondary Secondary	1½" x ½" ½" x 0.5 mm 1½" x ½" ½" x 0.5 mm	502 504 503 505	5.1 30.0 7.3 35.8	28.1 34.9 55.3 63.7	13.2 56.2 5.9 20.4	71.9 65.1 44.7 36.3	1.37 1.39 1.57 1.57	0.010 0.010 0.014 0.013
Douglas	Primary Primary Secondary Secondary	1½" x ½" ½" x 0.5 mm 1½" x ½" ½" x 0.5 mm	507 508 509 510	15,5 22,6 14,6 25,3	42.0 41.6 80.6 79.3	21.5 31.8 3.5 6.6	58.0 58.4 19.4 20.7	1.37 1.38 1.60 1.59	0.008 0.014 0.013 0.017
Van Dyksdrift	Primary Primary Secondary Secondary	14" x 2" 2" x 0.5 mm 14" x 2" 2" x 0.5 mm	512 513 514 515	14.1 16.4 36.8 38.5	23.1 30.8 92.8 88.1	47.1 36.6 2.8 5.7	76.9 69.2 7.2 11.9	1.35 1.37 1.64 1.61	0.008 0.012 0.019 0.019
Phoenix	Primary	遺" x 0,5 mm	521	38.6	31.1	85.5	68.9	1.36	0.013
Koornfontein	Primary Primary Secondary Secondary	1½" x ½" ½" x 0,5 mm 1½" x ½" ½" x 0.5 mm	517 518 519 520	12.9 25.2 12.2 24.9	50.1 51.9 94.5 91.7	12.9 23.4 0.7	49.9 48.1 5.5 8.3	1.36 1.36 1.69 1.64	0.011 0.012 0.012 0.022
Phoenix	Prime.ry	½" x 0.5 mm	524	72.4	41.6	101.6	58.4	1.37	0.012
T.N.C.	Primary Secondary	1 x 0.5 mm 1 x 0.5 mm	528 529	33.0 43.8	34,3 74.8	62.2 18.4	65.7 25.2	1.38 1.58	0.012
Springbok	Primary Primary Secondary Secondary	1½" x ½" ½" x 0.5 mm 1¼" x ½" ½" x 0.5 mm	530 531 532 533	14.3 24.5 25.2 33.8	32.2 40.9 90.5 87.6	30.3 35.6 2.6 4.7	67.8 59.1 9.5 12.4	1.36 1.38 1.60 1.59	0.008 0.013 0.027 0.023
Greenside	Primary Primary Secondary Secondary	1½" x ½" ½" x 0.5 mm 1½" x ½" ½" x 0.5 mm	534 535 536 537	26.0 19.6 24.7 22.8	38.1 38.1 68.4 66.8	42.2 31.8 12.4 12.3	61.9 61.9 31.6 33.2	1.38 1.38 1.58 1.58	0.008 0.013 0.012 0.014
New Clydesdale	Primary Primary Secondary Secondary	14" x 2" 2" x 0.5 mm 14" x 2" 2" x 0.5 mm	542 543 544 545	9,8 35,0 20,3 46,3	26,1 49,8 86.7 85,5	27.7 35.1 3.2 7.8	72.9 50.2 13.3 14.5	1.37 1.35 1.63 1.58	0.005 0.010 0.033 0.016
Tweefontein	Primary Primary Secondary Secondary	14" x ½" ½" x 0.5 mm 14" x ½" ½" x 0.5 mm	556 557 558 559	9.7 12.0 24.8 39.9	19.9 18.9 77.3 75.1	39.1 51.7 7.3 12.9	80.1 81.1 22.7 24.9	1.35 1.35 1.67 1.65	0.009 0.011 0.018 0.017
Springbok	Primary Primary Secondary Secondary	14" x ½" ½" x 0.5 mm 14" x ½" ½" x 0.5 mm	561 562 563 564	15,2 27,3 21.4 35,3	32.7 41.9 88.0 87.8	24.4 40.3 3.0 4.2	67.3 58.1 12.0 12.2	1.36 1.38 1.67 1.66	0.008 0.013 0,039 0.022

TABLE A3
PRODUCT YIELDS

Colliery	Low ash,	Middlings,	Discard,	-0.5 mm,
Greenside	22.4	44.1	15.8	17.7
Landau	28.0	34.2	20.9	16.9
Douglas	35.9	37.7	9.5	16.9
Van Dyksdrift	22.9	56.7	6.5	13.9
Phoenix	25.7	****	57.0	17.3
Koornfontein	37.8	36.5	2.9	22.8
Phoenix	36.2	_	50.8	13.0
T.N.C.	25.7	34.1	14.3	25.9
Springbok	33.0	50.1	6.2	10.7
Greenside	35.2	36.5	19.1	9.2
New Clydesdale	31.0	47.1	7.7	14.2
Tweefontein	18.1	53.0	16.9	12.0
Springbok	35.3	47.2	6.6	10.9

/TABLE A4

TABLE A4
ANALYSIS OF PRODUCTS

			Low	ash co	al	COMPLETE CONTROL	ELECTRICATION CONTRACTOR CONTRACT	Mić	ldlings	5	Discard
Colliery	Size fraction	Mois- ture, %	Ash,	Vol. mat.,	Sw. No.	S,	Cal. val., lb/lb	Mois- ture,	Ash,	Vol. mat.,	Ash,
Greenside	1½" x ½" ½" x 0.5 mm 1½" x 0.5 mm	1.9 2.1 2.0	7.0 6.6 6.8	35.2 35.5 35.3	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.69 0.57 0.63	12.06 11.98 12.03	2,1 2,2 2,1	15.1 16.2 15.5	25.5 22.6 24.3	40.9 45.3 42.7
Landau	1½" x ½" ½" x 0.5 mm 1½" x 0.5 mm	1.8 2.0 2.0	7.0 6.6 6.7	34.2 33.5 33.6	3 2 2 3	0.65 0.43 0.46	12.34 12,29 12.30	2.3 2.5 2.5	14.1 14.6 14.5	23.1 21.4 21.7	42.8 39.8 40.5
Douglas	1½" x ½" ½" x 0.5 mm 1½" x 0.5 mm	1.9 2.0 2.0	6.8 6.5 6.6	31.6 33.4 32.7	2 2½ 2½ 2½	0,44 0,43 0,44	12.54 12.44 12.48	2.7 2.7 2.7	13.9 14.3 14.2	24.4 23.7 24.0	41.7 45.3 44.1
Van Dyksdrift	1½" x ½" ½" x 0.5 mm 1½" x 0.5 mm	2.3 2.4 2.4	5.8 5.6 5.7	32.6 32.4 32.5	1½ 2 1½	0.59 0.45 0.52	12,66 12,46 12.56	2.2 2.4 2.3	12.5 13.1 12.8	25.3 23.3 24.3	52.2 46.1 48.1
Phoenix	½" x 0.5 mm	2.8	5.5	34.6	2호	0.55	man	_	-	_	21.7
Koornfontein	1½" x ½" ½" x 0.5 mm 1¼" x 0.5 mm	2.6 2.6 2.6	5.8 5.4 5.5	34.3 34.1 34.2	2 1 2 2 2 2 2 2	0.58 0.59 0.59	12.54 12.55 12.55	2,4 2.6 2.5	12.4 12.0 12.1	27.5 27.2 27.3	45.2 45.4 45.4
T.N.C.	½" x 0.5 mm	2,7	6,8	30.9	1	0,33	12.09	2.9	14.3	22.7	40.0
Springbok	1½" x ½" ½" x 0.5 mm 1½" x 0,5 mm	2.1 2.1 2,1	6,2 6,3 6,3	33.0 31.8 32.2	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.67 0.43 0.52	12.47 12.52 12.50	2.2 2.2 2.2	13.1 13.1 13.1	23.0 23.5 23.3	43.7 44.4 44.2
New Clydesdale	$1\frac{1}{4}$ " x $\frac{1}{2}$ " $\frac{1}{2}$ " x 0.5 mm $1\frac{1}{4}$ " x 0.5 mm	2.7 2.5 2.5	6.8 5.6 5.8	31.8 33.7 33.3	1 1/2 1/2 2 2	0.54 0.53 0.53	12.39 12.58 12.52	2.6 2.5 2.5	13.0 12.0 12.3	24.9 25.0 25.0	44.8 39.5 41.0
Tweefontein	l¼" x ½" ½" x 0.5 mm l¼" x 0.5 mm	2.5 2.6 2.6	7.3 5.8 6.5	36.5 36.1 36.3	2 2 2 2 2 2 2	0.61 0.57 0.59	11.73 11.73 11.73	2.7 2.7 2.7	16.8 16.4 16.6	24.9 23.5 24.0	47.0 44.6 45.5
Springbok	1½" x ½" ½" x 0.5 mm 1¼" x 0.5 mm	2.2 1.9 2.0	6.8 6.7 6.7	32.8 31.8 32.2	2½ 2 2	0.54 0.48 0.50	12.58 12.39 12.46	2.3 2.2 2.2	13.7 14.5 14.2	25.2 23.4 24.1	50.7 48.1 49.1

TABLE B1

EXPERIMENTAL COKE OVEN TESTS

ANALYTICAL DETAILS OF COMPONENTS USED IN CHARGES

Sample No.		70/324	70/388	70/531	70/579	70/607	70/678	70/741	70/969	70/978	69/796	70/447	70/606
Identification		Landau	Douglas	Van Dyks- drift	Koorn- fontein	Phoenix	T.N.C.	Spring- bok (2)	Twee- fontein	Spring- bok (2) (2nd batch)	D.N.C.	D.N.C.	D.N.C.
Proximate	\H ₂ 0	2.0	2.5	2.4	2.7	3.1	3.0	2.2	2.6	2.2	1.3	1.1	1.3
analysis,	Ash	7.1	6.5	5.6	5.5	5.8	6.7	6.3	6.5	7.0	13.3	12.7	11.4
(air-dry)	(V.M.	32.3	32.5	33,6	34.4	34.5	31.1	33,8	36.3	31.6	30.3	26.7	30.1
	F.C.	58.6	58.5	58.4	57.4	56,6	59.2	57.7	54.6	59.2	55.1	59.5	57.2
Swelli	ng No.	3	2 1 /2	2 1 2-3	2 1 -3	2	1	2-21/2	2½	1-1 1	5 	4불	5
V.M., % (d.a.f.)		35.5	35.7	36.5	37.5	37.9	34.4	36.9	39.9	34 . 8	35.5	31.0	34.5
Total sulphur, %		0.57	0.41	0.41	0.64	0.46	0.38	0.59	0.59	0.49	1.39	1.29	1.24
Phosphorus (P in c	pal), %	0.044	0.042	0.112	0.117	0.015	0,,008	0.105	Not done	0.149	0.023	0.023	0.025

/TABLE B2

TABLE B2

EXPERIMENTAL COKE OVEN TESTS

Flue Temperature: 1150°C

DETAILS OF UNBLENDED CHARGES AND OF CARBONISING CONDITIONS

Tes	st No.*		ND1054	WD777	ND1057	WD781	ND1067	WD792	ND1075	WD801	ND1083	WD809	ND1099	WD819	ND1106	WD823
	Compositio 1	n of charge, 00%	Land	lau	Doug	glas	Van Dyk	sdrift	Koornf	ontein	Phoe	nix	T.N.	С.	Springl (70/	ook (2) 741)
l charged	Proximate analysis, % (air-dry)	(H ₂ 0 Ash (V.M. F.C. Swelling No.	2.0 6.7 32.0 59.3 3	2.0 6.8 32.1 59.1 2½-3	2,1 6,3 32.1 59.5 1½-2	2,2 6,4 31,4 60,0 2½	2.1 6.7 31.9 59.3 2-2½	2.1 6.6 32.8 58.5	2.3 6.2 32.9 58.6 2½	2.3 5.7 32.8 59.2 1½-2	2.9 5.6 35.1 56.4 2½-3	2.9 5.7 35.1 56.3 2\frac{1}{2}	2.6 6.5 30.8 60.1 1-1 2	2.7 6.5 31.2 59.6 1-1½	2.0 6.5 32.2 59.3 2½	2.0 6.6 33.0 58.4
Coal	Size analysis, %	(+\frac{1}{8}" \times \frac{1}{16}" \times \frac{1}{16}" \times 22 \times 22 \times 100 \times (-100 \times 100 \times 10	11.5 32.2 30.3 22.1 3.9	8,4 36.7 32.3 20.4 2,2	11.2 30.4 30.6 23.7 4.1	10.7 31.4 27.0 26.2 4.7	14.0 34.8 30.0 18.7 2.5	13.1 32.3 26.6 24.3 3.7	13.2 31.7 27.4 18.6 9.1	14.8 32.9 26.8 21.6 3.9	17.9 33.4 26.8 18.6 3.3	14.0 28.4 26.4 25.4 5.8	13.4 30.8 28.5 22.4 4.9	16.7 33.8 28.9 17.7 2.9	9.1 31.5 28.7 26.6 4.1	13.3 32.0 25.8 24.2 4.7
bonisation details		g period hr ng time	2.4 702 49.0 13.2	2.4 874 48.3 17.7	2.4 699 48.7 13.0	2,6 869 48.0 17.9	2.6 699 48.7 12.7	2,4 865 47.8 17.7	2.6 678 47.3 13.2	2.8 865 47.6 17.6	2.8 692 48.1 13.2	3.0 883 48.5 18.1	2.6 709 49.4 14.5	3.0 891 49.0 18.9	2.8 685 47.6	2.4 883 48.8 18.0
Carbo	Total coke weights), %	yield (dry	71.4	71,2	71.0	71.4	15.6 70.7	20.1	15.2	19.7	15.6 67.8	20.4 72.5	16.6 70.9	72.0	15.5 70.9	20.0

^{*}N: In the narrow oven W: In the wide oven D: Dry charging

**Based on volume of coal space of oven.

NOTE: For analytical details of components used in charges see Table B1.

/TABLE Bl continued

13

TABLE B2 (continued)

Tes	t No.*	ND1159	WD870	ND1162	WD872
Application of the state of the	Composition of charge,	Tweefo	ntein	Springb (second (70/	ok (2) bat c h) '978)
al charged	Proximate analysis, Ash (V.M. (air-dry) F.C. Swelling No.	2.4 7.0 35.6 55.0 2½	2.3 6.4 35.2 56.1 2½	1.8 6.7 31.9 59.6 2	1.8 6.7 32.5 59.0 1½
	Size $(+\frac{1}{8}")$ Size $(\frac{1}{8}" \times \frac{1}{16}")$ analysis, $(\frac{1}{16}" \times 22 \text{ m})$ $(22 \text{ m} \times 100 \text{ m})$ (-100 m)	19.5 32.1 24.9 20.2 3.3	14.2 29.8 27.7 23.8 4.5	14.1 30.9 27.2 23.9 3.9	16.5 35.1 26.1 19.4 2.9
Carbonisation details	Moisture as charged, % Wt. charged (moist), lb B.D. (dry), lb/ft ³ ** Min. coking period (M.C.P.), hr Total coking time (T.C.T.), hr Total coke yield (dry weights), %	2.6 709 49.4 12.7 15.6 68.3	2.6 883 48.7 18.5 21.0	2.0 702 49.3 12.6 15.6 70.8	2.0 883 49.0 17.7 20.0

/TABLE B3

TABLE B3 EXPERIMENTAL COKE OVEN TESTS

DETAILS OF BLENDS CHARGED AND OF CARBONISING CONDITIONS

Flue	temperature: 1150°C	_	DETAILS	OF BLENI	OS CHARG	ED AND C)F CARBO	NISING C	ONDITIC	NS				
Tes	t No.*	ND1055	WD778	ND1058	WD782	ND1068	WD793	ND1076	WD802		ND1100		ND1107	WD824
	Composition of 75% charge	Landa	ıu	Dougl	.as	Van Dyk	sdrift	Koornf	ontein	Phoenix	T.N.	C.	Springb (70/7	ok (2)
	25%	D.N.0 (69/79		D.N.0 (69/79		D.N.C (70/44		D.N.C (70/44		D.N.C.	D.N. (70/6		D.N. (70/6	C.
l charged	Proximate analysis, (Ash (V.M. (air-dry)) F.C.	2.4 8.1 30.6 58.9	2.4 8.4 30.5 58.7 3-3\frac{1}{2}	2.0 8.3 30.7 59.0 2½	1.9 8.3 31.2 58.6 2½-3	1.9 7.3 31.8 59.0 2½	1.9 7.9 30.5 59.7	2.1 6.9 32.5 58.5	2.1 7.1 32.4 58.4	Insufficient coal for charges	2.1 7.5 30.5 59.9	Insuf- fici- ent coal for char-	2.0 7.7 32.0 58.3	1.8 8.3 32.0 57.9
Coal	Size $\frac{1}{8}$ " $\frac{1}{8}$ " x $\frac{1}{16}$ " analysis, $\frac{1}{16}$ " x 22 m $\frac{1}{8}$ 22 m x 100 m $\frac{1}{16}$	16.9 35.9 27.1 16.9 3.2	14.5 37.8 27.1 17.8 2.8	12.9 35.7 24.7 20.7 6.0	13.2 31.9 25.9 22.6 6.4	13.4 35.0 25.9 19.9	19.4 39.7 25.6 13.1 2.2	2½-3 10.9 36.3 26.6 21.9 4.3	2-2½ 16.5 32.1 26.3 20.4 4.7		1½ 13.4 34.2 29.6 18.3 4.5	ge	2-2½ 11.7 28.8 28.0 25.4 6.1	2 11.9 34.0 28.3 20.5 5.3
tion	Moisture as charged, % Wt. charged (moist), lb B.D. (dry), lb/ft ³ ** Min. coking period	2.4 723 50.5	2.4 896 49.5	2.4 730 51.2	2.6 918 50.7	2.8 730 50.8	2.4 918 50.7	2.6 709 49.4	2.4 90 9 50.3		2.6 727 50.6		2.0 713 50.0	2.2 918 50.9
Carbonisation details	(M.C.P.), hr Total coking time (T.C.T.), hr Total coke yield (dry	13.2 15.4	17.8 19.9	14.1 16.3	19.2	14.0 16.1	19.3	13.3 15.5	18.7 20.9		14.3		13.1 15.3	17.5 19.5
	weights), %	72.2	72.8	71.6	75.4	72,3	72.7	71.5	71.4		72.0		67.5	68.4

^{**} See Table B2

/TABLE B3 continued

TABLE B3 (continued)

Tes	t No.*	ND1160	WD871	ND1171	WD874
CONTRACTOR OF THE PROPERTY OF	Composition of charge 25%	Tweefo	C.	(second (70) D.N.	
11-de-ect (mc) 2-1 (41) pc		(70/6	06)	(70/6	06)
Coal charged	Proximate analysis, (Ash (V.M. (air-dry) Swelling No.	2.0 7.7 34.7 55.6 3	2.2 7.5 33.5 56.8 2	1.9 7.7 31.1 59.3	2.0 7.8 31.9 58.3 1½-2
	Size $(+\frac{1}{8})$ $(\frac{1}{8})$ \times $(\frac{1}{16})$ \times 22 m $(\frac{1}{16})$ \times 22 m \times 100 m (-100) m	14.1 32.8 25.4 23.2 4.5	16.6 35.0 25.4 19.3 3.7	22.7 38.3 22.9 13.3 2.7	19.9 35.5 23.8 17.0 3.7
Carbonisation details	Moisture as charged, % Wt. charged (moist), lb B.D. (dry), lb/ft ³ ** Min. coking period (M.P.C)), hr Total coking time (T.C.T.), hr	2.0 713 50.0 13.1	2.2 905 50.1 18.3	2.2 747 52.3 13.1	2.4 931 51.5 18.1
Ca.	Total coke yield (dry weights), %	69.4	70.6	70.5	67.8

/TABLE B4

TABLE B4 EXPERIMENTAL COKE OVEN TESTS : UNBLENDED CHARGES CHARACTERISTICS OF COKES

·T	est	No.*			ND1054	WD777	ND1057	WD781	ND1067	WD792	ND1075	WD801	ND1083	WD809	ND1099	WD819	ND1106	WD823
C	ompo	osition o 100%	f charg	e,	Land: (70/3:		Doug (70/3	las 88)	Van Dyk (70/5	sdrift	Koornfo (70/5		Phoe (70/6		T.N (70/6		Springb (70/7	ook (2) 741)
	Bul bas	k densit sis)	y (dry	(kg/m3 (lb/ft3	Not avai	ilable	Not av	ailable	479 29.9	479 29.9	426 26.6	423 26.4	416 26.0	434 27.1	445 27.8	469 29.3	453 28.3	431 26.9
		The state of the s		(125	17.5	14.0	12.5	16.6	14.6	16.9	6.8	15.7	3.2	9.6	6,6	12.6	12.6	16.1
	7-1000	Si	ze ys i s,	80	59.4	58.6	53.5	57.1	56.0	61.2	47.1	52.7	43.4	43.4	38,1	41.0	52.7	59.0
യ	4	%	on	60	78.2	77.6	73.8	75.1	74.9	74.0	69.1	69.3	62,8	64.8	56.8	52.7	74.3	75.8
cokes	68	mm :	round	25	92.6	91.6	89.9	88.7	90.4	87.5	88.2	85.8	88.2	85.3	71.6	65.1	91.8	90.4
of c	hol	establishment in the state of t		(10	94.5	93.3	92.0	90.6	92.6	89.9	90.6	88.4	90.9	88.5	76.2	69.7	93.9	92.5
			Mean :	size, mm	88.0	85.8	81,1	84.6	85.5	86,2	74.3	78.9	71.2	73 <mark>.</mark> 2	63.8	63.5	82.3	85.7
ics	ound	đ st mm	7	M' 40	72.6	69.7	67.9	66,2	64.9	63.0	61.4	61.1	63.7	58.5	48.3	46.8	69.5	67.2
isti	m, r	(0) (1)		$^{ m M}$ 20m	85.2	81.6	79.3	76.9	79.2	75.5	76.6	73.7	77.8	74.2	55.3	53.2	81.9	79.0
ter	Ħ	lodificum terrespondente		$^{ m M}$ lOm	12.9	15.7	17.8	20.4	17.3	21.5	19.8	22.8	17.2	20.7	42.0	44.5	15.3	17.8
ည် ပြ		Moc micu on		$\mathtt{MMSS}_{\mathtt{m}}$	53,0	51.0	51,1	48.9	48,6	44,8	48.6	44.9	52.3	48 <mark>.</mark> 1	38.0	35.0	52.2	49.6
Characteri				CMTV	63,0	59.0	55.8	52,7	53.7	49.4	49.2	47.2	52.7	46 <mark>.</mark> 4	28.0	26.0	58.8	55.3
ט	B.S	. shatter	rindex	<u> </u>	-	88,88		88.5		88.3		86.4	_	83.6	_	ø		88,6
				(<u>‡</u> "	-	96.4	onione .	95.0	<u>.</u>	94.4	-	93.9	aute	93.9	-	ø	***	95.9
ļ		. abr. in			-	67.7	allebus	60,4	-	58.7	-	56,1	-	56 <mark>.</mark> 5	_	39.9		62.4
	-	.S.S. val	W. W. Commission of the Land			35.0		32.1	-	29.2	_	25.6		24 <mark>.8</mark>	Amount of the second	_	-	32.3
Qua	ng	y** assig the index	gned	{M' 40	G	G	F	F	F	P	P	P	P	P	VP	VP	G	F
LON	-+16	orre Tirdey		MlOm	VG	G	F	F	F	P	P	P	F	P	VP	VP	G	F

N: In the narrow oven W: In the wide oven

D: Dry charging

^{**}F.R.I. Inf. Circ. No. 10 (Reprint from J.S.A. Inst. of Min. & Metal. Oct. 1969, 65-67).

NOTE: For details of charges and carbonizing conditions see Table B2.

<sup>ø Excess breeze, no shatter test
possible.</sup>

TABLE B4 (continued)

Te	st No	·*			ND1159	WD870	ND1162	WD872
Co	mposi	ition of 100%	charge	,	Tweefo (70/	ntein 969)	Springt (second (70/	ook (2) l batch) '978)
of Proposition and Association	Bull bas:	k density is)	(dry	(kg/m ³)	421 26.3	437 27.3	449 28.0	465 29.0
ics of cokes	1 holes		sis,		6.4 42.9 68.0 90.9 93.5 73.4	15.5 52.8 72.5 88.7 91.2 81.7	16.4 60.3 77.8 89.8 92.0 86.7	21.6 58.1 73.8 87.1 89.6 86.6
Characteristi	mm, round	Modified micum test on +25 mm coke		M ¹ 40 M _{20m} M _{10m} MMSS _m CMTV _m	63.8 81.5 14.0 52.6 54.8	62.3 76.9 18.6 46.0 50.7	65.7 76.1 20.8 47.5 52.0	74.9 22.0 46.3 51.3
	***************************************	shatter abr. inc	dex			86.0 95.0 61.9 28.0		89.2 95.1 57.5 28.5
		7** assign the index	ned	(M [†] 40 (M _{lom}	P G	P	F	F P

/TABLE B5

EXPERIMENTAL COKE OVEN TESTS: BLENDED CHARGES

CHARACTERISTICS OF COKES

Те	st No	0.*			ND1055	WD778	ND1058	WD782	ND1068	WD793	ND1076	WD802		ND1100	-	ND1107	WD824
Co		ition of		75%	Land	lau	Doug	glas	Van Dyk	sdrift	Koornfo	ntein	Phoenix	T.N.	C.	Springb (70/7	ok (2)
	cha	arge		25%	D.N. (69/7			7.C. 796)	D.N. (70/4		D.N. (70/4	C. 47)	D.N.C.	D.N. (70/6	C. 06)	D.N. (70/6	C.
		k density y basis)		${\rm kg/m^3}$	477 29.8	477 29.8	Not ava	ailable	477 29.8	479 29.9	4 45 27 . 8	420 26.2	Insufficient coal for blend	453 28.3	In- suffi- clent	449 28.0	449 28.0
		Size analys: % on		(125 80 60	14.4 55.4 75.5	16.6 57.7 78.3	12.0 58.3 77.9	27.2 65.3 80.8	12.3 47.3 72.5	18,5 60.0 76.6	13.5 53.3 74.5	16.3 59.0 76.7	charges	17.8 60.0 76.5	coal for wide oven	13.6 51.9 74.7	16.7 55.6 76.6
of cokes	d holes	mm rou		25 (10 .ze, mm	93.6 95.5 84.9	92.8 94.6 88.1	92.9 94.7 85.8	92.6 94.1 97.1	90.7 92.7 79.5	89.7 91.4 88.0	91.2 93.3 82.0	89.7 91.4 86.4		89.0 91.0 86.5	charge	93.1 95.0 82.3	92.8 94.4 85.3
Characteristics	mm, round	Modified micum test on +25 mm coke		M'40 M20m M10m MMSS MCMTV M	77.2 87.3 10.7 58.5 68.9	74.3 85.4 12.6 54.3 65.0	71.0 83.7 14.2 53.1 60.9	71.8 82.6 15.2 49.9 60.8	72.5 82.9 15.0 56.1 61.6	69.6 79.0 18.7 49.8 56.5	70.8 81.8 15.4 52.2 59.9	67.9 78.9 18.7 49.8 55.2		67.5 75.9 22.4 48.5 52.4		74.7 85.9 11.7 58.8 65.9	71.9 83.8 14.2 53.7 61.7
	B.S.	shatter abr. inc	dex 1e	(<u>र्</u> गेह्रण (<u>र</u> हण		92.1 97.4 71.7 39.4		91.4 96.8 63.3 33.4	-	89.7 95.6 54.8 26.8	-	86.8 94.6 63.3 29.8					90.1 97.1 68.2 36.1
		7** assign The index		{M'40 Mlom	VG Ex	∇ G	G G	G G	G G	G F	G G	F F		F P	١	G VG	G VG

^{*} See Table B4

NOTE: For details of blends and carbonising conditions see Table B3.

TABLE B5 (continued)

T	est	No.*		V	ND1160	WD871	ND1171	WD874
Composition of charge 25%					Tweefontein		Springbok (2) (second batch)	
					D.N.C. (70/606)		D.N.C. (70/606)	
	Bulk density (kg/m ³ (dry basis) (lb/ft ³			444 27.7	442 27.6	450 28.1	458 28,6	
Characteristics of cokes	mm, round holes	ana	ize lysis, on round Mean	(125 (80 (60 (25 (10 size, mm M'40 M20m M10m	7.0 43.5 69.8 93.3 95.3 75.6 72.4 85.6 11.5	16.8 57.8 77.6 92.2 93.9 87.7 73.2 83.1 14.2	14.5 57.2 76.3 92.6 94.5 85.4 73.6 84.2 13.5	26.7 64.3 79.4 90.5 92.3 93.1 71.6 80.3 17.3
		Mo mic on		MMSS _m CMTV _m	58.3 64.1	50.9 62.8	54.3 63.6	48.4 59.2
	B.S. shatter index $(1\frac{1}{2})$				di Aara esama daga estaggan	89.6	Jacobillos Services de la constante de la cons	90.6
Processing to the second	B.S. abr. index S.A.S.S. value				96.4 67.3	dependent of the second	95.8 62.8	
					34.8	ad gray of differences of the control of the contro	31.8	
		ty** assi the inde		(M'40 (MlOm	G VG	G VG	G VG	G G