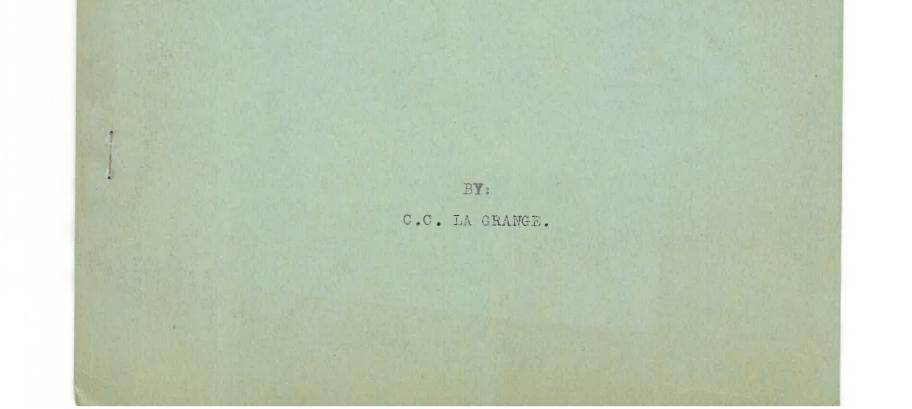
Mi Javage REPORT 3/1965


wu/c/211

3/1965

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA.

REPORT NO. 3 OF 1965.

FURTHER COKING INVESTIGATIONS TO DETERMINE THE EFFECT OF PREDRYING THE CHARGE.

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA.

REPORT NO. 3 OF 1965.

FURTHER COKING INVESTIGATIONS TO DETERMINE THE EFFECT OF PREDRYING THE CHARGE.

Introduction.

In a previous report* the advantages and disadvantages of predrying and preheating coke oven charges were briefly dealt with and some literature references on the subject were cited. The results obtained from a series of full scale coking investigations, having the object of studying the effect of predrying the charge from the normal moisture content of about 7-8 per cent to the approximately air-dry state (ca. 2 per cent moisture), and carried out as part of the Iscor F.R.I. joint Research Project, were presented.

The present report covers further investigations along similar lines, while the data are amplified by some results obtained in parallel experiments in the Institute's pilot coke ovens on portions of the same blends kindly made available by Iscor.

Remarks on Methods of drying the Coal.

In the previous experiments* the coal was predried in a revolving drum type of drier normally used for drying road metal but modified for the purpose of drying coal. In the present series this drier was again used with some experiments but in most instances a pilot scale fluidized bed drier specially installed by Isseen for the purpose of the

drier, specially installed by Iscor for the purpose of the investigation, was used.

For convenience, products dried in the drum drier or the fluidized bed drier (or tests with such products) are indicated in the report by the letters DD or FD, respectively.

Originally the temperature of the fluidizing gas was controlled by diluting the too hot combustion gas with large volumes of cold air. The excess air in such instances

resulted/

*Fuel Research Institute of South Africa. Report No. 5 of 1964. resulted in a fluidizing gas with an oxygen content approximating that of air. Such tests are indicated by adding the letter E, i.e. the designation becomes FDE.

-2-

At a later stage Iscor modified the installation by recirculating exit gases from the drier, thus restricting air dilution and reducing the oxygen content of the fluidizing gas to about 15 per cent. Such tests are designated FDR.

Finally Iscor applied maximum recirculation of the exit gases, reducing the oxygen content to about 3-4 per cent. These tests are designated FDM.

With all DD tests the coal (or coal mixture) was first predried and then crushed in the hammer mill for charging. With the FD tests the moist blend was first crushed in the normal way in the hammer mill and then predried, applying one of the fluidized bed procedures.

Coals used and some of the variables investigated.

1

The coals used in the investigation are those regularly used by Iscor for coke production. The following is a list of the collieries from which they originated, together with the abbreviations used in the tables for their identification:-

```
Nav - Navigation Coll. (S.A.C.E.).
S - Springbok Coll. (No. 5 Seam).
DNC - Durban Navigation Coll.
N - Natal Navigation Coll. (Northfield).
B - Blesbok Coll. (No. 5 Seam).
Ind - Indumeni Coll. (Coking Product).
```

The modified micum indices reported in the tables and the methods followed for determining bulk density of charge, heat penetration, minimum coking period and soaking time have been explained in recent publications.* The theoretical throughput (appearing in Tables 6-10) is a measure of the relative productivity of a coke oven. It is defined as follows:-

Theoretical) = $\frac{\text{Bulk dens. (dry basis) of charge (lb/ft²)}}{\text{minimum coking period (hr)}}$

In this sense the theoretical throughput indicates the weight (1b) of dry coal, whether charged in the moist or predried state, coked per cubic foot of oven space per hour, no allowance being made for a soaking period.

It/

*Fuel Research Institute of South Africa. Bulletins No. 64 and No. 60.

It should be pointed out that the value of the tests run in the Institute's pilot coke ovens may have been impaired to some extent in that the quantities of prepared charges obtained therefor were probably not always accurately representative of the charges as coked in Iscor's ovens. This was not realized until appreciable discrepancies in the size analyses of test blends as charged by Iscor and by the Institute were detected. The reason for this is that size segregation (or unmixing of sizes) can assume rather serious proportions when handling dry coal in the size range normal for coking charges. It is to be expected that size segragation will be accompanied by the segregation of petrographic components having different coking properties. This will affect the characteristics and uniformity of resulting cokes. It is also possible that the accuracy of samples taken for analysis throughout the investigation may have suffered to some extent when predried charges were involved. Measures taken to counteract the difficulty alleviated matters but did not fully rectify them. (See Appendix 1 for further remarks on the problem.)

-3-

Regarding the results of pilot oven tests it can be stated that they generally confirm the trends of and conclusions that may be drawn from the results of the full scale investigations. The results reported for the pilot scale experiments (Tables 6-10) are therefore limited to moisture content as charged, bulk density, heat penetration and theoretical throughput.

Discussion of results.

Sente

Condensed results of the full scale investigations are given in Tables 1 to 5. Tables 1 to 3 and Table 4 con-

tain the results of the experiments in which predrying was carried out in the fluidized bed (FDE, FDR and FDM) and the revolving drum (DD), respectively. Table 5 was compiled to enable an easy comparison to be made between fluidized bed (FD) and drum (DD) results for those blends where both methods of predrying were applied.

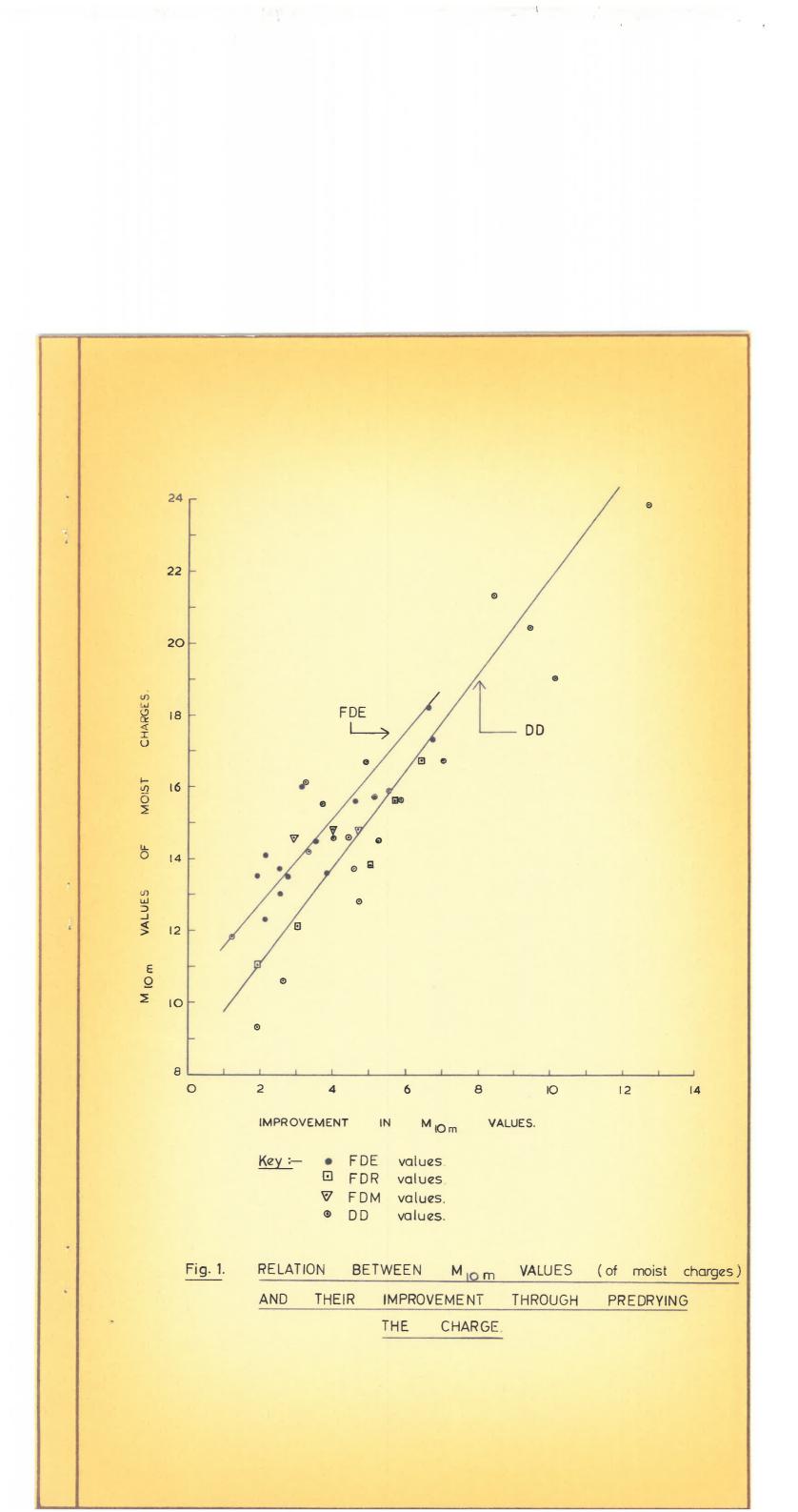
Generally speaking, there is relatively little difference between the size analysis, mean size and shatter index (on $l\frac{1}{2}$ in) of coke from moist and corresponding predried charges. An important difference is, however, a reduction of about 3 per cent in the breeze content (material smaller than in) resulting from predrying charges. The

B.S./

B.S. abrasion index and all the micum indices are appreciably improved by predrying. Thus the reduction in breeze content mentioned above would be more pronounced if both types of coke were sampled after handling instead of at the coke ovens as was done during the investigation.

South African cokes generally compare rather unfavourably with overseas cokes when considering resistance to abrasion, for example as depicted by the micum index on lOmm. It is therefore fortunate that especially this characteristic is appreciably improved by predrying the charge. It also appears to be quite reasonable in South Africa to judge the effect or benefit of predrying simply by the degree of improvement imparted to the micum index M_{10m} . This was done graphically in Figure 1 by plotting points representing M_{10m} micum index values of cokes resulting from conventional moist charging (moisture content of blends about 7-8 per cent) on the y-axis, and on the x-axis the improvement in these values brought about by predrying the charge. The DD results which appeared in the previous report were also included in Figure 1.

The plotted points obtained lie in a band which suggests a linear relationship between the two variables. The interpretation is that the weaker the coke yielded by a blend when charged in the moist state the greater the improvement in the M_{10m} value obtained after predrying the charge.


Two straight lines, representing the best fits of the FDE and the DD results, (13 and 19 points, respectively), were drawn in the figure. The lines are given by the following equations:-

-4-

For FDE results: -x' = 0.838y - 8.68For DD results: -x'' = 0.745y - 6.25

From the two straight lines it appears that a larger improvement in M_{10m} results when predrying is carried out in the drum drier. This is confirmed by the results in Table 5. The FDR and FDM results are represented by only 5 and 3 points, respectively, in Figure 1. It is thus not possible to draw firm conclusions regarding the relative merits of these two modifications of fluidized bed predrying. There is no indication that maximum recirculation of exit gases (FDM results) is any better than limited recirculation (FDR results), and it is probable that neither method is

better/

better than predrying in the drum.

It is unfortunate that no results are available for predrying by means of an inert or preferably slightly reducing fluidizing gas. Of course, any additional benefit from such a predrying procedure would probably only be realized if total exclusion of oxidizing gases could subsequently be applied until the time of charging the coal. It is not known whether the additional trouble and expense of such a refinement would in fact yield any additional benefits.

-5-

The tests carried out in the Institute's pilot coke ovens yielded some additional results which could not readily be obtained with full scale investigations, namely in respect of heat penetration at constant flue temperatures and, in conjuction with the bulk density figures, the theoretical throughput values. These data have been evaluated separately for the narrow and the wide experimental ovens, the results appearing in Tables 6-9. These results have been summarized in Table 10. They are very similar for the two ovens and may be briefly stated as follows: - Predrying the coking charges so as to render them approximately air-dry before charging (i.e. reducing their moisture content from about 7.3 to about 2.2 per cent) results in an increase in the bulk density (dry basis) of $12\frac{1}{2}$ per cent, a reduction in the heat penetration of $3\frac{1}{2}$ per cent and an increase in the theoretical throughput of 10 per cent.

Conclusion.

Ł

L

A battery of coke ovens has already been operating in France on predried charges for several years now. No reports have been received that the results achieved are

not satisfactory, but neither have reports been received of further batteries being converted to or being designed for dry charging. It is thus not possible without further information to gauge the future of this technique in the only other country known to have applied it, viz. France.

The technical feasibility of dry charging, under at least some South African conditions, has now been established beyond any doubt. It is clear that appreciable improvement in coke quality may be achieved in this way.

It is undoubtedly no simple task to arrive at a quantitative economic evaluation of the advantages and

disadvantages/

disadvantages of adopting dry charging at existing coke ovens, as numerous less well defined aspects are involved.

-6-

The disadvantages include such factors as the conversion of a complete and established system, primarily designed for moist charging, and subsequent adaptation to the new circumstances. The dust nuisance and explosion risk cannot be overlooked either. The problem of size segregation has already been mentioned. An already complicated and expensive industrial process is rendered more so by the change over.

On the credit side there is, inter alia, the better yield of furnace coke of improved quality from more productive coke ovens. With the better coke more iron at a lower coke rate and with smoother operation can be produced in the same time in the same blast furnaces; or larger blast furnaces and other techniques can be employed to improve efficiency and reduce costs even further.

There is, however, another factor which may assume great importance in South Africa. Dry charging may constitute a further positive contribution to the conservation of coking coal, because it may be possible to use a higher percentage of weakly (or conversely the same percentage of a weaker) coking coal in blends. From the national point of view this is an important consideration.

It will indeed be interesting to follow developments in the technique of dry charging of coke ovens in South Africa in the future.

Acknowledgment.

The Institute is indebted to Iscor for enabling participation in the investigation and for allowing the Institute to procure quantities of the coals for additional experiments and samples of the cokes for testing.

16

SIGNED C.C. LA GRANGE CHIEF OF DIVISION.

PRETORIA. lst March, 1965.

APPENDIX 1.

-7-

Remarks on Size Segregation.

The rather serious problem of unwanted segregation or unmixing of different sizes will undoubtedly present itself when handling dry crushed coal. The phenomenon is very well described and illustrated in a recent publication by Williams.* He also proposes some precautions which may be taken to counteract unmixing.

A blender for flowable solids, employing pneumatic recycling and claimed to prevent unmixing of sizes, is described in other literature.** As the blender also acts as storage bunker it may provide the answer to some of the practical difficulties expected when introducing predrying of coking coal charges industrially.

*Williams, J.C. "The flow of materials in hoppers." The S.A. Industrial Chemist, <u>18</u>, No. 9, p.p. 102-6 (Sept. 1964).

**Anon. "Gravity unit efficiently blends solids." Chemical Engineering, July 6, 1964, p.p. 98/9.

M	ETHOD OF PREDRYIN	IG : FLUI	DIZED BED W	ITH	RESI	RICI	ED A	MOUNT	OF AIR	IN FLU	IDIZIN	G GAS	(FDR).	
	Details of	Coal Cha	rged				Cha	racter	istics	of Co	kes Ob	tained	L	
Test No.	Composition of Charge,*	Condi- tion	Moist. as Charged	S	Size Anal., % on		Mean Size	Shat. Ind.	B.S. Abr.	Modif	ied Mi	.cum Re	sults	
	%		%	3"	Tro		on 1 ¹ 코"	Ind.	^M '40	^M 2Om	M _{lOm}	CMTVm		
Is 249 Is 250	55 B, 16 S,) 22 DNC, 7 N)	Moist Dried Diff.	8.3 2.0 -6.3	42 35 -7	76 77 1	91 94 3	93 97 4	2.81 2.74 -0.07	88 86. –2	70 79 9	63 66 3	81 87 6	16.7 10.3 -6.4	53 59 6
Is 252 Is 253	19 B, 15 S, 48 Ind, 12 DNC, 6 N)Moist)Dried Diff.	6.8 1.5 -5.3	43 38 -5	77 74 -3	95 96 1	96 97 1	2.82 2.75 -0.07	88 87 -1	73 79 6	69 70 1	86 89 3	12.1 9.1 -3.0	60 63 3
Is 254 Is 255	34 S, 48 Ind,) 12 DNC, 6 N)	Moist Dried Diff.	6.0 1.5 -4.5	38 32 -6	76 73 -3	95 95 0	96 97 1	2.71 2.64 -0.07	89 86 -3	76 80 4	72 70 -2	88 89 1	11.0 9.1 -1.9	64 63 -1
Is 256 Is 257	36 B, 29 S,) 24 DNC, 11 N)	Moist Dried Diff.	8.0 2.0 -6.0	45 42 -3	77 74 -3	92 95 3	93 96 3	2.80 2.80 0	88 88 0	72 78 6	66 68 2	82 88 6	15.6 9.9 -5.7	55 61 6
Is 258 Is 259	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	7.3 1.8 -5.5	38 37 -1	72 74 2	90 95 5	92 97 5	2.67 2.76 0.09	85 86 1	73 80 7	64 71 7	84 90 6	13.8 8.8 -5.0	55 65 10
	Mean Difference		-5.5	-4	-1	2	3	-0.02	-1	8	2	4	-4.0	5

TABLE 2.

RESULTS OF FULL SCALE INVESTIGATIONS TO STUDY THE EFFECT OF PREDRYING THE CHARGE.

*For abbreviations used see text.

-9-

•	METHOD OF PREI	RYING :	FLUIDIZED E	BED W	ITH	MAXI	MUM	RECIRC	ULATION	OF EX	IT GAS	ES (FD	<u>M)</u> .	
	Details of	Coal Cha	rged				Char	acteri	stics	of Cok	es Obt	ained		
Test No.	Composition of Charge,*	Condi- tion	Moist. as Charged	S	ize %		• •	Mean Size	Shat. Ind.	B.S. Abr.	Modif	ied Mi	cum Re	sults
	%		%	3"	2"	ייב	1 <u>2</u> 11	In.	on l <u>i</u> "	Ind.	^M '40	M _{2Om}	MlOm	CMTV _m
Is 260 Is 261	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	6.5 1.8 -4.7	46 36 -10	74 75 1	91 95 4	93 96 . 3	2.81 2.69 -0.12	86 87 1	72 79 7	62 71 9	83 88 5	14.8 10.1 -4.7	53 64 11
Is 262 Is 263	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	7.3 2.2 -5.1	45 41 -4	76 78 2	92 95 3	94 97 3	2.85 2.86 0.01	88 87 -1	72 79 7	65 67 2	83 87 4	14.8 10.8 -4.0	55 60 5
Is 264 Is 265	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.									59			
	Mean Difference	ean Difference -4					3	0.01	0	. 7	4	4	-3.9	7

TABLE 3.

RESULTS OF FULL SCALE INVESTIGATIONS TO STUDY THE EFFECT OF PREDRYING THE CHARGE.

*For abbreviations used see text.

-10-

in the second				and the second second second			Contract of the local division of the local	and a substant of the substant of the	<u>(1)</u> .					
	Details of	Coal Cha	rged				Char	racteri	stics	of Cok	es Obt	ained		
Test No.	Composition of Charge,*	Condi- tion	Moist. as Charged	S	ize % o			Mean Size	Shat. Ind.	B.S. Abr.	Modif	ied Mi	cum Re	sults
	%		%	3"	2"] 11	1 <u>1</u> 11 211	In.	on l ¹ /2"	Ind.	[™] '40	^M 2Om	MlOm	CMTV _m
Is 232 Is 233	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	7.5 2.0 -5,5	51 37 -14	78 76 -2	92 96 4	94 97 3	3.01 2.78 -0.23	86 86 0	72 - 80 8	.64 69 5	83 88 5	13.7 9.1 -4.6	55 62 7
Is 243 Is 245	44 Nav, 25 S,) 23 DNC, 8 N)	Moist Dried Diff.	7.0 2.3 -4.7	52 42 -10	79 75 -4	92 96 4	94 97 3	2.99 2.82 -0.17	86 89 3	73 79 6	65 68 3	83 89 6	14.5 9.3 -5.2	56 61 5
Is 246 Is 247	44 Nav, 25 S,) 23 DNC, 8 N)	Moist Dried Diff.	7.0 2.0 -5.0	41 38 -3	72 74 2	89 94 5	92 96 4	2.74 2.69 -0.05	89 84 - 5	71 80 9	63 66 3	82 88 6	15.6 9.8 -5.8	53 60 7
Is 249 Is 251	55 B, 16 S,) 22 DNC, 7 N)	Moist Dried Diff.	8.3 2.3 -6.0	42 39 -3	76 75 -1	91 94 3	93 96 3	2,81` 2.75 -0,06	88 88 0	70 79 9	63 73 10	81 88 7	16.7 9.7 -7.0	53 63. 10
Is 264 Is 266	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff,	6.1 2.1 -4.0	42 47 5	76 80 4	92 96 4	94 97 3	2.79 2.99 0.20	88 89 1	72 77 5	65 67 2	82 87 5	14.6 10.6 -4.0	55 60 5
	Mean Difference		-5.0	-5	0	4	3	-0.06	0	7	5	6	-5.3	7

TABLE 4. RESULTS OF FULL SCALE INVESTIGATIONS TO STUDY THE EFFECT OF PREDRYING THE CHARGE. METHOD OF PREDRYING : REVOLVING DRUM (DD).

*For abbreviations used see text.

-11-

•	


	METH	OD OF PRE	EDRYING : FI	UID1	ZED	BED	(FD)	OR RE	EVOLVING	DRUM	(DD).			
	Details of	Coal Cha	arged		ы		Char	racteri	stics o	f Coke	s Obta	ined	t Attraction and generative and an and a	
Test No.	Composition of Charge,*	Condi- tion	Moist. as Charged	S	Size Anal., % on		Mean Size	Shat. Ind.	B.S. Abr.	Modif	ied Mi	.cum Re	sults	
	%	01011	%	3"	2"	1"	1 211	In.	on 1 ¹ "	Ind.	M'40	M _{20m}	M _{lOm}	CMTVm
Is 234 Is 233		FDE DD Diff.	1.2 2.0 0.8	50 37 -13	83 76 -7	95 96 1	97 97 0	3.13 2.78 -0.35	86 86 0	78 80 2	66 69 3	85 88 3	11.2 9.1 -2.1	58 62 4
Is 244 Is 245		FDE DD Diff.	1.9 2.3 0.4	43 42 -1	77 75 -2	95 96 1	97 97 0	2.87	86 89 3	78 79 1	66 68 2	86 89 3	11.0 9.3 -1.7	59 61 2
Is 248 Is 247		FDE DD Diff.	1.9 2.0 0.1	43 38 -5	79 74 -5	95 94 -1	97 96 -1	2.85 2.69 -0.16	87 84 -3	78 80 2	67 66 -1	86 88 2	11.0 9.8 -1.2	60 60 0
Is 250 Is 251		FDR DD Diff.	2.0 2.3 0.3	35 39. 4	77 75 -2	94 94 0	97 96 -1	2.74 2.75 0.01	86 88 2	79 79 0	66 73 7	87 88 1	10.3 9.7 -0.6	59 63 4
Is 265 Is 266		FDM DD Diff.	2.0 2.1 0.1	46 47 1	83 80 -3	95 96 1	97 97 0	2.92 2.99 0.07	89 89 0	77 77 0	67 67 0	86 87 1	11.7 10.6 -1.1	59 60 1
	Mean Difference		0.3	-3	-3	0	0	-0.10	0	l	2	2	-1.3	2

TABLE 5. RESULTS OF FULL SCALE INVESTIGATIONS TO STUDY THE EFFECT OF PREDRYING THE CHARGE.

s. 7

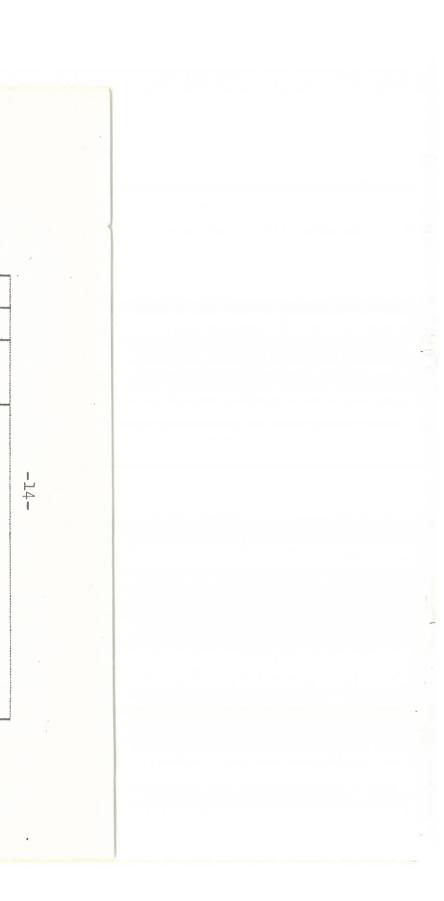
*For abbreviations used see text.

•

(00)	ו מתידתה ד			ROM PILOT	SCALE OVE			TEMPERATURE					
	L PREDRI	ED IN	ISCOR'S FLU	Narrow (1		•••••••••••••••••••••••••••••••	TED AN	IOUNT OF AIR			<u>(FDR))</u> .		
Iscor	Condi-			rbonising	and the second second second second			Tests in Wide (18.9") Oven Carbonising Conditions					
Test No,	tion Charge	Test No. N	Moist. as Charged %	B. Dens. (dry b.) lb/ft ³	Heat Penetr. in/hr	Theor. Through- put	Test No. W	Moist. as Charged %	B. Dens. (dry b.) lb/ft ³	Heat Penetr. in/hr	Theor. Through- put		
Is 249 Is 250	Moist Dried Diff.	542 543	8.8 2.2 -6.6	47.9 52.8 4.9	1.06 1.06 0.00	3.4 3.7 0.3	382 383	9.0 2.2 -6.8	47.9 53.3 5.4	0.93 0.92 -0.01	2.3 2.6 0.3		
Is 252 Is 253	Moist Dried Diff.	545 547	7.4 1.8 -5.6	48.2 53.8 5.6	1.06 1,00 -0.06	3.4 3.6 0.2	385 387	7.0 2.0 5.0	48.4 53.7 5.3	0.95 0.94 -0.01	2.4 2.7 0.3		
Is 254 Is 255	Moist Dried Diff.	546 548	7.0 1.6 -5.4	47.0 53.1 6.1	1.08 1.01 -0.07	3.4 3.6 0.2	386 388	7.0 1.8 -5.2	46.5 53.5 7.0	0.96 0.95 -0.01	2.4 2.7 0.3		
Is 256 Is 257	Moist Dried Diff.	549 550	7.6 1.8 -5.8	47.8 54.0 6.2	1.06 1.07 0.01	3.4 3.9 0.5	389. 390	7.8 2.8 -5.0	46.3 52.0 5.7	0.96 0.98 0.02	2.4 2.7 0.3		
Is 258 Is 259	Moist Dried Diff.	551 552	6.8 2.0 -4.8	44.7 52.7 8.0	1.11 1.07 -0.04	3.3 3.8 0.5	391 392	7.0 2.0 -5.0	43.9 52.7 8.8	0.96 0.90 -0.06	2.2 2.5 0.3		
Mean Differe	nce	1	-5.6	6.2	-0.03	0.3		-5.4	6.4	-0.01	0.3		

				TABI	<u>E7</u> .				
OBTAINED	FROM	PILOT	SCALE	OVEN	TESTS.	(FLUE	TEMPERATURES	0	1150°C

-


j.

5. 199

-14-

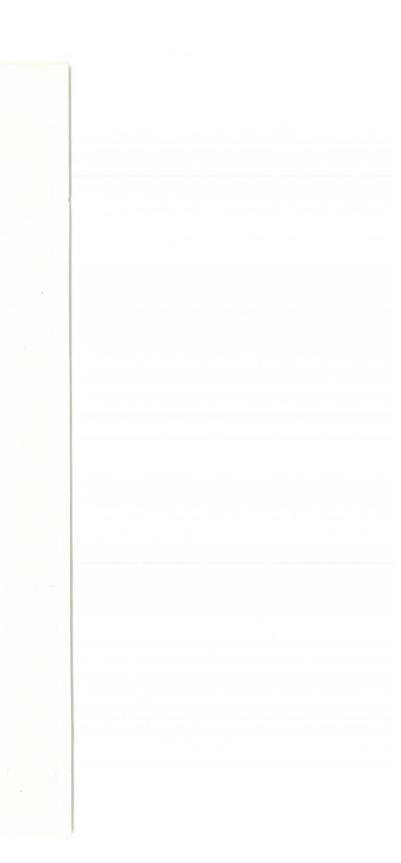
.

ain _____ 2

			Tests in	Narrow (1	5.0") Ove	n		Tests i	n Wide (18	8.9") Oven	
Iscor Test	Condi-	Moat	Ca	rbonising	Condition	S	Moat	Ca	rbonising	Condition	S
No.	tion Charge	Test No. N	Moist. as Charged %	B. Dens. (dry b.) lb/ft ³	Heat Penetr. in/hr	Theor. Through- put	Test No. W	Moist. as Charged %	B. Dens. (dry b.) lb/ft ³	Heat Penetr. in/hr	Theor. Through- put
Is 260 Is 261	Moist Dried Diff.	553 554	6.4 2.0 -4.4	46.3 53.4 7.1	1.09 1.05 -0.04	3.4 3.7 0.3	393 394	6.8 2.2 -4.6	45.2 53.3 8.1	0.99 0.97 -0.02	2.4 2.7 0.3
Is 262 Is 263	Moist Dried Diff.	555 556	7.8 2.0 -5.8	49.3 53.9 4.6	1.06 1.08 0.02	3.5 3.9 0.4	395 396	7.8 2.4 -5.4	48.4 54.2 5.8	0.98 0.99 0.01	2.5 2.8 0.3
Is 264 Is 265	Moist Dried Diff.	557 558	7.0 2.0 -5.0	49.5 53.9 4.4	1.09 1.08 -0.01	3.6 3.9 0.3	397 398	7.0 2.4 -4.6	49.8 54.4 4.6	0.98 0.97 0.02	2.6 2.7 0.1
Mean Differe	nce		-5.1	5.4	-0.01	0.3		-4.9	6.2	0.0	0.2

<u>TABLE 8</u>. DATA OBTAINED FROM PILOT SCALE OVEN TESTS. (FLUE TEMPERATURES : 1150⁰C).

-


.

119

(COAL PREDRIED IN ISCOR'S FLUIDIZED BED DRIER WITH MAXIMUM RECIRCULATION OF EXIT GASES (FDM)).

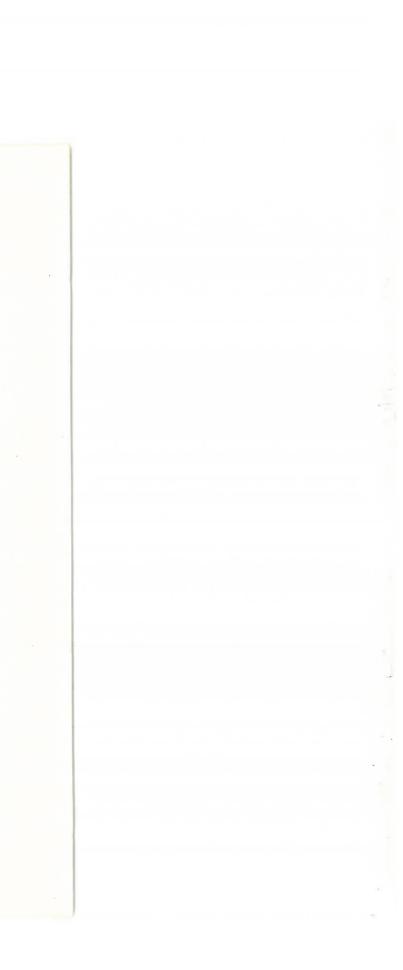
-15-

-

	(COAL	PREDRI	ED IN ISCOR	'S REVOLVI	NG DRUM D	RIER AND C	RUSHED	IN ISCOR'S	HAMMER MI	LL (DD)).		
			Tests in	Narrow (1	5.0") Ove	n		Tests i	n Wide (18	.9") Oven	l.	
Iscor Test	Condi-	Test	Ca	rbonising	Condition	S	Test	Ca	rbonising	Conditions		
No.			Moist. as Charged %	B. Dens. (dry b.) lb/ft ³	Heat Penetr. in/hr	Theor. Through- put	No. W	Moist. as Charged %	B. Dens. (dry b.) lb/ft3	Heat Penetr. in/hr	Theor. Through- put	
Is 232 Is 233	Moist Dried Diff.	525 526	7.2 2.6 -4.6	47.8 54.3 6.5	1.08 1.01 0.07	3.4 3.6 0.2	365 366	7.4 2.4 -5.0	50.7 54.9 4.2	0.98 0.90 -0.08	2.6 2.6 0.0	
Is 243 Is 245	Moist Dried Diff.	536 538	7.4 2.2 -5.2	48.6 54.5 5.9	1.06 1.00 -0.06	3.4 3.6 0.2	376 378	7.0 2.2 4.8	47.0 53.8 6.8	0.95 0.90 -0.05	2.3 2.6 0.3	
Is 246 Is 247	Moist Dried Diff.	539 540	7.4 2.0 -5.4	48.6 54.6 6.0	1.04 1.03 -0.01	3.4 3.7 0.3	379 380	7.2 2.0 -5.2	48.3 54.2 5.9	0.95 0.91 -0.04	2.4 2.6 0.2	
Is 249 Is 251	Moist Dried Diff.	542 544	8.8 2.4 -6.4	47.9 53.4 5.5	1.06 1.01 -0.05	3.4 3.6 0.2	382 384	9.0 2.4 6.6	47.9 53.9 6.0	0.93 0.90 -0.03	2.3 2.6 0.3	
Is 264 Is 266	Moist Dried Diff.	557 559	7.0 2.4 -4.6	49.5 55.1 5.6	1.09 1.00 -0.09	3.6 3.7 0.1	397 399	7.0 2.6 4.4	49_8 54.8 5.0	0.98 0.94 -0.04	2.6 2.7 0.1	
Mean Differe	nce	· · ·	-5.2	5.9	-0.06	0.2		-5.2	5.6	-0.05	0.2	

TABLE 9.

.


9

•

DATA OBTAINED FROM PILOT SCALE OVEN TESTS. (FLUE TEMPERATURES : 1150°C).

-16-

e 1

TABLE 10.

SUMMARY OF DATA OBTAINED FROM PILOT

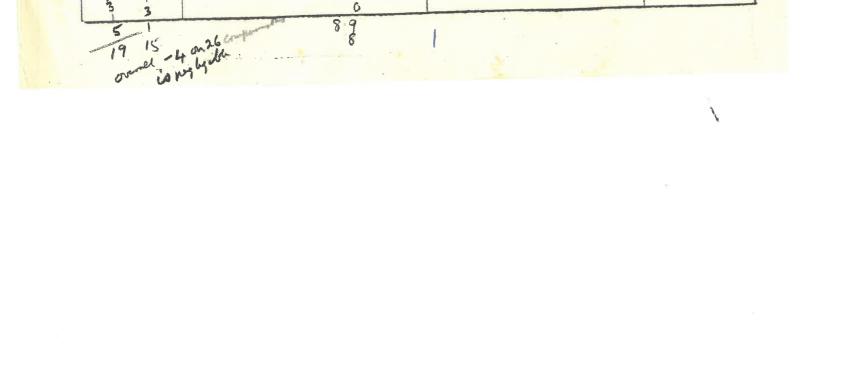
SCALE OVE	V TESTS	IN	PREDRYING	EXPERIMENTS

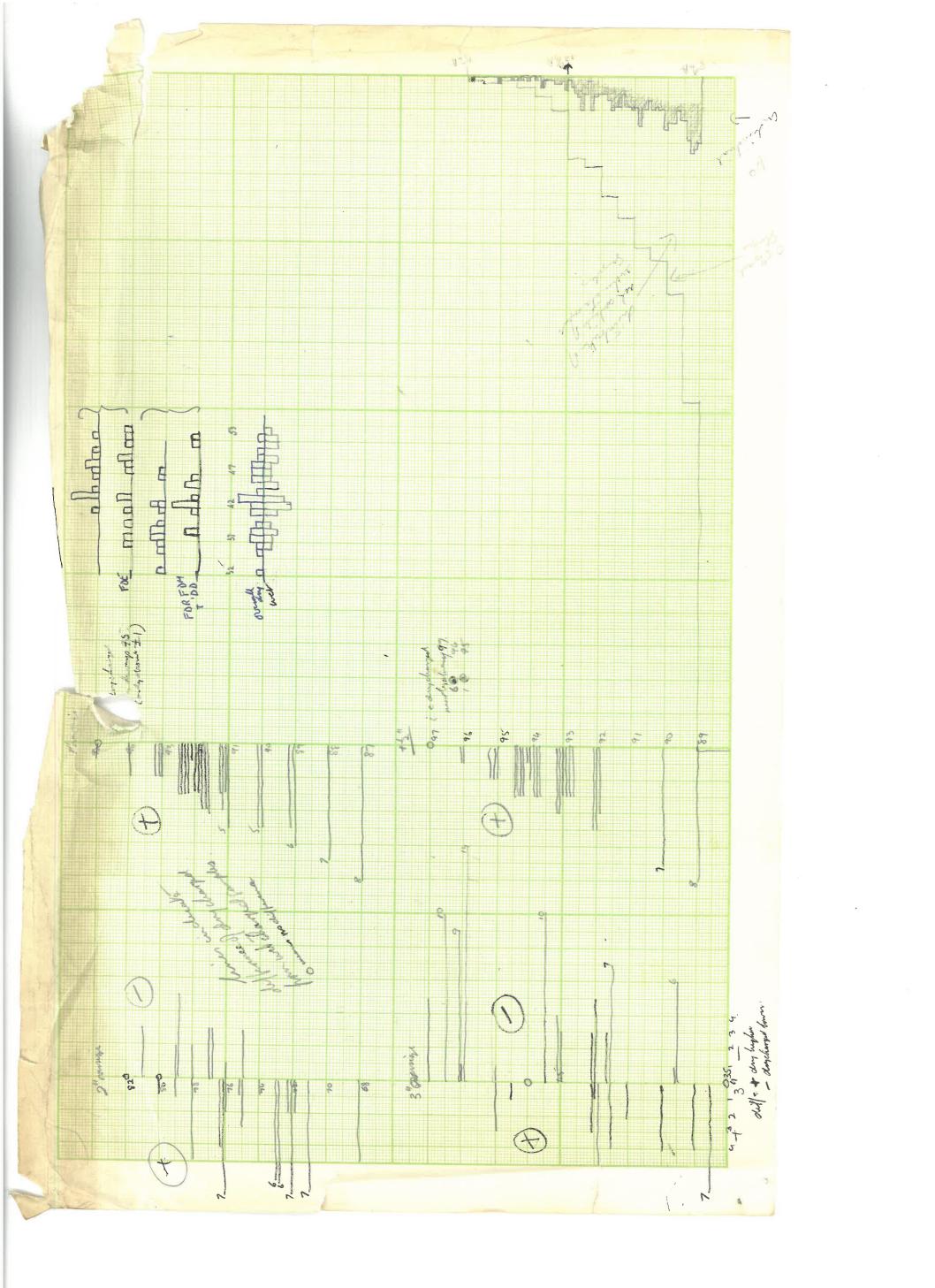
(FLUE TEMPERATURES : 1150°C)

(ALL METHODS OF PREDRYING TAKEN TOGETHER).

	and the second	
Oven Width (in)	15.0	18.9
Moisture (Average % as Charged (Decrease in* % (units)	7.2 5.1	7.4 5.1
Bulk Den- sity of (Average,* lb/ft ³ Charge (Increase) lb/ft ³ (dry basis) %	47.9 5.9 12	47.8 6.0 13
Heat (Average,* in/hr Penetra- (Decrease) in/hr tion (in**) %		0.96 0.03 3
Theoret- (Average,* lb/ft ³ hr ical (Increase) lb/ft ³ hr Through- (in**) %	3.4 0.3 10	

*Referring to moist charges. **As a result of predrying the charge.


-17-



CORRESPONDENCE FOR ATTENTION

DATE: Sth October. 1964.

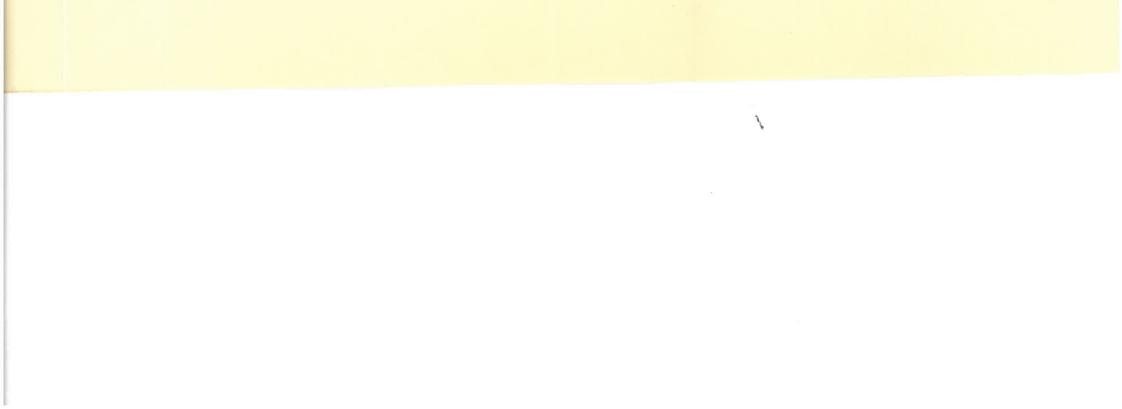
Ŕ	EF. NO.	NAME OF SE	INDER.	SUE	JECT	OFFICER
	21/374	Pretoria Techni	cal College	M. Stenvert - ance at class	non-attend-	
	17/2	Vaalbank Coal &	Anthracite	Cheque R63-4	5 - levy	
	17/2	Brockwell Anthi	racite	Cheque R111-	06 - levy	
*	35/39	Federale Mynbo	D	Sample repor core descrij	ts and otions	V
	1/20	m	Mion		73 M/4	9
			18.5-3	estate de la serie	71 70	
10 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P.	18:0-2 1		69 1	L.
81			175-21		18	un .
0 1		UH	17:0-) 1		(7 11	HIII Sheep
6	1		165-211		66 I 65 411	HIII Sheep goals
		IM 11 shup 1 goals	15:5-3 111		64 111	
9	11	goars	15:0-7		63 14/1	lie
4	m		14:5-1 411		62.11	
	Hm !!!		14.0-2 1 13.5-2 HATI		61	
men and	HII		13.0-2		60 1	
	41		12:5-7	goals	59.1	
80			12:0-3 11 11:5-3	III cheep		
-20	and the second se		.4	- And	- ¹⁴	
6	1		.3	1		1 M 1
			111	67		
		7, quite ofkin warring wet.	10.9			
1	w but is 8	7. quile often many room	.8	10		-
ADEN	-		?	In		
1	J @ 84 d	My.	15	1		
un	@ 83 ·	e and and	.4			
	Ing little	e range wenall belavin	3	1		
	every Wille	aller	-1	1		
	dag the	M	0			
	and a state	A salwa	4.4	n		
04	- + du	T	.7	1		
when	2 2		6			
	1 . 2	(Francial)	. 5			
	1 !	4-9	4	1		
	2		5 2	111		
	111		T			

METHOD OF PREDRYING : FLUIDIZED BED WITH EXCESS AIR IN THE FLUIDIZING GAS (FDE).														
	Details of	Characteristics of Cokes Obtained												
Test No.	Composition of Charge,*	Condi- tion	Moist. as Charged %	Size Anal., % on			Size	Shat. Ind.	B.S. Abr.	Modified Micum Results				
	%			3"	" 2" l"		<u>1</u> 11 In.	In.	on l [≟] "	Ind.	^M '40	M _{20m}	M _{lOm}	CMTVm
Is 220 Is 221	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	5.9 2.7 -3.2	48 49 1	80 80 0	93 95 2	95 97 2	3.00 3.01 0.01	87 85 - 2	74 77 3	65 67 2	85 87 2	12.3 10.2 -2.1	57 60 3
Is 222 Is 223	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	6.6 2.3 -4.3	49 52 3	82 82 0	93 95 2	97 97 0	2.99 3.04 0.05	87 87 _0	74 76 2	63 66 3	82 84 2	14.1 12.0 -2.1	54 58 4
Is 224 Is 225	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	6.9 2.7 -4.2	43 44 1	75 78 3	92 95 3	94 - 96 2	2.81 2.85 0.04	85 87 2	76 78 2	63 66 3	84 87 3	13.0 10.5 -2.5	55 59 4
Is 226 Is 227	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	7.2 2.2 -5.0	49 48 -1	80 81 1	94 96 2	95 97 2	2.95 2.98 0.03	89 88 -1	74 77 3	67 67 0	84 86 2	13.5 11.6 -1.9	58 59 1
Is 228 Is 229	45 Nav, 25 S,) 22 DNC, 8 N**)	Moist Dried Diff.	6.5 1.7 -4.8	37 41 4	68 73 5	90 95 5	93 96 3	2.60 2.77 0.17	83 86 3	76 80 4	62 68 6	85 88 3	13.6 9.8 -3.8	54 61 7
Is 230 Is 231	45 Nav, 25 S,) 22 DNC, 8 N***)	Moist Dried Diff.	6.8 2.0 -4.8	53 48 -5	81 78 -3	92 93 1	94 95 1	3.06 2.92 -0.14	87 86 -1	71 76 5	63 64 1	80 83 3	16.0 12.9 -3.1	53 55 2
Is 232 Is 234	45 Nav, 25 S,) 22 DNC, 8 N)	Moist Dried Diff.	7.5 1.2 -6.3	51 50 -1	78 83 5	92 95 3	94 97 3	3.01 3.13 0.12	86 86 0	72 78 6	64 66 2	83 85 2	13.7 11.2 -2.5	55 58 3
Is 235 Is 236	60 Nav, 30 S,) 10 DNC)	Moist Dried Diff.	6.3 1.9 -4,4	36 43 7	73 79 6	88 95 7	90 97 7	2.63 2.81 0.18	85 87 2	69 77 8	59 63 4	80 86 6	17.3 10.6 -6.7	49 56 7
Is 237 Is 238	60 Nav, 30 S,) 10 DNC)	Moist Dried Diff.	7.3 1.9 -5.4	39 43 4	71 78 7	87 95 8	89 97 8	2.65 2.84 0.19	87 88 1	68 77 9	60 66 6	79 86 7	18.2 11.6 -6.6	49 58 9
Is 239 Is 240	40 Nav, 20 S,) 40 DNC)	Moist Dried Diff,	6.8 1.6 -5.2	47 47 0	79 80 1	93 95 2	95 97 2	3,00 2.95 -0.05	88 87 -1	73 77 4.	65 63 -2	83 86 3	13.5 10.8 -2.7	56 56 0
Is 241 Is 242	40 Nav, 20 S,) 40 DNC)	Moist Dried Diff.	6.4 1.6 -4.8	43 46 3	73 79 6	91 96 5	93 97 4	2.71 3.00 0,29	89 89 0	70 79 9	67 72 5	83 88 5	15.7 10.6 -5.1	56 64 8
Is 243 Is 244	44 Nav, 25 S,) 23 DNC, 8 N)	Moist Dried Diff.	7.0 1.9 -5.1	52 43 -9	79 77 -2	92 95 3	94 97 3	2.99 2.87 -0.12	86 86 0	73 78 5	65 66 1	83 86 3	14.5 11.0 -3.5	56 59 3
Is 246 Is 248	44 Nav, 25 S,) 23 DNC, 8 N)	Moist Dried Diff.	7.0 1.9 -5.1	41 43 2	72 79 7	89 95 6	92 97 5	2.74 2.85 0.11	89 87 -2	71 78 7	63 67 4	82 86 4	15.6 11.0 -4.6	53 60 7
Mean Difference -4.8				1	3	4	3	0.07	0	5	3	4	-3.6	5

*For abbreviations used see text. **Blend crushed extra fine. ***Blend crushed extra coarse.

TABLE 1.

RESULTS OF FULL SCALE INVESTIGATIONS TO STUDY THE EFFECT OF PREDRYING THE CHARGE.


Contraction of the second

-13-

TABLE 6.

DATA OBTAINED FROM PILOT SCALE OVEN TESTS. (FLUE TEMPERATURES : 1150°C). (COAL PREDRIED IN ISCOR'S FLUIDIZED BED DRIER WITH EXCESS AIR IN FLUIDIZING GAS (FDE)).

Iscor Test No.	Condi- tion Charge	Tests in Narrow (15.0") Oven						Tests in Wide (18.9") Oven					
		Test No. N	Carbonising Conditions					Carbonising Conditions					
			Moist. as Charged %	B. Dens. (dry b.) lb/ft ³	Heat Penetr. in/hr	Theor. Through- put	Test No. W	Moist. as Charged %	B. Dens. (dry b.) lb/ft ³	Heat Penetr. in/hr	Theor. Through- put		
Is 220 Is 221	Moist Dried Diff.	512 514	6.2 2.6 -3.6	46.2 52.1 5.9	1.09 1.03 -0.06	3.4 3.6 0.2		-			-		
Is 222 Is 223	Moist Dried Diff.	515 516	6.8 2.6 -4.2	50.1 54.5 4.4	1.09 0.99 -0.10	3.6 3.6 0.0	355 356	7.2 2.6 -4.6	49.7 56.0 6.3	0.98 0.90 -0.08	2.6 2.7 0.1		
Is 224 Is 225	Moist Dried Diff.	517 518	7.6 2.6 -5.0	47.6 53.8 6.2	1.09 1.04 -0.05	3.5 3.7 0.2	357 358	7.6 2.6 -5.0	46.2 55.3 9.1	0.99 0.95 -0.04	2.4 2.8 0.4		
Is 226 Is 227	Moist Dried Diff.	519 520	7.4 2.0 -5.4	49.1 54.4 5.3	1.08 1.04 -0.04	3.5 3.8 0.3	359 360	7.8 2.2 -5.6	48.4 55.3 6.9	0.96 0.95 -0.01	2.5 2.8 0.3		
Is 228 Is 229	Moist Dried Diff.	521 522	6.6 2.0 -4.6	44.1 52.4 8.3	1.09 1.05 -0.04	3.2 3.7 0.5	361 362	6.8 3.0 -3.8	44.5 51.9 7.4	1.00 0.92 -0.08	2.4 2.5 0.1		
Is 230 Is 231	Moist Dried Diff.	523 524	7.2 1.8 -5.4	49.4 53.8 4.4	1.03 1.06 0.03	3.4 3.8 0.4	363 364	7.4 2.2 -5.2	48.6 54.3 5.7	0,96 0,93 -0.03	2.5 2.7 0.2		
Is 232 Is 234	Moist Dried Diff.	525 527	7.2 2.0 -5.2	47.8 53.9 6.1	1.08 1.06 -0.02	3.4 3.8 0.4	365 367	7.4 2.4 -5.0	50.7 54.4 3.7	0.98 0.95 -0.03	2.6 2.7 0.1		
Is 235 Is 236	Moist Dried Diff.	528 529	6.6 2.2 -4.4	46.2 53.6 7.4	1.07 1.06 -0.01	3.3 3.8 0.5	368 369	6,8 2.0 -4.8	46.1 52.2 6.1	0,91 0.95 0.04	2.2 2.6 0.4		
Is 237 Is 238	Moist Dried Diff.	530 531	7.4 2.2 -5.2	47.5 53.1 5.6	1.05 1.01 -0.04	3.3 3.6 0.3	370 371	7.4 2.2 -5.2	48,9 53.5 4,7	0.96 0.94 -0.02	2.5 2.7 0.2		
Is 239 Is 240	Moist Dried Diff.	532 533	7.0 2.0 -5.0	49.5 53.9 4.4	1.08 1.06 -0.02	3.6 3.8 0.2	372 373	7.8 2.2 -5.6	49.3 50.6 1.3	0.96 0.95 -0.01	2,5 2.5 0.0		
Is 241 Is 242	Moist Dried Diff.	534 535	7.0 2.0 -5.0	47.4 53.9 6.5	1.09 1.00 -0.09	3.5 3.6 0.1	374 375	6.8 1.8 -5.0	45.9 53.5 7.6	0.97 0.90 -0.07	2.4 2.5 0.1		
Is 243 Is 244	Moist Dried Diff.	536 537	7.4 2.0 -5.4	48.6 54.6 6.0	1.06 1.01 -0.05	3.4 3.7 0.3	376 377	7.0 2.2 -4.8	47.0 54.3 7.3	0.95 0.94 -0.01	2.3 2.7 0.4		
Is 246 Is 248	Moist Dried Diff.	539 541	7.4 2.0 -5.4	48.6 53.9 5.3	1.04 1.06 0.02	3.4 3.8 0.4	379 381	7.2 2.2 -5.0	48.3 53.8 5.5	0.95 0.96 0.01	2.4 2.7 0.3		
Mean Di	fference		-4.9	5.8	-0.04	0.3		-5.0	6.0	-0.03	0.2		

