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SUMMARY

Rockbolting is a prerequisite for providing roof support in mining operations. The

problem of rock pressure becomes worse as mining becomes deeper. Most of the

rockbolts designs are made from simple carbon steel. The related problems of

uncertainty as to the quality of installation of grouted steel tendons for reinforcement

of rock around tunnels and stope gullies, and the effect of corrosion, rock

deformation and repeated dynamic loading from seismic events on the integrity of

even well installed tendons, have been long recognised both in South Africa and

world-wide.

Support, which is adequate on installation, may be insufficient when loading

conditions change. A smart rockbolt was therefore proposed that, when stressed

underground, undergoes a microstructural transformation, with its properties

changing from a non magnetic to magnetic depending on the degree of plastic

deformation, thus leading to a change in longitudinal ultrasonic velocity. These

properties can be monitored using a portable magnetic and ultrasonic instrument

respectively to determine a change in loading conditions, and to warn of a possible

overload condition. The smartbolt acts as a sensor for determination of stresses in

mine workings. Also, since the smartbolt alloy could be installed in a mine containing

aggressive minewater, the opportunity has been taken to study some of its corrosion

properties.

This report detail the research work performed at Mintek for SIMRAC into the

development of a sensor material (smartbolt alloy) using metastable austenitic

stainless steel. This study was split in to two phases. Phase 1 investigated the use of

magnetic methods in measuring the stress or microstructural transformation in an

individual bolt in both laboratory and underground environment. The corrosion

performance of the smartbolt alloy was evaluated in synthetic minewater and

compared with that of AISI 304 and 316 as well as mild steel.  Phase 2 investigated

the use of ultrasonic methods, modelling of the smartbolt alloy and testing

underground.



Phase 1: Mintek identified an alloy composition as being suitable for acting as a

smartbolt material under the influence of strain. Laboratory work has shown that

there is good correlation between ferritescope (magnetic) readings and those from a

magnetic balance. Some problems do, however, exist with the ferritescope method

of monitoring, in particular the depth of penetration. However, tests were carried out

underground.

As a means of comparison, telltales (simple wire extensometers which give a visual

warning of rock movement) were installed adjacent to some of the smartbolts. The

results show a similar pattern developing at the two test sites chosen in that a

gradual yielding of the bolts was taking place. Clearly, smartbolt technology was in

its early stages, and more testing was required.

Phase 2: Characterisation have been performed under laboratory conditions and

show that the smartbolt alloy has a good combination of high strength and ductility;

this is important in order to resist extreme conditions of high tensile and shear stress,

much as a conventional roof bolt. Comparisons have been made with standard

grades such as Type 304 stainless steel including the work-hardening behaviour.

Some preliminary modelling work has been carried out to assess the plastic

behaviour of metastable austenitic stainless steels of which the smartbolt alloy is

part.

A portable ultrasonic (USM 25 DAC) monitoring device was used to measure the

longitudinal velocity during the calibration trials. The results show a good correlation

between the longitudinal ultrasonic velocity and strain. Smartbolts of dimension 1.5m

by 16mm and 1.5 m by 20 mm have been manufactured and installed by grouting

and mechanical point anchored methods in platinum mine for monitoring. Using an

ultrasonic sound velocity-measuring device, it is shown that a clear indication of

stress in an individual bolt can be quickly and simply measured. A trend over a three

months period is developing with each bolt yielding.
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1. INTRODUCTION

This report detail the research work performed at Mintek for SIMRAC into the

development of a smart rockbolt for underground monitoring using metastable

austenitic stainless steel. This study was split into two phases as follows:

Phase 1
The objective of the first phase of this project was to investigate the use of magnetic

methods in measuring the stress or microstructural transformation in an individual

bolt in both laboratory and underground environment. In this phase (C3119M)(1), the

smartbolt alloy’s magnetic response to temperature change was particularly

investigated. Laboratory characterisation (tensile tests at temperature range from 23°

to 200°C) and magnetic (ferritescope, magnetic balance, X-ray diffraction) tests were

carried out on mini and maxi (full-size) bolts. The influence of probe test position and

the surface condition of the material (heat treatment scale) were also studied.

Using in-house laboratory built pulse-echo equipment, some preliminary data using

the ultrasonic method were obtained and looked promising. For field testing, full-size

bolts (∼ 1.5m long) were prepared and installed in two sites, viz., a coal and gold

mine respectively. Monitoring of the loading of the bolts was carried out monthly

using a magnetic method. Some problems do, however, exist with ferritescope

method of monitoring, in particular the depth of penetration. It was therefore

recommended that ultrasonic technique be used or explored for monitoring as they

may have certain advantages versus magnetic methods.

Phase 2
The results and recommendations of phase 1 led to the initiation of phase 2. It forms

part of the work to explore ultrasonic velocity measurement technique for the

nondestructive estimation of ferrite content in this metastable smartbolt alloy. In

order to provide a more complete description of the alloy’s behaviour, its response to

stress and strain has been investigated. It also includes a full laboratory

characterisation and preliminary modelling of a smartbolt alloy.
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A suitable portable ultrasonic instrument was purchased and used to carry out the

calibration and monitoring of the smartbolts. Since ultrasound techniques are

described in the report, a brief summary of longitudinal velocity and it’s evaluation is

given in Appendix 1 to enable the reader to follow the discussion. Also, since the

smartbolt alloy could be installed in a mine containing aggressive minewater, the

opportunity has been taken to study some of its corrosion properties (section 3.5
and Appendix 4)

2. EXPERIMENTAL TECHNIQUE

2.1 Industrial

Two octagonal one ton ingots of smartbolt material were successfully rotary forged

down to a section size of 140 mm square. The forged billets were soaked at 1200

°C, put through the roughing mill and finally through the 12-stand bar mill (Figures 1a

and 1b). Rolling to wire rod (20 mm in diameter) was successfully carried out and an

approximate 100 % yield was obtained. The rod material was annealed and water

quenched (heat-treated) and then taken for rockbolt manufacture and calibration of

individual bolts. A detailed processing route is shown in Appendix 2.

Important aspects in developing smart strain-sensitive materials are that the

incubation strain is reduced as much as possible and that the microstructural

transformation rate is high, thus enabling effective monitoring. Also they should not

be too sensitive to process variability. The Md temperature (the upper temperature at

which transformation to martensite may be induced by deformation) of this alloy was

determined in Phase 1 of the project and found to be somewhere around 120°C to

160°C (a value of 140°C with a precision of ±20°C). The Md temperature is

dependent on the chemistry of the alloy, therefore the nominal specification of the

smartbolt alloy was chosen (Table 1) from the range of composition studies. The

smartbolt alloy was analysed using spark emission spectroscopy.

The chemical composition of this alloy is given in Table 1. A Ferritscope (Fischer

MP3 model) and a permanent magnet was used to check that the material was non-

magnetic before any laboratory work was carried out.
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a. b.

Figure 1. (a) Rotary forging of smartbolt ingot.  (b) batches of smartbolt wire rod (20
mm in diameter).

Table 1. Nominal and analysed composition of the smartbolt alloy (wt%)

Elements (wt%)

C Si Mn P S Cr N Mo Cu Al Sn

Nominal 0.2*
min

- 8 to 12+ 0.025

max

0.025

max

11 to

13#

0.1

max

- - - -

Analysed
(spectroscopy)

0.233 0.61 9.99 0.014 0.0091 12.5 0.13 0.02 0.07 0.004 0.002

* preferably 0.25 ±0.02,     + preferably 10 ±1.0,     # preferably 11.5 to 12.5

2.2 Laboratory

Metallography was carried out by way of automated grinding and polishing. Hot

rolled, laboratory and industrial annealed specimens were mechanically polished to a

1µm finish using diamond paste, and finally electropolished in 20 percent perchloric

acid at 18 volts for 30 seconds (20ml perchloric acid plus 80ml alcohol) followed by

etching in Beraha’s reagent. Electrochemical polishing was necessary to remove any

deformation-induced martensite that may have formed during the mechanical

polishing.
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For the determination of mechanical properties on hot rolled (HR), industrial (HRA)

and laboratory annealed (HRL) material, standard (ASTM E8) round tensile

specimens of 12.5 mm diameter and 50 mm gauge length of smartbolt alloy and

Type 304 stainless steel were machined. Duplicate tensile tests using a Tinius Olsen

600kN tensile testing machine were carried out. The specimens were tested to the

requirements of ASTM E8(2) . The samples were tested to failure at room

temperature. For each test, the yield strength (at 0.2 per cent offset), tensile strength

and per cent elongation were recorded.

Also, for the determination of work-hardening coefficient (n-value), tensile tests were

carried out on laboratory annealed smartbolt alloy and Type 304. These samples

were round tensile specimens of 6.25 mm diameter and 25 mm gauge length. Prior

to testing, all the test specimens were wrapped with stainless steel foil and annealed

at 1050°C followed by water quenching. The specimens were also tested to the

requirements of ASTM E8(2). Duplicate tensile tests using a computer interfaced

Instron 1175 tensile machine (which allowed the data to be captured on a computer

file), were carried out at a constant crosshead speed of 2 mm/min (initial strain rate

of 1.3 x 10-4s-1). This strain rate was considered to be sufficiently low to prevent

excessive local heating (adiabatic) in the specimen. The samples were tested to

failure at room temperature.

Some preliminary modelling work was carried out to assess the plastic behaviour of

these metastable austenitic stainless steels of which the smartbolt alloy is part.

Microsoft’s Excel SOLVER package was used as the computational tool to analyse the

load-strain data.

To study the influence of stress and strain on industrial annealed smartbolt material

and correlate the results with ultrasonic sound velocity, a series of mini bolts

(approximately 750 mm in length) were tested using a Tinius Olsen 600kN frame. A

Krautkramer USM 25 ultrasonic measuring instrument was used to measure the

sound velocity of the mini-bolts at different strain levels. Calibration of the instrument

was performed according to ASTM E494-75(3) and the Krautkramer operating

manual(4). A detailed calibration process is shown in Appendix 3. It should be noted

that Case A calibration process was used and Type 304 taken as a reference

material.
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2.3 Field testing

It was found that the proposed test site used 16mm and 20mm diameter roofbolts,

therefore, some of the 20mm stock material was machined down to 16mm in

diameter and these test bolts were re-heat treated. The threads (M16 RH and M20

RH) of the bolts were machined according to SABS 1408 of 1987 (code 142007 and

142037). The thread was approximately 150mm in length.

The smartbolts were not thread rolled because the material displays a much stronger

work-hardening effect. In order to thread roll the material a special set of dies with

high hardness is required. Two sets of smartbolts (six of 1.5m x 20mm and five of

1.5m x 16mm) were installed in a gully section at a platinum mine.

The first set of smartbolts was resin bonded and the other set was mechanically

anchored in order to compare the two different methods of installation (It is felt that

the technology is more appropriate using anchoring rather than frictional forces).

Monitoring of the loading on the bolts was carried out monthly.

3. RESULTS AND DISCUSSION

3.1 Microstructure

The microstructure of Type 304 in the laboratory-annealed condition is shown in

Figure 2. Figures 3 to 5 show the microstructure of the smartbolt alloy in different

process conditions. The hot rolled specimen shows some undissolved carbide at the

grain boundaries (Figure 3). The laboratory and industrial annealed microstructures

were similar (fully austenitic) with no presence of carbides (Figures 4 and 5).
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Figure 2: Microstructure of laboratory annealed Type 304 that shows an austenitic
structure

Figure 3: Microstructure of hot rolled smartbolt alloy that shows some undissolved
carbides

Figure 4: Microstructure of laboratory annealed smartbolt alloy that is fully austenitic
and free of carbides
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Figure 5: Microstructure of industrial annealed smartbolt alloy that is fully austenitic
and free of carbides

The black spots seen in these micrographs are non-metallic oxide inclusions.

Martensite was not detected in the alloy in the hot rolled and annealed state because

the Ms temperature (temperature at which martensite start to form) was calculated to

be below room temperature (Ms (°C) = 502 – 810C – 1230N – 13Mn – 30Ni – 12Cr
– 54Cu – 46Mo). Schaeffler/De Long and Hull coefficients were used to predict the

phase composition of the alloy. The predicted composition is shown to be in the

austenite plus martensite region (Figure 6). The predicted phase composition was

plotted on the Schaeffler(5) diagram using the following empirical formulae with

standard coefficients for each element:

Nieq = Ni + 0.5Mn + 0.3Cu + 30C + 20N…(Schaeffler/De Long) (1)
Nieq = Ni + 0.11Mn- 0.0086Mn2 + 30C ..…(Hull) (2)
Creq = Cr + Mo + 1.5Si

Manganese is one of the austenite formers, therefore a significant change in its

coefficient has influenced the nickel equivalent of the alloy as shown on the graph

(point 1 and 2 by Schaeffler/De Long and Hull coefficients).
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Figure 6. Smartbolt alloy plotted on Schaeffler-De Long diagram using Schaeffler
and Hull equivalents

3.2 Hardness

Vickers hardness tests using a 20kg load were performed on hot rolled and annealed

specimen (two from each batch), taken at random from the supplied bars. The

results of these tests including the standard deviation are summarised in Table 2.

The hardness value of the smartbolt alloy in the hot rolled state is somewhat higher

than that in the annealed state; this is probably due to complete recrystallization

taking place during annealing, producing softening. It can be seen that the smartbolt

alloy is substantially harder than Type 304 stainless steel partly due to its much

higher carbon and nitrogen contents.
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Table 2. Vickers hardness test results (average of five measurements)

Hardness (HV20)

Sample Condition Average Standard deviation

Type 304 Lab annealed 177.5 5.2

Smartbolt Hot rolled 295.3 7.3

Smartbolt Lab annealed 274.2 9.3

Smartbolt Industrial annealed 261.2 9.6

3.3 Tensile Properties

The mechanical properties of the alloys are described in the following sections. The

tensile properties for the alloys tested at room temperature are summarised in

Tables 3 and 4.

3.3.1 Proof stress and UTS
The annealed proof values are fairly similar to the current carbon steel grade used

for roofbolts. The standard deviation is also included. The proof stress of the

smartbolt alloy in the HR and HRL condition is 524 and 451MPa respectively, which

is somewhat higher than that for Type 304 (319MPa). The somewhat higher yield

stress obtained from the hot rolled material might be due to undissolved carbides on

grain boundaries, also incomplete recrystallisation after rolling. Therefore, it is

preferable to use the material in the annealed condition. Typical values for the tensile

strength of industrial Type 304 are 560 to 635MPa.

The UTS of the smartbolt alloy in the HR and HRL condition was 847MPa and 961 to

1039MPa for the laboratory and industrial annealed material, respectively. The UTS

values, relative to the proof stress values, are an indication of the instability of the

alloy. It is clear that the smartbolt alloy is the most unstable alloy, and has a

relatively high ratio of UTS/Proof.
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3.3.2 Elongation to fracture
The percentage elongation for Type 304 obtained in this work was 80%. This value

is high due to the small gauge length chosen (the minimum elongation specified for

Type 304 is 40%), compared to that of the smartbolt alloy, which is 25 to 30%. TRIP

(Transformation Induced Plasticity) formation in Type 304 does lead to an increase

in work hardening rate and an increase in resistance to necking. In the smartbolt

material, alpha prime (α′ ) martensite is nucleated very quickly and hence large

amounts of α′  martensite will reduce the % elongation (as shown in Figure 8) and

produce a characteristic flat-face fracture.

Table 3. Tensile tests results (12.5mm diameter specimen)

Alloy UTS

(MPa)

0.2%Proof
Strength

(MPa)

Elongation

(%)

Condition

Smartbolt 847  ±23 524  ±26 18 Hot rolled

Smartbolt 1039  ±41 445  ±21 29 Lab annealed

Smartbolt 961  ±9.0 451  ±39 25 Industrial
annealed

Table 4. Tensile tests results (6.25mm diameter specimen)

Alloy UTS

(MPa)

0.2%Proof

Strength
(MPa)

Elongation

(%)

Condition

Type 304 733  ±1.0 319  ±63 83 Lab annealed

Smartbolt 1063  ±24 438  ±2.0 30 Lab annealed

Doege and Kulp(6) investigated the forming behaviour and properties of both L-TRIP

(TRIP700) and H-TRIP (Type 304) steel types. TRIP-steels contain austenite, which

is metastable at room temperature. It transforms to martensite during straining (TRIP

effect). This process improves the strength to ductility balance of these steels, i.e.

the product of strength and ductility.
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These compare fairly well with smartbolt alloy, but the ductility of L and H TRIP

steels is higher; however their strength is lower. The mechanical results of these

TRIP-steels are compared with those of the smartbolt alloy, i.e. Table 5 with Tables

3 and 4.

Table 5. Mechanical values of the analysed materials(7)

Material so

mm

RD

°

Ag

%

A80

%

YS

MPa

UTS

MPa

L TRIP

TRIP700 1.50

0

45

90

25

24

23

31

28

27

436

441

453

719

719

726

H TRIP

AISI304 1.00

0

45

90

44

47

48

48

52

53

316

296

293

625

581

582

Where: RD is the rolling direction, Ag is uniform elongation and A80 is the percentage

elongation at fracture

For the last 20 years, the steel industry introduced new steel categories such as high

strength low alloy steels (HSLA), the interstitial free high strength steels (IF-HS), and

the dual phase steels (DP-steels)(7). However, for the past 10 years the investigation

of TRIP steels has been investigated and as can be seen from Figure 7, their

mechanical properties are somewhat different from all the previous steel grades.

TRIP steels can offer a much better combination of strength and ductility. The

product of high yield strength and uniform ductility of a smartbolt alloy is slightly

higher than that of the TRIP steels. By extrapolating Figure 7, it can be seen that the

smartbolt alloy lies to the right hand side of the TRIP grades, which have a strength

and ductility product of about 20000MPa.
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Figure 7. Comparison of different steel grades in terms of strength and ductility
combination(7)

3.3.3 Strain hardening exponent (n)
The smartbolt alloy exhibits an inflection in the stress-strain curve as compared to

Type 304. (see Figure 8). The deformation-induced martensitic transformation gives

a striking effect on the tensile flow curve of this alloy. As more martensite is formed

during continued straining, and because this martensite is strong, the flow stress

rapidly increases as the martensite itself starts to participate in the deformation. The

high work-hardening rate produced by the martensite being deformed, more than

counterbalances the transformation-induced strain, i.e. the transformation plasticity.

The plots for strain hardening exponent, n* (instantaneous n-value) versus strain (ε)

for smartbolt and Type 304 are shown in Figures 9 and 10 respectively. Trendlines

have been superimposed on the data, for convenience, using least-squares

polynomial regression. It can be seen that there are two extreme forms of behaviour

between the two alloys.

SM
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The rapid increase in the rate of strain hardening in the smartbolt alloy is the result of

the strain-induced transformation of austenite to martensite in the specimen gauge

length during testing. The maximum rate of this transformation is said by Fang(8) to

occur at the lowest rate of strain hardening.  This corresponds to the noticeable dip

in hardening observable at the start of the curve. The value of n* for smartbolt alloy

in these dips is between 0.10 and 0.15 which is higher than that of Type 304 (less

than 0.10). The work-hardening rate initially decreases as deformation of the

austenite occurs. The interaction of the dislocations and martensite during

subsequent deformation is responsible for the rapid increase in the value of n* at

greater amounts of strain.

Smartbolt alloys exhibit a rapid increase in n* value, which peaks at between 10 and

20% strain, then declines. The peak value reached by n* in this alloy is of the order

of 0.75. Type 304 exhibits a slowly increasing value of n*, which scarcely changes

for strains above 30%. The maximum value of n* reached in this alloy is about 0.55.

Figure 11 show the amount of martensite (measured as percent magnetism) formed

during testing as a function of percent elongation. It is clear that the smartbolt alloy

undergoes transformation during the early stages of plastic behaviour unlike the

commercial Type 304 which has a higher incubation period and requires at least

20% plastic strain to give a measurable response. It can be seen that the incubation

strain of the smartbolt alloy is reduced and that the microstructural transformation

rate is high, thus enabling effective monitoring.

In order to understand the maximum uniform elongation (true strain based only on

the strain up to maximum load, εu), the work-hardening rate (δσ/δε) of the smartbolt

alloy and Type 304 stainless steel was determined as a function of strain and

superimposed on the tensile curve information (Figures 12 and 13). The maximum

uniform elongation is governed by the shape of the (δσ/δε) versus (ε) curve. For the

smartbolt alloy, the work-hardening rate yields a local minimum and a local

maximum before it finally decreases with increasing strain (Figure 12).
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It must be noted that necking occurs at a strain at which the slope of the true stress-

true strain curve equals the true stress at that strain, i.e. δσ/δε = σ(9) . However, the

smartbolt alloy does not show any evidence of necking. It fails prematurely due to

the formation of martensite at a stress value above 2000MPa and shows a flat face

fracture. This is because of a high transformation of austenite to martensite.

For Type 304 stainless steel, the work-hardening rate (δσ/δε) continues to decrease

as a function of strain (ε), and (δσ/δε) = σ, occurs at a value of strain (approx. 0.51).

Therefore, the two curves meet at a strain of approximately 0.51 and stress value

below 2000MPa, Figure 13. Thus the ductility is enhanced in Type 304 as the rate of

transformation is slower and necking adds to the total elongation.

Figure 8. Comparison of stress-strain curves of the smartbolt alloy and Type 304
stainless steel

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 10 20 30 40 50 60 70 80 90

% Elongation 

En
gi

ne
er

in
g 

St
re

ss
 (M

Pa
)

304

SMB 1, 2



15

Figure 9. Variation of strain hardening exponent, n*, for smartbolt alloy

Figure 10. Variation of strain hardening exponent, n*, for Type 304
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Figure 11. Percentage ferromagnetic phase versus percentage elongation for
smartbolt alloy and Type 304 stainless steel as determined by a ferritescope

Figure 12. Tensile and work hardening rate curves for smartbolt alloy
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Figure 13. Tensile and work hardening rate curves for Type 304 stainless steel

3.4 Modelling load-strain characteristics of smartbolt alloy

This part of the work was undertaken to derive and verify a model for the plastic

behaviour of the smart alloy together with a standard Type 304 stainless steel, both

alloys being metastable with regard to the austenitic structure. The differences

between a so-called ‘smart’ material and other materials can thus be quantified.

It has been found that the flow curve for many materials can be empirically described

by the equation:

[ ]n)1ln( eK +=σ ………………………..…………………. (1)

where σ = true stress, e = true strain, K = austenitic ‘strength factor’ (constant) and n

= ‘strain-hardening index’ (constant).
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Literature(10) however, reports that for some engineering materials like ‘18-8’

stainless steel, the expression does not hold, and it is suggested that a strain-

induced decomposition of austenite to martensite is responsible for this effect.

Ludwigson and Berger(10) have therefore proposed an amended flow curve equation

to incorporate both the true stress contribution of austenite at any level of strain and

the true stress contribution of martensite at any level of strain:

[ ]
QBB

A
eC

A
eeK

−−−−
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


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


++


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
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


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


+−+= 111)1ln(

1
nσ      …………... (2)

Where A = a constant representing the propensity of the material to transform to

martensite, B = a constant to account for autocatalysis, C = martensitic ‘strength

factor’ (constant) and Q = martensitic ‘strengthening index’ (constant).

The writers also showed that the volume fraction of martensite (VFM) could be

related to the volume fraction of austenite (VFA) in metastable austenitic stainless

steels by equation:

( )VFAAeVFM B=   ……………………………….………… (3)

Since, the sum of VFM and VFA is unity, equation (3) can be rewritten as:

( )
BAe

VFM
VFM =
−1

  …………………………………………. (4)

and taking the logarithm of the expression above, thus yields:

( ) eBA
VFM

VFM loglog
1

log +=







−

…………………………... (5)

A plot of log [VFM/(1-VFM)] versus log [e] therefore gives a straight line with slope

equal to ‘B’ and y-intercept equal to ‘log A’.  Using this relationship, the A and B

values for the particular material can be determined (Figure 14).  The remaining four

constants, K, n, C and Q, can then be determined by obtaining a best-fit

approximation of the available experimental data.
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From experiment, a range of data relating measured true stress, σmeasured, and true

strain, e, is obtained.  Equation (2) relates the unknown constants to a calculated

true strain, σcalculated.

The constants can then be calculated by minimising the sum of the square of the

difference (i.e. error) between σmeasured and σcalculated.  Microsoft’s Excel SOLVER

package was used as the computational tool.

The software relies on an initial best guess of the unknown constants, and through a

series of non-linear regressions, modifies the values for K, n, C and Q such that over

the entire range of experimental data, Σ(σmeasured - σcalculated)2 is as small as possible.

In order to verify the results obtained, a plot of σmeasured versus σcalculated can be

made, and if sufficiently accurate numerical values for the unknown constants have

been calculated, the plot should yield a straight line with slope equal to unity and a y-

intercept equal to zero (Figure 15). The constants measured for both steels are

shown in Table 6 below.

Table 6. Flow-curve parameters for smartbolt alloy and Type 304 stainless steel

Alloy K

(MPa)

n C

(MPa)

Q A B

Type 304 1200 0.35 1735 0.73 0.49 2.72

Smartbolt 900 0.14 6690 1.04 1.98 2.16

The parameter C is the martensite analogue of the austenitic strength factor K. It can

be seen that C is much higher in the smartbolt alloy, reflecting the higher carbon

content relative to Type 304. Conversely, K is somewhat higher in Type 304 due to

its higher alloy content. The lower n value for the smartbolt alloy reflects work

hardening of martensite rather than austenite (see propensity to transform A value).

The transformation response (A value) for the smartbolt alloy is about four times

higher than Type 304 stainless steel.
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Figure 14. Verification of the transformation-deformation function for smartbolt alloy

Figure 15. True stress and predicted stress as a function of strain for smartbolt alloy
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3.5 Corrosion Properties

The corrosion performance of the 12Cr-9Mn-C steel (smartbolt alloy) was evaluated

in synthetic mine water and compared with that of AISI 304 and 316 as well as mild

steel. The corrosion rates of the various materials are given as a function of pH in in

Figure 16.

The corrosion rate of the 12Cr-9Mn-C steel (smartbolt alloy) is more than two orders

of magnitude lower than that of mild steel and one order of magnitude higher than

that of AISI 316. The value close to 0.01 mm/y over a large pH range is quite

acceptable, but the corrosion rate increases sharply below pH 4. However,

measurements of the corrosion rate of the 12Cr-9Mn-C steel and AISI 316 as a

function of time at pH 3 (Figure 17) indicate that in the case of the 12Cr-9Mn-C steel,

the corrosion rate drops significantly in the first 10 hours and reaches the value

observed at higher pHs. The potential increases from –0.050 V to –0.025 V, and it

appears thus that some passivation is taking place.

Figure 18 compares the corrosion rates as a function of the raw materials cost

(October 1998). It an be seen from Figure 18 than an initial threefold increase in cost

(12Cr-9Mn-C compared to mild steel) lowers the corrosion rate by more than two

orders of magnitude, but that a further threefold increase in cost only reduces the

corrosion rate by a factor of three. This places the 12Cr-9Mn-C steel in a very

favourable position.
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Figure 16. Corrosion rates as a function of pH
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Figure 18. Corrosion rates as a function of the raw materials cost

The breakdown potential values of the 12Cr-9Mn-C steel and AISI 316, determined

from cyclic polarisation scans in mine water with various chloride concentrations, are

represented graphically in Figure 19. The term breakdown potential was chosen

since, the test electrodes being embedded in epoxy resin, no distinction was made

between pitting and crevice corrosion.

A linear relationship between the breakdown potential and the logarithm of the

chloride ion concentration is observed for both materials. Several authors (appendix

4) have observed this kind of relationship. The lower breakdown potential values for

the 12Cr-9Mn-C steel are not unexpected since the detrimental effect of manganese

on the localised corrosion resistance of stainless steels is well known, and has led to

its introduction with a negative coefficient in the pitting resistance equivalent (PRE)

formulas (appendix 4). This negative effect of manganese is generally attributed to

the presence of manganese sulphide inclusions.



24

100 1000 10000
-400

-200

0

200

400

600

800

1000

12Cr-9Mn-C

AISI 316

 

 

B
re

ak
do

w
n 

po
te

nt
ia

l (
m

V
 S

C
E

)

Chloride ion concentration (ppm)

Figure 19. Breakdown potential as a function of chloride content

Although most of the mine waters have a chloride ion concentration below 500 ppm,

the large hysteresis observed in the cyclic polarisation scans indicates that crevice

corrosion will be a factor to take into consideration. Crevice corrosion is a common

failure mode for stainless steel fasteners.

3.6 Bolt Calibration

Duplicate 750 mm long x 20mm diameter mini bolts were tensile tested and the load,

strain, ferritescope, and longitudinal velocity values were recorded. A portable

ultrasonic (USM 25 DAC) monitoring device was used to measure the longitudinal

velocity during the calibration trials. The results show a good correlation between the

longitudinal ultrasonic velocity and strain. The results are shown in Table 7. It can be

seen that an increase in the amount of load (stress) results in an increase in

longitudinal ultrasonic velocity.
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When the stress on the bolts increases, the microstructure changes from non-

magnetic to magnetic. The amount of magnetic phase increases when straining the

alloy. As a comparison, the acoustic properties of several metals are listed in Table

8(11). The acoustic properties of metals and alloys are influenced by variations in

structure and metallurgical condition. Therefore, for a given test piece, the properties

may differ from the values listed in Table 8. The results in Table 7 are also illustrated

in Figure 20. A good linear correlation between ultrasonic velocity and strain with an

R2 value of 0.96 was obtained.

Table 7. Ultrasonic velocity measurements of the stressed 20mm diameter mini bolts

Load (kN) %Elongation Ultrasonic
velocity (m/s)

% Ferrite

0 0 5640 0

100 0.03 5643 0.24

110 0.05 5647 0.27

130 0.43 5652 0.34

150 0.81 5652 1.17

160 1.17 5657 1.29

180 2.45 5672 1.50

190 3.35 5676 2.02

200 5.2 5678 5.34

210 7.5 Fracture 14.49

Table 8. Acoustic properties of several metals(11)

Stainless Steels Density (ρ) g/cm3 Sonic velocities (m/s)

Type 302 7.9 5660

Type 304L 7.9 5640

Type 347 7.91 5700

Type 410 7.67 5900

Type 430 7.7 6010
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Figure 20. Longitudinal ultrasonic sound velocity versus strain of the smartbolt alloy

Performing bend tests on 450mm long by 20mm diameter mini bolts showed the

effect of shear stresses. The mini bolts (see Figure 21a-b) were bent up to a load of

15kN and the velocity was measured. The results are shown in Table 9. Due to the

fact that ultrasonic instrument measures using a time-of-flight and straight beam, the

velocity decreases with bending angle. The results show that, using time-of-flight, a

bent or even broken bolt can be detected in situ, provided that the original bolt length

is known. Thus the technology can be used to detect overloaded, bent or broken

bolts in-situ. If the sensitivity can be improved, it may even be used to check torque

loads applied for tightening of bolts.
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a). Before bending

b). After bending

Figure 21. Schematics of 450mm mini bolt before and after bending

Table 9. Ultrasonic sound velocity measurement of the bent mini bolts

Load (kN) Dimension (mm) Bending Angle (°) Ultrasonic velocity
(m/s)

0 450mm x 20mm 180 5640

12 450mm x 20mm 158 4824

15 450mm x 20mm 138 4781

3.7 Field testing

The quality of the support system is of key importance to safety. The gully heading

(location where the smartbolts are installed), are sometimes supported with rockbolts

to counter rockfalls, whether induced by gravity or seismicity.

The chemically anchored bolt is the most common rock bolting system currently in

use(12). The modern system provides quick, easy and effective installation procedure.

However, for this project, it is felt that the technology is more appropriate using

anchoring rather than chemical or frictional forces. Also, it is important that the bolts

do not slip once they have been installed.

138°42°
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The installation of a rock bolt is illustrated in Figure 22. It shows the drilling stage

prior to installation of the required roofbolt. A hole is drilled to the appropriate

diameter and depth and the bolt with expansion shell (anchor) is introduced into the

hole; the bolt is pushed into the hole and tightened to an appropriate load.

The load is distributed to the surrounding rock by means of the base plate (Figure

23). The ultrasonic velocity of the bolt after installation is then measured using the

ultrasonic instrument. The results are then superimposed on a calibration curve to

obtain the amount of stress and strain the smartbolt and the surrounding rock

experiences.

Figure 22. The drilling stage prior to installation of the required roofbolt at a
platinum mine test site
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Figure 23. Monitoring of a smartbolt (with a flat base plate) using an ultrasonic
device

Loosening of rockbolt anchors after the blast appears to be a major problem in most

of the mines. This is due to the current tensioning method, which is generally done

manually with a simple tool such as a spanner. It was therefore agreed with the mine

personnel to install the smartbolts using both chemical (cement) and expansion

shells and to use a torque wrench for tensioning. However, during the installation a

torque wrench was not used. The ultrasonic velocity results of the full size bolts, after

three weeks and after three months of installation, are summarized in Table 10.

The smartbolt warning guideline modified by adding an extra column for ultrasonic

velocity is shown in Table 11. Figure 24 show a bar chart of ultrasonic velocity of the

bolts with warning guidelines superimposed on it. The results shown in Figure 24

show that the bolts except H and K are all in the elastic region. It can be seen from

this figure that bolt H has developed a pattern in that it is gradually yielding.

However, since mining has gradually moved away from that area of the stope, it is

not expected to see much further change in the loading, with time.
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Referencing to the calibration curve shown in Figure 20, the results indicates that the

strain experienced by the bolts on installation was <0.01. After the first monitoring

phase, bolt H showed a strain of above 0.01. No further monitoring was conducted

on bolts A and F because that section of the mine was closed.

Table 10. Summary of the ultrasonic velocity results of smartbolts installed at
platinum mine

Bolt ID Length x
diameter

(mm)

Test site Installation
method

Ultrasonic
velocity (m/s)

After
installation

Ultrasonic
velocity

(m/s) After
three weeks

Ultrasonic
velocity (m/s)

After three
months

A 1498 x 20 RPM Cement 5648 # #

B 1501 x 20 RPM Cement nd # #

E 1501 x 20 RPM Cement nd # #

F 1499 x 20 RPM Cement 5648 # #

H 1495 x 16 RPM Anchor 5655 5663 5666

I 1498 x 16 RPM Anchor 5648 5648 5648

K 1492 x 16 RPM Anchor 5655 5655 5659

L 1500 x 16 RPM Anchor nd nd nd

nd→ values were not taken due to improper installation, # → site was closed

Table 11. Potential Smartbolts warning guidelines

Reading (%Ferrite) Comments Ultrasonic sound velocity
(m/s)

< 1 Stresses in elastic range 5640 to 5652

1 – 2 Bolt is yielding 5652 to 5672

2 – 5 Bolt is showing substantial plastic
deformation

5672 to 5676

>5 Potentially dangerous situation >5676
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Figure 24. Graphical presentation of the results obtained from a platinum mine test site

4. CONCLUSIONS

4.1 An alloy composition has been identified as being suitable for acting as a

smartbolt material under the influence of strain. Some problems do, however,

exist with the ferritescope method of monitoring, in particular the depth of

penetration.

4.2 The use of the smartbolt concept together with ultrasonic monitoring can be

an effective and simple method of monitoring the load in a bolt. The readings

are accurate and the technique should help to promote safety in the industry.

Information can be gathered and logged quickly to determine whether bolts

are bent, broken, or overloaded.
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4.3 Ultrasonic methods appear to be a satisfactory method for interrogating

smartbolts but the overall hardware package may need to be refined with

continuing feedback from mining personnel.

4.4 Smartbolt alloy is particularly suited to application where corrosion is

problematic
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APPENDIX 1

BACKGROUND INFORMATION ON THE USE OF ULTRASONIC TECHNIQUE

An area of growing interest is the use of ultrasound to monitor variations in microstructure(1).

Ultrasonic velocity is a physical property influenced by microstructural features. A change in

microstructure by the use of applied stress may be potentially monitored by accurately

measuring longitudinal ultrasonic velocity, e.g., Kutty and co-workers(2) showed that there is

a variation of longitudinal ultrasonic velocity with ferrite content in a duplex stainless steel.

A linear correlation was obtained (Figure 1).

Figure 1: Variation of longitudinal ultrasonic velocity, VL with ferrite content, F (vol %)

Certainly, ultrasonic longitudinal waves have excellent penetration and 1.5m long bolts

should present no problem. Measurement is simple and fast. Test equipment is relatively

cheap and easy to maintain and can be battery-operated to provide on-site inspection.

Commercial instruments are available which also have data-logging facilities. When the level

of magnetic phase being measured is low, it is inevitable that the precision and accuracy

decrease. It may be that, in this case, ultrasonic techniques are preferable to magnetic

methods.
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The determination of sound velocity involves the measurement of sample thickness and the

measurement of transit times with an A-scan display of ultrasonic echoes. The thickness of

the samples and the velocity standard block are measured to an accuracy of ±0.02 mm, and

the A-scan display provides the relative time or distance between the interfacial and back

echoes for the sample and the velocity standard. If the time sweep on the A-scan display is

not accurately calibrated, the velocity standard provides the reference for comparing the

relative transit times of the A-scan data. The bulk sound velocity of the sample can then be

determined by comparing the A-scan spacing (transit times) of echoes in the sample to the

echo spacing in the velocity standard.

All ultrasonic wall thickness measurements are based on a time-of-flight measurement.

Accurate measurement results require a constant sound velocity in the test object. The

variation in sound velocity is so slight that it is only of importance for high-precision

measurements. If the test object is not homogeneous, the sound may propagate at different

sound velocities in different part of the test piece. An average sound velocity should be taken

in to account for the range calibration. This is achieved by means of a reference block whose

sound velocity corresponds to the average sound velocity of the test block.

If substantial sound velocity variations are to be expected, then the instrument calibration

should be readjusted to the actual sound velocity values at shorter time intervals.
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APPENDIX 2

PRODUCTION ROUTE OF SMARBOLT ALLOY

RAW MATERIAL
(Scrap Ferro alloys)

MELTING
(Induction)

CASTING
(Octagonal Ingots)

SOAKING
(1200°C)

ROTARY FORGING
(140mm square billets)

BAR MILL
(Finish 900°C)

COOLING TABLECUT TO SIZE

ANNEALING
(1050°C and

Water Quench)

BOLT MANUFACTURE
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APPENDIX 3

OPERATION OF THE KRAUTKRAMER USM 25 ULTRASONIC SOUND
VELOCITY-MEASURING INSTRUMENT.

1.  Purpose
The purpose of this document is to describe the basic set-up and operation of Krautkramer

USM 25 ultrasonic sound velocity measuring instrument.

2. Scope
This procedure covers the initial set-up, operation and calibration of the equipment only.

3. Procedure

3.1 Descriptions of the connections

Figure 1. Connecting terminals for USM 25 instrument

3.1.1    Power supply unit

The USM 25 can be powered either via a main supply using a transformer or with

rechargeable batteries. The batteries need not be removed if main power is utilized, as the

battery power is automatically isolated. The transformer is connected to the USM 25 at the

top left of the unit.

Bayonet lock

Power supply main socket Probe sockets
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3.1.2    Operation using batteries

The battery compartment is located at the bottom of the instrument; the opening with the

Bayonet lock cap is on the right. The measurement line of the USM 25 indicates an inverted

B if the battery voltage is too low.

3.1.3    Connecting a probe

To prepare the USM 25 for operation, a probe has to be connected to the sockets at the top

right on the instrument casing. Both connector sockets are equally suitable (connected in

parallel) for connecting probes equipped with only one ultrasonic element (ultrasonic

transducer) therefore it does not matter which one of the two sockets is used.

3.2 Descriptions of the front panel keys

Figure 2. Operator’s controls
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3.2.1    Starting the USM 25

To start the USM 25, press the switch-on key (see Figure 2)

The instrument will carry out a self-check and then switches over to stand-by mode.

The function values and basic settings (language and units) are set as defaults by the factory.

3.2.2    Operational concept

The use of USM 25 is a user friently instrument. It has three operating levels, which can be

accessed by pressing the ↑↓  key. The active operating level will be recognised by the number

on the separation line between the first and the second group.

Each operating level contains five function groups.

First operating level

BASE      1 PULS RECV aGAT bGAT

Second operating level

CAL        2 DAC TRIG MEM DATA

Third operating level

MEAS     3 MSEL LCD CFG 1 CFG 2

3.2.3    Overview of the functions

BASE: The functions found here are required for the basic adjustment of the screen 

display.

PULS: Combined in this group are the functions that serve for the adjustment of 

pulser.

RECV: Combined in this group are the functions that serve for the adjustment 

of receiver.

aGAT: All functions for setting the gate A can be found in this group

bGAT: All functions for setting the gate B can be found in this group
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CAL: This function group makes functions for the semiautomatic calibration 

available.

DAC: This is a function group where the functions for the DAC can be set.

TRIG: Combined in this group are the functions required for angle beaming using 

angle-beam probes for the display of a (reduced) projection distance and depth

position of a reflector (for plane-parallel and circular curved components).

MEM: These functions serve for sorting, loading and deleting of data sets

DATA: The functions of this group serve for the data-set management and 

documentation

MEAS: In this group, it is possible to define the measuring point, select a parameter 

for the zoomed measured-value display in the A-scan as well as for the setting

of the Magnify function, and select different settings for the A-scan.

MSEL: This is where the measurement line is confirmed. One display for each of the 

four positions can be chosen.

LCD: This is the function group where the LCD contrast can be set and backlight 

as well as the echo display mode on the screen.

CFG1: Functions for the configuration: unit dialog language, printer driver and 

assignment of the copy key.

CFG2: Other functions for the configuration: time and date, alarm horn; moreover, 

changing from the DAC over to the DSG evaluation mode (only USM 25S).

3.3 Adjusting the display range (function group BASE)

The function group BASE enables the basic adjustment of the display range. The display on

the screen must be adjusted for the material to be tested (function MTLVEL) and for the

probe used (function P-Delay). In addition the range for the measurement and display start

point must be chosen.
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3.3.1 RANGE (Display range)

The range for your measurement can be adjusted in RANGE. This adjustment depends on the

frequency range setting (function FREQU).

•  Use ← button to select the function RANGE and adjust the required value by

means of the right-hand rotary knob.

The range limits are also dependent on the set sound velocities (function MTVEL): with

small values for c, the range limits are shifted downwards, with large values upwards.

3.3.2 MTLVEL (Material velocity)

In MTLVEL, the sound velocity in the test object can be selected. This can be one of two

predefined fixed values, or a continuously variable value.

•  Use ← button to select the function MTLVEL and adjust the required value by

means of the right-hand rotary knob.

Always ensure that the function MTLVEL is correctly set. The USM 25 calculates all range

and distance indications on the basis of the value adjusted here.

3.3.3 D-DELAY (Display starting point)

In D-DELAY the choice of whether to display the adjusted range (for example 250mm)

starting from the surface of the test object, or in a section of the test object starting at a later

point can be made. This allows you to shift the complete screen display and consequently

also the display  zero point.

If the display should for example start from the surface of the test object, the value in D-

DELAY must be set to 0.

•  Use ← button to select the function D-DELAY and adjust the value for the

display starting point by means of the right-hand rotary knob

3.3.4 P-DELAY (Probe delay)

Every probe has a delay line between the transducer element and the coupling face. This

means that the initial pulse must first pass through this delay line before the sound wave can

enter the test object. Compensation can be made for this influence of the delay line in the

function P-DELAY.

•  Use ← button to select the function P-DELAY and adjust the value for the probe

delay by means of the right-hand rotary knob



42

3.4 Setting the gates (function groups aGAT and bGAT)

All functions for setting the (dual) gate are arranged in the function group aGAT and bGAT.

The task of the gates is to monitor the range of the test object where you expect to detect a

flaw. If an echo exceeds or falls below the gate, an alarm signal is output via the LED A.

The gate chooses the echo for the digital time–of-flight or amplitude measurement. The

measured value is indicated in the measurement line.

The starting point of the gates A or B can be fixed within the adjustment range of 0 to max.

9999 mm /250”.

•  Use ← button to select the function aSTART or bSTART and then use the right-

hand rotary knob to adjust the required settings.

The gate width can be determined within the range of 0.2 to 9999 mm / 0.008 to 250”.

•  Use ← button to select the function aWIDTH or bWIDTH, and then use the

right-hand rotary knob to adjust the required value.

3.5 Calibrating the USM 25

Before working with the USM 25, calibration of the instrument must be carried out. The

material velocity and display range must be adjusted and allowance made for the probe delay

depending on the material and dimensions of the test object.

To ensure a safe and proper operation of the USM 25, it is necessary that the operator be

adequately trained in the field of ultrasonic testing technology.

In addition, the USM 25 has a semiautomatic calibration function, which is described in Case

B below.

The sound path measurement in either the calibration process or in the subsequent echo

evaluation process depends on the choice of the measuring point which can be set either to

flank or to peak in the USM 25. In principle, the peak measurement should be preferred

because the measured distances do not depend on the echo height in that case.
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3.5.1 Case A: Calibrating with known material velocity

Calibration process:

•  Set the known material velocity in MTLVEL (function group BASE)

•  Couple the probe to the calibration block (use Teepol soap as couplant).

•  Set the required display range in RANGE (function group BASE). The calibration

echo must be displayed on the screen.

•  Position the gate on one of the calibration echoes until the sound path of the echo

is indicated in the measurement line.

•  After this, change the adjustment of the function P-DELAY (function group

BASE) until the correct sound path for the selected calibration echo is indicated in

the measurement line.

Example:

Calibration is being carried out for the calibration range of 100mm via the function group

BASE using the calibration block V1 (thickness 25mm) which is laid flat-wise.

•  Set the RANGE to 100mm

•  Set the known material velocity of 5920m/s in MTLVEL.

•  Set the gate so that it is positioned on the first calibration echo (from 25mm).

•  Read the sound path in the measurement line. If this value is not equal to 25mm,

change the adjustment for the function P-DELAY until it is at 25mm.

This completes the calibration of the USM 25 to the material velocity of 5920m/s with a

calibration range of 100mm for the probe used.

3.5.2 Case B: Calibrating with unknown material velocity

Use the semiautomatic calibration function of the USM 25 via the function group CAL for

this calibration case.

The distance between 2 calibration echoes must be entered as default data. The USM 25 will

then carry out a plausibility check, calculate the material velocity and the probe delay, and set

the parameters.
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Calibration process:

•  Set the required display range in RANGE (function group BASE). The two

calibration echoes selected must be displayed on the screen. Set the range so that

the second calibration echo is located on the right edge of the screen.

•  Select the function group CAL using ↑ .

•  Enter the distances of the two calibration echoes in S-REF1 and S-REF2.

•  Position the gate (function aSTART) on the first calibration echo.

•  Press copy to record the first calibration echo.

•  The recording of the calibration echo is confirmed by the message “Echo is

recorded”, and the function CAL indicates the value 1.

•  Move the gate to the second calibration echo

•  Press copy to record the second calibration echo.

The correct calibration is confirmed by the message “Calibration is done”. The material

velocity and probe delay are calculated and set. The value of the CAL function goes back to

0.

Example:

•  Enter the distance (thickness’) of the two calibration lines S-REF1 (20mm) and S-

REF2 (40mm)

•  Position the gate on the first calibration gate.

•  Press copy to record the first calibration echo.

•  Position the gate on the second calibration gate.

•  Press copy

The second echo is stored, the calibration is carried out, and the CAL function is reset to 0.

The valid calibration is briefly confirmed and carried out.

If you select the function group BASE, the material velocity and probe delay can be read.
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APPENDIX 4

CORROSION PROPERTIES OF SMARTBOLT ALLOY

1. Experimental

The corrosion performance of the 12Cr-9Mn-C alloy (smartbolt) was evaluated in synthetic

mine water and compared with that of AISI 304 and 316 as well as mild steel.

Mintek(1,2) surveyed the corrosivity of waters in South African gold mines and developed

three typical artificial mine waters, labelled ‘A’, ‘B’ and ‘C’. The mine water used in this

investigation was mine water ‘B’. It is an artificial machine water typical of that usually

found flowing through the general reticulation system of a mine. This artificial water is based

on samples of machine water taken from the Free State gold field, where corrosion problems

tend to be greater than those experienced on the Witwatersrand. The composition of this

synthetic mine water is given in Table I.

Table 1. Composition of the synthetic mine water (pH = 6.5)

mg/l

NaHCO3

CaSO4.2H2O

MgSO4.7H2O

NaCl

Na2SO4

NH4NO3

KNO3

KNO2

FeSO4.7H2O

Kaolin

42

1290

608

2040

142

317

216

60

15

45
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The corrosion rates were measured at different pH values, while the localised corrosion

performance was evaluated at the normal value of pH 6.5 with different chloride contents.

The pH was changed by adding sulphuric acid or sodium hydroxide, and the chloride content

was altered by adding sodium chloride.

A PC-driven ‘ACM AutoTafel’ potentiostat was used to perform the electrochemical tests.

The test electrodes were discs, 2 cm in diameter, ground to a 120-grit finish and embedded in

epoxy resin. Two graphite rods were used as counter electrodes and a Haber-Luggin capillary

made the junction with a saturated calomel reference electrode (SCE). All the potential values

were measured with respect to the SCE.

To determine the corrosion rates, a Tafel plot was recorded from –0.2 V to 0.2 V versus the

corrosion potential at a scanning speed of 0.01 V/min. The corrosion current was determined

by Tafel extrapolation of the rate-determining segment, and the corrosion rate calculated by

introducing the correct values of density and equivalent weight.

When the corrosion rate was measured as a function of time, the Linear Polarisation

Resistance (LPR) technique was used so that the test electrode was only slightly disturbed

from its equilibrium conditions. In this case, the potential was varied from –0.01 V to 0.01 V

versus the corrosion potential at a scanning speed of 0.01 V/min. A value of 0.02 V(3) was

used for the B constant in the Stern and Geary formula. A LPR measurement was recorded

every 6 hours for approximately 40 hours.

The LPR technique was also used to measure the corrosion rate of the 12Cr-9Mn-C alloy at

pH 3, since at that pH value it showed an active to passive transition and Tafel extrapolation

was not possible.

Cyclic polarisation scans were also conducted to evaluate the localised corrosion resistance.

The scanning speed was 0.01 V/min and the scan direction was reversed at a current density

of 5×10-4 A/cm2. All tests were conducted at 30 °C under stirring conditions.
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2. Results and discussion

The corrosion rates of the various materials are given as a function of pH in Table II and

represented graphically in Figure 1.

The corrosion rate of the 12Cr-9Mn-C steel (smartbolt alloy) is more than two orders of

magnitude lower than that of mild steel and one order of magnitude higher than that of AISI

316. The value close to 0.01 mm/y over a large pH range is quite acceptable, but the

corrosion rate increases sharply below pH 4. However, measurements of the corrosion rate of

the 12Cr-9Mn-C steel and AISI 316 as a function of time at pH 3 (Figure 2) indicate that in

the case of the 12Cr-9Mn-C steel, the corrosion rate drops significantly in the first 10 hours

and reaches the value observed at higher pHs. The potential increases from –0.050 V to –

0.025 V, and it appears thus that some passivation is taking place.

Figure 3 compares the corrosion rates as a function of the raw materials cost (October 1998).

It an be seen from Figure 3 than an initial threefold increase in cost (12Cr-9Mn-C compared

to mild steel) lowers the corrosion rate by more than two orders of magnitude, but that a

further threefold increase in cost only reduces the corrosion rate by a factor of three. This

places the 12Cr-9Mn-C steel in a very favourable position.

Table II. Corrosion rate values

Corrosion Rate (mm/y)
Material

pH 3 pH 5 pH 7 pH 9

Mild Steel 17.4 1.7 1.6 2.9

12Cr-9Mn-C
(smartbolt alloy) 2.5 0.020 0.0070 0.0072

AISI 304 0.0023 0.0019 0.0033 0.0014

AISI 316 0.0013 0.0011 0.0016 0.0006
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Figure 1. Corrosion rates as a function of pH
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Figure 2. Corrosion rates as a function of time (pH 3)
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Figure 3. Corrosion rates as a function of the raw materials cost

The breakdown potential values of the 12Cr-9Mn-C steel and AISI 316, determined from

cyclic polarisation scans in mine water with various chloride concentrations, are given in

Table III and represented graphically in Figure 4. The term breakdown potential was chosen

since, the test electrodes being embedded in epoxy resin, no distinction was made between

pitting and crevice corrosion.
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Table III. Breakdown potential values

EBreak (mV SCE)
Cl- concentration

(ppm) 12Cr-9Mn-C
(smartbolt alloy) AISI 316

50
912

883
-

200
580

672
-

500
347

172
-

2000
-31

89

894

890

5000
-181

-146

278

272

20000 -
173

84

A linear relationship between the breakdown potential and the logarithm of the chloride ion

concentration is observed for both materials. Several authors(4,5) have observed this kind of

relationship. The lower breakdown potential values for the 12Cr-9Mn-C steel are not

unexpected since the detrimental effect of manganese on the localised corrosion resistance of

stainless steels is well known, and has led to its introduction with a negative coefficient in the

pitting resistance equivalent (PRE) formulas(6,7). This negative effect of manganese is

generally attributed to the presence of manganese sulphide inclusions and several authors(8-10)

have described in details the mechanism of attack.
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Figure 4. Breakdown potential as a function of chloride content

Although most of the mine waters have a chloride ion concentration below 500 ppm, the

large hysteresis observed in the cyclic polarisation scans indicates that crevice corrosion will

be a factor to take into consideration. Crevice corrosion is a common failure mode for

stainless steel fasteners.
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