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ABSTRACT Networked microgrids (MGs) have a great potential to improve the efficiency, reliability,
resilience, security, and sustainability of power supply services. Peer-to-peer (P2P) energy trading built on a
smart information system in networked MGs is an emerging economic approach to facilitate energy sharing
among networked MGs to achieve mutual cost-effective operation and improve the reliability and stability
of energy supply service. Such a distributed and competitive energy trading market urges the need for an
efficient energy trading strategy that incentivizes the self-interested MGs with various energy production
and consumption profiles to participate in energy trading. In this paper, we propose a distributed real-
time P2P energy trading strategy that integrates energy trading into energy management and enables the
MGs with renewable energy sources (RESs) and energy storage systems (ESSs) to manage their storage
scheduling, energy supply, and energy trading in a dynamic manner, jointly considering the randomness
of renewable energy generation and load demand, operational constraints of ESSs and transmission losses
associated with energy exchange. The proposed energy control and bidding algorithm allows each MG to
dynamically and independently determine its energy control actions and price-quantity bids/offers, while
the proposed trading pair matching algorithm matches the MGs on a many-to-many basis with respect to
their individual payoffs, which couple price-quantity bids/offers of the MGs with distance-dependent energy
transmission losses associated with energy exchange. Numerical simulation results demonstrate that the
proposed distributed energy trading system yields significant improvements in terms of energy cost savings
and renewable energy utilization efficiency, while reducing energy transmission losses within the system.

INDEX TERMS Energy management, energy storage management, energy trading, Lyapunov optimization,
matching theory, microgrids, peer-to-peer, smartgrids.

I. INTRODUCTION
Renewable energy sources (RESs), e.g., photovoltaic (PV)
arrays and wind turbines, have been seen as a feasible solu-
tion for energy scarcity and environmental problems due to
the increasing power demands. Microgrid (MG) framework,
which is defined as a local distribution system that integrates
RES-based distributed generators (RDGs) and energy stor-
age systems (ESSs) to serve different local loads (domestic,
industrial and commercial) at medium and low voltage levels,
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has been conceived as one of the critical components in
the distribution side of smart grid [1]. The decentralized
MGs help relieve the burden on the main grid and enhance
local reliability and reduce power losses in distribution net-
works [2]. Unfortunately, the fluctuation and uncertainty of
renewable energy generation could result in a significant
temporal mismatch between energy supply and demand in
an MG, thus posing challenges to the operation and control
of MGs. In addition, the non-dispatchable and distributed
characteristics of renewable energy pose technical and eco-
nomic challenges in effectively integrating MGs with time
and weather-dependent RESs and limited-capacity ESSs into
traditional power grids [3], [4].
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The advancements in information and communications
technologies as well as embedded systems, have led to the
emergence of the internet of things (IoT). In smart grids,
where MGs play a key role, the bidirectional communi-
cation capacities through interconnections of all compo-
nents enable advanced IoT technologies to monitor, control
and coordinate smart devices in real time, thus providing
dynamic energy management infrastructure and delivering
new energy management capabilities to MGs. In such an
IoT-aided intelligent energy system, the integration of energy
and information technologies facilitates real-time interactions
among MGs, e.g., energy exchange, with enhanced interac-
tion capabilities [5], [6].

The advanced concept of networked MGs has emerged,
in which several adjacent MGs are interconnected to form
a distribution network so that MGs can share energy
mutually, taking advantage of diverse supply and demand
patterns in different MGs, thus improving self-consumption
of local RESs [7], [8]. The clustered arrangement of MGs
as networked MGs allows MGs to balance demand with
production in a more flexible and cost-efficient manner
through mutual energy sharing among neighboring MGs,
thus achieving mutual cost-effective operation, improving the
reliability and stability of energy supply service and smooth-
ing the incorporation of distributed generation into power
systems [9], [10], [11].

Peer-to-peer (P2P) energy trading among the geograph-
ically correlated MGs has been regarded as a promising
economic approach to facilitate energy exchange among net-
worked MGs in a decentralized way to achieve energy supply
reliability and economic benefits, leveraging advanced infor-
mation and communication technologies [12], [13], [14]. The
distributed structure of networked MGs, which are subject
to technical constraints and limitations, creates a competitive
energy trading market. Thus, it is challenging to develop an
appropriate P2P trading strategy, which is capable of coordi-
nating and motivating MGs, who only aim to maximize their
own benefits, to participate in energy trading, thus ensuring
an applicable, continuous and sustainable operation of P2P
energy trading where a central controller does not influence a
lot on the decision of participants [15]. Furthermore, decen-
tralized energy management methods are required in power
system operation and control to accommodate the decentral-
ized characteristics of P2P energy trading.

In this paper, we study the P2P energy trading problem
in a smart distribution network consisting of a group of
networked MGs, each serving a group of users with ran-
dom and time-dependent demands and operating in grid-
connected mode. In such a P2P energy trading market, each
MG faces the problem of balancing energy generation, supply
and trading in the presence of the randomness of renewable
energy generation and arbitrary changes in load demand.
While demand-supply balancing is a priority for the MGs,
maximizing economic benefits in power dispatch is another
control objective. Since the finite capacity of an ESS renders
the energy control actions coupling over time, the storage

scheduling, energy trading and energy purchasing decisions
of an MG are interrelated with one another over time. The
interrelated energy control and trading decisions of an MG
also impact those of other MGs through energy exchange.
Therefore, the energy trading and energy control problems
need to be jointly considered. In addition, any energy transfer
between MGs in energy trading is associated with power
losses in the network lines [3], which impact trading benefits
and decisions of MGs. It is essential to properly integrate
power losses into a P2P energy trading strategy to ensure the
economic benefits of MGs in the P2P market.

A properly designed trading mechanism that motivates
networked MGs to participate in energy trading through
financial benefits is important for the implementation of a
P2P energy trading system, where MGs engage directly in
bilateral energy transactions. Considering the decentralized
characteristics of networked MGs and P2P energy trading,
various approaches based on game theory and auction, which
have been considered as viable techniques to model the
interactions and negotiations between selfish participants,
to incentivize local energy trading between MGs are pre-
sented in [16], [17], [18], and [19]. In these approaches, where
the response of a seller depends on the response of buyers and
vice-versa, complicated decentralized iterative algorithms are
developed to obtain per-slot equilibrium strategies that max-
imize the individual benefit of each participant involved in
energy trading or the social welfare of all participants. Energy
dispatch management problems of individual MGs are not
considered when determining their bidding prices.

To incorporate the optimal energy management problem
of MGs into the P2P energy trading framework design, hier-
archical approaches have been proposed, where the local
energy management problem at the lower level is integrated
with the high-level P2P trading problem [20], [21], [22],
[23], [24]. Short-term optimization models are developed to
determine day-ahead optimal energy bidding and scheduling
decisions at the lower level. Day-ahead trading schemes, such
as auction-based methods, are designed at the upper level to
determine intraday clearing solutions for the next day. How-
ever, it is difficult to accurately predict day-ahead renewable
generation and energy demand, especially energy demand.
A slight variation between day-ahead forecast and real-time
information (e.g., hour-ahead forecast) could significantly
impact the implementation of day-ahead optimization strate-
gies, thereby affecting the effectiveness of energy trading
systems. As a result, complicated mechanisms are considered
to deal with the deviations from day-ahead optimal energy
scheduling plans during intraday trading [20], [22].

To tackle unknown arbitrary dynamics of renewable gener-
ation and demand, Lyapunov optimization [25], a technique
that provides a per-slot optimal solution with lower compu-
tation complexity for time-average stochastic optimization
problems without requiring any knowledge of the probability
distributions of the random event processes, has been widely
applied in designing online energymanagement mechanisms,
such as demand side energy management and energy storage
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management [26], [27], [28], [29], [30]. Most of these studies
primarily focus on real-time coordination between distributed
RESs and ESSs without considering direct energy exchange.
In this paper, we adopt the Lyapunov optimization technique
to design an online energy control algorithm that jointly
considers the energy dispatch and trading problems.

Trading pair matching, the core process in P2P energy
trading, determines the efficiency of energy trading and how
individual MGs benefit from energy trading. An important
component for trading pair matching is an efficient mech-
anism allowing participants to negotiate mutually benefi-
cial transactions, given their bidding prices and quantities.
In addition, power losses occurring due to energy trading
need to be consideredwhen determining trading pairs.Match-
ing theory, an approach to providing low complexity and
tractable solutions for the combinatorial problem of matching
players from two distinct sets while considering the prefer-
ence of each player, has emerged as a promising technique
for resource management, such as wireless resource alloca-
tion [31]. Different from typical game theory based auction
schemes, in which each player has to determine its own
best responses based on other players’ actions through fre-
quent information exchange during the converging process,
matching theory based approaches characterize interactions
between heterogeneous players using their preferences that
can handle heterogeneous and complex considerations related
to their individual objectives, thereby providing an efficient
and scalable means to reaching a two-sided stable matching
that achieves stability and optimality. However, most existing
matching models are designed for exchange markets with
indivisible goods, whereas the P2P energy trading problem
could be a many-to-many matching problem, where at least
one player within each of the two sets could be matched to
more than one member in the other set.

In this paper, we develop a distributed real-time energy
trading system for a smart energy system, where multiple
interconnected MGs with RESs and ESSs trade energy with
each other aiming to minimize their individual operational
costs, including the energy provision costs, the energy trans-
mission costs and the operational costs of ESSs. The main
contributions of this paper are as follows:
• Based on Lyapunov optimization, we design a joint
real-time energy control and bidding algorithm for such
a time-varying P2P energy trading system with high
uncertainty to allow each MG to determine its energy
control and bidding decisions in a dynamic manner only
based on its current energy supply condition.

• Taking into consideration individual payoffs of involved
MGs yielded from energy trading, we design a dis-
tributed many-to-many pair matching mechanism based
onmatching theory to facilitate theMGs to reach a stable
match, which is individually beneficial to them. To cap-
ture important characteristics particular to P2P energy
trading, the payoff preferences of MGs are subject to
several relevant factors, including energy transmission
line losses, bidding prices and quantities.

• In the proposed distributed energy trading system, where
the integration of the Lyapunov-based energy control
algorithm with the matching theory based trading pair
matching mechanism allows each MG to independently
determine its energy control and trading decisions on a
per slot basis with all information that can be obtained
locally or through simple communication, MGs are able
to freely join or leave the proposed energy trading sys-
tem anytimewithout increasing computational complex-
ity. Thus, the proposed energy trading system is scalable,
which makes it applicable in real systems.

The rest of the paper is organized as follows: Section II
briefly discusses the related work. A joint energy con-
trol and trading system model is presented in Section III.
In Section IV, an online P2P energy trading system is devel-
oped, where a Lyapunov-based online energy control and
bidding algorithm is integrated with a pair matching mech-
anism. Section V presents simulation evaluations. Finally,
concluding remarks are provided in Section VI.

LIST OF MAIN SYMBOLS
t Time slot index.
Di(t) MG i’s served load demand.
gRi (t) MG i’s harvested renewable energy.
gui (t) Energy purchased from the utility grid byMG

i that directly supplies its load.
gch,Ri (t) Excess renewable energy charged into

MG i’s ESS.
ges,Ri (t) Excess renewable energy sold by MG i in

energy trading.
gdis,Di (t) Energy discharged from MG i’ ESS that sup-

plies the MG i’s load.
geb,Di (t) Energy bought by MG i via energy trading

that supplies its load.
gchi (t) Total energy charged into MG i’s ESS.
gdisi (t) Total energy discharged from MG i’ ESS.
Rchi Maximum charging rate of MG i’s ESS.
Rdisi Maximum discharging rate of MG i’s ESS.
ηchi Charging efficiency coefficient of

MG i’s ESS.
ηdisi Discharging efficiency coefficient of

MG i’s ESS.
Si(t) State of Charge (SoC) of MG i’s ESS.
Smaxi Maximum energy limit of MG i’s ESS.
Smini Minimum energy limit of MG i’s ESS.
pu(t) Unit energy price from the utility grid.
pumax Maximum unit energy price from the utility

grid.
pumin Minimum unit energy price from the utility

grid.
pesi (t) Ask price of MG i.
pebi (t) Bid price of MG i.
pETmn (t) Transaction price between a seller-buyer

pair {m, n}.
gesi (t) Total energy sold by MG i in energy trading.
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gebi (t) Total energy bought by MG i in energy
trading.

λi(t) MG i’s net amount of battery charging and
discharging.

LRi (t) Levelized cost of MG i’s renewable energy
generation and storage.

cRi (t) Average per unit cost of MG i’s renewable
energy available for trading.

πbidnm (t) Buyer n’s expected payoff from trading with
seller m.

πaskmn (t) Seller m’s expected payoff from trading with
buyer n

II. RELATED WORK
Several studies have been conducted to employ the Lyapunov
optimization techniques in joint optimization of energy con-
trol and energy trading/sharing. In [32], a Lyapunov-based
online energy sharing method was proposed to improve the
self-sufficiency of a nanogrid cluster. However, the economic
benefits of individual nanogrids are not considered. A joint
energy control and trading system is developed for smart
communities in [33], where a Lyapunov-based online energy
control and trading algorithm is combined with a double auc-
tion mechanism, assuming transmission losses due to energy
exchange are negligible within energy communities in close
proximity. The proposed double auction mechanism clears
the energy trading market at the equilibrium price where
the quantity demanded equals the quantity offered. Trading
pair matching is not considered in the uniform-price auction
mechanism.

Matching theory has been applied in developing dis-
tributed P2P energy trading schemes [18], [34], [35], which
mainly focus on interactions between agents without consid-
ering energy dispatch management problems of individual
agents when determining their bid/offer prices. For instance,
in the cooperative electric vehicle (EV)-to-EV charging based
energy management protocol proposed in [34], the trading
price in the one-to-one matching model is set as the mean
between the buying and selling prices of the power grid.
In [35], an iterative price-negotiation mechanism is proposed
to search for the equilibrium trading price by adjusting the
seller/buyer price in each iteration. Additionally, the afore-
mentioned literature paid little attention to energy transmis-
sion losses associated with energy exchange.

Power losses occurring due to energy trading in the
network directly impact the market outcome. Some energy-
exchanging algorithms have been proposed based on coali-
tion formation games to facilitate cooperative local power
exchange, taking into consideration power losses in net-
worked MGs [3], [10], [36], [37]. Assuming a priority of
choosing geographically closer MGs to exchange energy first
and the same energy trading price for all MGs, the pro-
posed cooperative energy trading schemes mainly focus on
reducing power losses in the distribution network without
considering MGs’ incentives to cooperate in energy trading.

FIGURE 1. A schematic diagram of the P2P energy trading network.

To improve individual utilities of MGs, the authors in [18]
proposed a coalition-based energy trading algorithm where
a second-price sealed-bid auction based matching algorithm
is employed and incentives are designed for the coalitional
operation of networked MGs. The bidding price of an MG
is set based on the market prices of the main grid. In [17],
taking transmission losses and wheeling costs into account,
the authors propose an energy trading framework using a
credit rating based multi-leader multi-follower game model.
An iterative best response algorithm is designed to search
equilibrium strategies for each time slot by adjusting the
bidding prices without considering the impact of the time
coupling constraint of ESSs on MGs’ energy scheduling and
bidding prices. A similar iterative algorithm is employed
to realize the coordination among sellers and buyers in the
decentralized P2P energy trading market clearing mechanism
considering power losses and network fees in [19].

This paper proposes a real-time P2P energy trading system
that integrates a Lyapunov-based energy control and trading
algorithmwith amatching theory based trading pairingmech-
anism. Each MG, as an independent entity with its individual
objective, independently controls and dispatches its energy
resource, considering the randomness of renewable energy
output and arbitrary changes in energy demand along with
the operational constraints of its ESS and energy transmission
losses caused by P2P energy trading and transfer.

III. SYSTEM MODEL
In this paper, we consider a smart distribution system consist-
ing of I = {1, 2, . . . , I }MGs that are interconnected to each
other through bi-directional power links and connected to the
utility grid through a distribution substation (DS), as illus-
trated in Fig.1. Each MG typically contains a RDG, e.g.,
wind and solar power generators, a finite capacity ESS and
electrical loads. The MGs can trade energy with each other
with the assistance of a virtual trading agent (VTA), which
manages information sharing between MGs and facilitates to
clear the local P2P energy trading market in the virtual layer.
Thus, only bi-directional communications between the VTA
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and MGs are required in the energy trading system. Note that
the proposed P2P energy trading system can be implemented
in a full P2P mode, where the MGs directly interact with
each other through bi-directional communication links and
energy trading pairs can be matched without the assistance
of a VTA. The power system operates in slotted time t ∈
{0, 1, . . . ,T − 1}.

A. LOAD DEMAND AND SERVING
In time slot t , MG i serves a set of users whose aggregate
load demand is Di(t) and its harvested renewable energy is
denoted by gRi (t). Note that all power quantities are in the unit
of energy per time slot in this paper. We assume a priority of
using the harvested renewable energy gRi (t) to directly supply
time-varying load demand Di(t) and consider the following
two cases:
• If Di(t) > gRi (t), i.e., energy deficit, all the harvested
renewable energy is used to serve the load demand and
the residual, Di(t)− gRi (t), can be served by

– discharging energy, gdis,Di (t), from its own ESS;
– buying energy, geb,Di (t), from other MGs via energy

trading;
– purchasing energy, gui (t), from the utility company

when the energy drawn from its ESS and brought
from other MGs is insufficient.

Thus, a balance between purchasing energy and dis-
charging energy must be struck under the following
feasibility condition:

Di(t)− gRi (t) = gui (t)+ g
dis,D
i (t)+ geb,Di (t). (1)

We assume a priority of discharging energy from its own
ESS to serve the residual.

• If Di(t) ≤ gRi (t), i.e., energy surplus, MG i can
– store the excess renewable energy into its own ESS.

Let gch,Ri (t) denote the amount of excess renewable
energy charged into its ESS by MG i in time slot t;

– sell the excess renewable energy to other MGs.
Let ges,Ri (t) denote the amount of excess renewable
energy sold to other MGs.

Due to the finite storage capacity, a portion of the
excess renewable energy could be curtailed if there is
not enough storage space. We then have

gch,Ri (t)+ ges,Ri (t) ≤ gRi (t)− Di(t) ∀i ∈ I. (2)

B. ENERGY STORAGE
In time slot t , each MG with energy surplus can store
its own extra renewable energy generation, gch,Ri (t), and/or
energy bought through energy trading with other MGs,
geb,Ei (t), into its ESS. An MG can then draw the stored energy
from its ESS to serve its load and/or sell to other MGs. Let
gdis,Di (t) denote the amount of energy discharged by MG i in
time slot t to supply its load and ges,Ei (t) denote the amount
of energy discharged by MG i to sell to other MGs. Con-
sidering the relatively high cost of energy provision due to

charge/discharge losses and depreciation linked with lifetime
degradation, making effective use of ESSs is critical [38].
We now consider the energy model of the ESS at each MG.

In practice, energy conversion losses occur during the
charging and discharging processes. Denote Si(t) as the
energy state of MG i’s ESS, i.e., state of charge (SoC), at the
beginning of time slot t , which evolves as follows:

Si(t) = Si(t − 1)+ ηchi [gch,Ri (t)+ geb,Ei (t)]

− ηdisi [gdis,Di (t)+ ges,Ei (t)]

= Si(t − 1)+ ηchi g
ch
i (t)− ηdisi gdisi (t), (3)

where ηchi ∈ (0, 1] and ηdisi ∈ [1,∞) are the charging and dis-
charging efficiency coefficients of MG i’s ESS, respectively,
and gchi (t) , gch,Ri (t) + geb,Ei (t) and gdisi (t) , gdis,Di (t) +
ges,Ei (t) are the total charging and discharging amounts in
time slot t , respectively. Note that, energy charging and dis-
charging should not happen simultaneously, i.e.,

gchi (t) ∗ gdisi (t) = 0. (4)

Due to limitations imposed by the charging and dis-
charging circuits, the amount of energy that can be
charged/discharged into/from MG i’s ESS is upper bounded.
The maximum charging and discharging rates of MG i’s ESS
are denoted by Rch,i and Rdis,i, respectively. We have

0 ≤ gchi (t) ≤ Rchi ,

0 ≤ gdisi (t) ≤ Rdisi . (5)

Charging an ESS near its capacity or discharging it close to
zero will significantly reduce its lifetime [39]. Thus, the SoC
of MG i’s ESS in time slot t is bounded by

Smini ≤ Si(t) ≤ Smaxi , (6)

where Smini and Smaxi are the preferred energy lower and upper
bounds, respectively.

IV. ONLINE P2P ENERGY TRADING ALGORITHM
A. ENERGY PROVISIONING COST MINIMIZATION OF
INDIVIDUAL MGs
The operational cost of each MG comprises energy pro-
curement and battery degradation costs. As described in
Section III-A, in each time slot, eachMG can purchase energy
from the utility company at the unit price pu(t), pumin ≤
pu(t) ≤ pumax , which is time-varying, to supply its loads.
In addition, each MG can trade energy with other MGs at
the buying/selling price pebi (t)/pesi (t), p

eb
i (t)/pesi (t) ≤ pu(t).

Hence, the energy procurement cost of MG i in time slot t
consists of the cost incurred for energy purchase from the
utility company and the expense/revenue incurred/generated
in energy trading with other MGs, which is given by

Pi(t) = gui (t)p
u(t)+ [geb,Di (t)+ geb,Ei (t)]pebi (t)

− [ges,Ri (t)+ ges,Ei (t)]pesi (t)

= gui (t)p
u(t)+ gebi (t)pebi (t)− gesi (t)p

es
i (t), (7)
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where gebi (t) , geb,Di (t) + geb,Ei (t) and gesi (t) , ges,Ri (t) +
ges,Ei (t) are the total amounts of energy bought and sold
by MG i in energy trading in time slot t . Thus, the time
average energy procurement cost is defined by Pi ,
limT→∞

1
T

∑T−1
t=0 E {Pi(t)}.

Frequent charging/discharging activities cause battery
degradation, which shortens battery lifetime [40]. Let λi(t) ,∣∣ηchi gchi (t)− ηdisi gdisi (t)

∣∣ denote the net amount of battery
charging and discharging in time slot t . Based on (4)
and (5), λi(t) is bounded within [0,3i], where 3i ,
max{ηchi R

ch
i , η

dis
i Rdisi }.

In practice, faster/deeper charging/discharging generally
has a more detrimental effect on the battery lifetime.
To model the cost of charging/discharging activities that
cause battery degradation, we define the degradation cost
function, Qi(·), as a function of the time-average net
charging/discharging amount, which is defined by λi ,
limT→∞

1
T

∑T−1
t=0 E {λi(t)}.

Apparently, λi is bounded within [0,3i]. The battery
degradation cost function Qi(·) is assumed to be a continu-
ous, strictly convex and increasing function over [0,3i] with
Qi(0) = 0.

The objective of each MG is to minimize its long-term
time-averaged operational cost subject to its time varying
renewable energy generation and load demand along with
the operational constraints of its ESS, by jointly manag-
ing energy purchasing, energy trading and energy charging/
discharging actions. Denote the control action set (strategy
set) of MG i by

Yi(t) , [geb,Di (t), geb,Ei (t), ges,Ri (t), ges,Ei (t),

gch,Ri (t), gdis,Di (t), gui (t), p
eb
i (t), pesi (t)].

Then the optimization problem of MG i is to find a control
strategy that determines the optimal strategy set based on its
current state Xi(t) , [gRi (t),Di(t), Si(t), p

u(t)] to minimize
its time-averaged operational cost, which can be formulated
as the following stochastic control optimization problem,
called P1,

P1 : min
Yi(t)

Pi + Qi(λi).

s.t. (1)(2)(4)(5)(6) (8)

We assume that statistical information of gRi (t) and Di(t)
is unknown and their dynamics to be arbitrary. Taking into
account the system dynamics, the stochastic optimization
problem P1 seeks control decisions for the whole process.
However, the control actions Yi(t) that are correlated over
time due to the time-coupling constraints make P1 a particu-
larly challenging problem to solve.

B. REAL-TIME ENERGY CONTROL BASED ON
LYAPUNOV OPTIMIZATION
In this section, we use the idea of Lyapunov optimiza-
tion [25] to solve the time-coupling optimization problem P1.
Employing the concept of one-slot look-ahead queue stability

to handle the time-coupling constraints through successive
problem relaxation and transformation, we propose a Lya-
punov based optimization method that determines the control
vector Yi(t) for each MG in each time slot based only on
its current system state Xi(t), without requiring any statisti-
cal knowledge of its renewable energy generation and load
demand.

1) PROBLEM MODIFICATION AND TRANSFORMATION
The constraint in (6), which couples the charging and dis-
charging decisions across time slots, makes the standard
Lyapunov optimization technique directly inapplicable to
problem P1. To overcome such time-coupling, similar to the
technique used in our previous work [41], instead of the finite
battery capacity constraint (6), we impose the following soft
constraint:

lim
T→∞

1
T

T−1∑
t=0

E
{
ηchi g

ch
i (t)− ηdisi gdisi (t)

}
= 0. (9)

The derivation of (9) follows the framework of Lyapunov
optimization [25] and is given in our previous work [41].

Accordingly, P1 is relaxed to the following problem:

P2 : min
Yi(t)

Pi + Qi(λi),

s.t. (1)(2)(4)(5)(9) (10)

where the dependency of per time slot control decisions on
the battery state is removed.

The degradation cost functionQi(λi), which is defined as a
function of the time-average expectation λi, does not conform
to the structure required for the standard Lyapunov optimiza-
tion technique. As in [42], to transform P2 into an optimiza-
tion problem involving only time-averaged functions, we first
introduce an auxiliary variable γi(t), which is bounded within
the same range as 3i, i.e.,

0 ≤ γi(t) ≤ 3i. (11)

Additionally, the time average expectation γ i , limT→∞
1
T∑T−1

t=0 E {γi(t)} satisfies

γ i = λi. (12)

Let Qi(γi) , limT→∞
1
T

∑T−1
t=0 E {Qi(γi(t))} denote the

time-averaged expectation of Qi(γi(t)). By replacing Qi(λi)
with Qi(γi(t)) and adding the constraints (11) and (12) asso-
ciated with γi(t), we then transform P2 into the following
problem

P3 : min
Yi(t)

Pi + Qi(γi(t)).

s.t. (1)(2)(4)(5)(9)(11)(12) (13)

Following the general arguments of Lyapunov optimiza-
tion [25], P3 is equivalent to P2, which can be proven as
follows: Let C∗i,P2 and C

∗

i,P3 be the resulting minimum costs
of P2 and P3, respectively. Note that any optimal solution
of P2 satisfies all constraints of P3 with the same value of
the cost objective. Thus, C∗i,P3 ≤ C∗i,P2. On the other hand,
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by Jensen’s inequality and convexity of Q(·), for any solution
of P3, we have Q(λi) = Q(γi) ≤ Qi(γi(t)), which implies
that C∗i,P3 ≥ C∗i,P2. Therefore, P3 is equivalent to P2. The
transformed problem P3 involves only time averages, rather
than time-averaged functions, in the objective, so that the
standard Lyapunov optimization techniques can be applied
to design a real-time energy control policy to tackle P3.

2) VIRTUAL QUEUES
We now introduce two virtual queues Ei(t) and Ki(t) to trans-
form the time-averaged constraints (9) and (12) in P3 into
constraints with queue stability, respectively, as follows:
• Virtual energy queue Ei(t) = Si(t)−θi, where θi is a per-
turbation parameter that can be designed to guarantee the
energy state constraint in (3) is satisfied. The dynamics
of Ei(t) is given by

Ei(t) = Ei(t − 1)+ ηchi g
ch
i (t)− ηdisi gdisi (t). (14)

• Virtual net charge queue

Ki(t) = Ki(t − 1)+ γi(t)− λi(t). (15)

Note that both Ei(t) and Ki(t) are all associated with the
battery charging/discharging activities.

3) REAL-TIME ENERGY CONTROL ALGORITHM
Let 2i(t) , [Ei(t),Ki(t)] denote the virtual queue vector.
Consequently, we define a Lyapunov function associated
with the virtual energy queues 2i(t) as follows: Li(2i(t)) ,
1
2 (Ei(t)

2
+ Ki(t)2), which represents a scalar measure of

stored energy. In a decision making algorithm minimizing
the quadratic Lyapunov function of 2i(t), keeping Li(2i(t))
small pushes all virtual queues small, therefore pushing the
value of Si(t) towards θi. Hence, carefully choosing the value
of the perturbation parameter will ensure the battery queue
always lies in the feasible region.

Define the conditional one-slot Lyapunov drift, which rep-
resents the expected change in the Lyapunov function from
one time slot to the next, as follows:

1(2i(t)) , E {Li(2i(t + 1))− Li(2i(t))|2i(t)} ,

where the expectation is taken over the randomness of its
system stateXi(t), given the current virtual queue state2i(t).

We now incorporate a weighted version of the time-
averaged energy provisioning cost into the Lyapunov drift
and obtain the following drift-plus-penalty expression:

1(2i(t))+ Vi E{Pi(t)+ Qi(γi(t))|2i(t)},

where the time-averaged constraints and the objective func-
tion in P3 are jointly considered. The Lyapunov drift in
the first term represents the stability of the virtual queues,
while V in the second item serves as a weight controlling the
performance tradeoff betweenminimizing the queueing delay
and minimizing the operational cost.

Based on the drift-plus-penalty minimization method [25],
the control decisions are chosen to minimize the upper

bound on the drift-plus-penalty expression, which is given
in Lemma 1, to jointly maintain the stability of the
virtual queues and minimize the time-averaged energy
cost of MG i.
Lemma 1: For any possible control decision, the drift-

plus-penalty expression for all t is upper bounded by:

1(t) + V E{Pi(t)+ Qi(γi(t))|2i(t)}

≤ Bi + [Ei(t)− Ki(t)]E{ηchi g
ch
i (t)|2i(t)}

− [Ei(t)+ Ki(t)]E{ηdisi gdisi (t)|2i(t)}

+Ki(t)E {γi(t)|2i(t)} + Vi E {Pi(t)+ Qi(γi(t))|2i(t)} ,

(16)

where Bi , 1
2 [(η

dis
i Rdisi )2 + (ηchi R

ch
i )2 +3i

2].
Proof: See Appendix A. �

The energy control algorithm is then constructed: in each
time slot t , the control decision Yi(t) of each MG i is deter-
mined based on its current virtual queue state 2i(t) and sys-
tem state Xi(t) by solving the following linear programming
problem P4

P4 : min
Yi(t)

[Ei(t)− Ki(t)]ηchi g
ch
i (t)

− [Ei(t)+ Ki(t)]ηdisi gdisi (t)+ ViPi(t)

+ Ki(t)γi(t)+ ViQi(γi(t)).

s.t. (1)(2)(4)(5)(11) (17)

C. PRICE-QUANTITY BID/OFFER
In each time slot, each MG determines its offer/bid price and
quantity of energy to sell/buy, with which it is willing to par-
ticipate in energy trade with other MGs, by solving the opti-
mization problemP4 based only on its current state. TheMGs
that are willing to trade energy with others report their price-
quantity offers/bids, {paski (t)/pbidi (t), gaski (t)/gbidi (t)}, which
are given in Lemma 2, to the VTA, which facilitates match-
ing the buyers to the sellers aiming to minimize the energy
transmission losses during P2P trading. Note that energy
generation and storage of each MG is associated with a
cost due to its initial investments, operation and maintenance
costs. This cost varies from one MG to another depending
on the geographical location, weather, the method of power
generation, and the types of RDGs and ESSs, etc.. Therefore,
the levelized cost of MG i’s renewable energy generation
and storage differs from others. The variation in the cost
of renewable energy has an impact on trading decisions of
the MGs.
Lemma 2: In time slot t, the offer/bid price paski (t)/pbidi (t)

of MG i is given by

• Energy Deficit: when gRi (t) < Di(t),

paski (t) = min

([
−Ei(t)ηdisi −Ki(t)η

dis
i

Vi

]+
, pu(t)

)
,

pbidi (t) = min

([
Ki(t)ηchi −Ei(t)η

ch
i

Vi

]+
, pu(t)

)
. (18)
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• Energy Surplus: when gRi (t) ≥ Di(t),

paski (t) = cRi (t),

pbidi (t) = min

([
Ki(t)ηchi −Ei(t)η

ch
i

Vi

]+
, pu(t)

)
, (19)

where [a]+ , max(a, 0) and cRi (t) is the average per
unit cost of MG i’s energy available for trading, which
refers to the total cost of energy available for trading
divided by the amount of energy available for trading,
i.e., cRi (t) =∑t−1

τ=1 [Qi(ξ (τ ))+ g
eb,E
i (τ )pET (τ )+ gch,Ri (τ )LRi ]∑t−1

τ=1 [Qi(ξ (τ ))+ g
eb,E
i (τ )+ gch,Ri (τ )]

,

where Qi(ξ (τ )) is the battery degradation cost of traded
energy ξ (τ ) , |ηchi g

eb,E
i (τ ) − ηdisi ges,Ei (τ )| and LRi is

the levelized cost of MG i’s renewable energy generation
and storage, which reflects MG i’s capital and mainte-
nance costs of its RDG and ESS.
Proof: See Appendix B. �

D. PAIR MATCHING ALGORITHM
In time slot t , assume M MGs, referred to as sellers, submit
their price-quantity offers and N MGs, referred to as buyers,
submit their price-quantity bids. The potential sellers in M
and potential buyers inN form a P2P energy trading market.
Note that M and N vary in each time slot and could be
zero. In this section, we investigate the trading pair matching
problem between the potential sellers and buyers.

We first introduce some basic concepts of stable matching
theory [35], which are the basis of our algorithm.

Definition 1: Each MG on one side (buyer or seller set)
has preferences over the MGs on the other side, which can be
represented by a rank order list.

In the energy trading pair matching problem, each MG
aims to maximize its payoff through energy trading. There-
fore, based on the payoffs of MGs as buyers and sellers,
we define the preference relation for seller m and buyer n as
follows:
• Seller m prefers buyer n to buyer n′ if πaskmn > πaskmn′ ,
where m ∈M, n, n′ ∈ N and n 6= n′;

• Buyer n prefers seller m to buyer n′ if πbidnm > πbidnm′ ,
where m,m′ ∈M, n ∈ N and m 6= m′;

Definition 2: In a matching ω, if twoMGs are not matched
with each other but prefer each other over their paired MGs
through the matching, such a pair is called a blocking pair
for matching ω. Note that matching ω is unstable because the
blocking pair would prefer to deviate from the matching and
pair with each other.

Definition 3: A matching ω is said to be two-sided stable
if and only if there is no blocking pair.

According to the above stable matching definitions,
we now define the payoff that an MG receives from energy
trading. In the local low-medium voltage MG network, any
energy transfer between an MG and the DS or between

two MGs is accompanied with transmission losses over the
distribution line. In this paper, we restrict our attention to
transmission losses associated with energy transfer inside the
MG network and do not consider transmission losses between
the utility grid and the MG network.

In general, energy transfer between the DS and the MGs is
done at a medium voltage U0, while energy transfer between
MGs is done at a low-to-medium voltage UM , which is
smaller thanU0. Transferring energy ei betweenMG i and the
DS incurs a transmission loss qlossi0 , which is given by [43]

qlossi0 =
ei2Ri0
U0

2 + βei, (20)

where Ri0 is the resistance of the distribution line between
MG i and the DS and β is the fraction of energy lost in the
transformer at the DS. Thus, in time slot t , to ensure MG i
receives gui (t), the actual amount of energy that MG i acquires
from the UG through the DS, gr,ui0 (t), is given by a solution to
the following equation:

gr,ui0 (t) =
gr,ui0

2(t)Ri0
U0

2 + βgr,ui0 (t)+ gui (t). (21)

In P2P energy trading, the energy lost in the distribution
lines during the local power transfer between a seller MG
and a buyer MG is also given by (20) with β = 0, since
the local energy transfer between MGs yields no transformer
losses. Then, when seller m sells energy gaskm (t) to buyer n,
considering the incurred transmission loss, the actual amount
of energy transferred from seller m to buyer n is given by

gr,esmn (t) = gaskm (t)−
gaskm

2(t)Rmn
UM 2 , (22)

where Rmn is the resistance of the distribution line between
sellerm and buyer n. In addition, the actual amount of energy
that buyer n requires from sellerm to ensure it receives gbidn (t)
is given by a solution to the following equation

gr,ebnm (t) =
gr,ebnm

2(t)Rnm
UM 2 + gbidn (t). (23)

For a seller-buyer pair {m, n}, let the transaction price be
the mean between their offer/bid prices, i.e.,

pETmn (t) =
1
2
(paskm (t)+ pbidn (t)).

Consequently, buyer n’s expected payoff from trading with
seller m, which is defined as the expense incurred in energy
trading, is given by

πbidnm (t) = −pETnm (t) min(gr,esnm (t), gbidn (t)), (24)

and seller m’s expected payoff from trading with buyer n,
which is defined as the revenue earned in energy trading,
is given by

πaskmn (t) = pETmn (t) min(gaskm (t), gr,ebmn (t)). (25)

We now design a many-to-many matching algorithm,
where each MG can trade with multiple MGs simultaneously
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in each time slot, to form a stable matching between buyers
and sellers based on their mutual payoff preferences to maxi-
mize their individual payoffs, while ensuring fairness among
participants. Under the pair matching algorithm, thematching
process follows the mutual preferences between buyers and
sellers based on their payoffs yielded from energy trading as
follows:
• Each buyer with non-zero bid energy establishes its
payoff preference list by calculating its expected payoff
from trading with each seller with an ask price lower
than its bid price using (24), and sorts the expected
payoffs in decreasing order. Compare the expected
payoffs with the most preferred seller m∗, i.e., the
seller in its own first order, with the expected payoff
from acquiring the same amount of energy, gacqn0 (t) =

min(gbidn (t), gr,esnm∗ (t)), from the utility company via the
DS, which is given by

π
acq
n0 (t) = −pu(t)gr,acqn0 (t),

where gr,acqn0 (t) is obtained using (21). If πacqn0 (t) >

πbidnm∗ (t), the buyer will not participate in P2P energy
trading. Otherwise, the buyer submits a matching offer
to its most preferred seller m∗.

• A seller who only receives a matching offer from a buyer
pairs with the buyer. A seller who receives matching
offers from more than one buyer establishes its payoff
preference list by calculating its expected payoff from
trading with each buyer who has proposed to it using
(25), sorts the expected payoffs in decreasing order, and
pairs with the buyer in its own first order.

• For a matched seller-buyer pair {m∗, n∗},
– if seller m∗ can satisfy buyer n∗’s energy need,

buyer n∗ is paired with seller m∗ and its available
bid energy is updated with gbidn∗ (t) = 0. Meanwhile,
seller m∗’s available ask energy is updated with
gaskm∗ (t) = gaskm∗ (t)− g

r,eb
n∗m∗ (t).

– Otherwise, buyer n∗ buys as much energy as pos-
sible from seller m∗ and updates its available bid
energy with gbidn∗ (t) = gbidn∗ (t) − gr,esm∗n∗ (t). Mean-
while, seller m∗ is paired with buyer n∗ and its
available ask energy is updated with gaskm∗ (t) = 0.

The matching process is repeated until all buyers in N have
satisfied their energy needs or there is no available ask energy
from sellers in M. Note that, since ask/bid energy is divis-
ible, one seller/buyer could be paired with more than one
buyer/seller.

According to the procedure of the proposed pair matching
algorithm, each seller/buyer only needs to collect price-
quantity offers/bids and the resistances of the distribution
lines to establish its payoff preferences. Then the sellers/
buyers are able to take actions, i.e., proposing to their most
preferred buyer/seller or deciding to accept or reject the
received proposal(s), in an independent manner. Therefore,
the proposed pair matching algorithm can be implemented in
a distributed way.

E. PERFORMANCE ANALYSIS
Since the time-coupling constraint (3) is replaced with the
time-average constraint (9), the solution to P4 might not be
feasible to P1. In the following Lemma, we show that the
boundedness of the energy states (5) in P1 can be satisfied
by appropriately designing the perturbation parameter θi and
the control parameter Vi, i.e., the solution to P4 satisfies all
constraints of P1. Thus, the control decisions Y(t) derived
from P4 are a feasible set of P1.
The performance of the algorithm P4 is analyzed with

respect to the original problem P1
Lemma 3: Set the perturbation parameter θi as

θi , Smini + η
dis
i Rdisi +

Vipumax
ηdisi

+3i, (26)

where

0<Vi≤
ηdisi (Smaxi −Smini −η

ch
i R

ch
i − η

dis
i Rdisi − 23i)

pumax
. (27)

Then, under the energy control algorithm, we have
1) In each time slot t,

Smini ≤ Si(t) ≤ Smaxi , ∀t, (28)

i.e., the control decision Yi(t) derived from P4 is feasi-
ble to P1.

2) The resulting time-averaged cost under the proposed
algorithm by solving P4, C∗i,P4, is within bound Bi/Vi
of the optimal cost of P1, C∗i,P1, i.e.,

C∗i,P4 − C
∗

i,P1 ≤
Bi
Vi
, (29)

where Bi , 1
2 [(η

dis
i Rdisi )2 + (ηchi R

ch
i )2 +3i

2].
Proof: See Appendix C. �

Lemma 3.2 characterizes the gap between the expected
time-averaged cost achieved by the proposed algorithm P4
and the optimal cost of the original problem P1, which
implies that, setting the control parameter Vi as

Vmax
i ,

ηdisi (Smaxi − Smini − η
ch
i R

ch
i − η

dis
i Rdisi − 23i)

pumax
minimizes this performance gap.

By transforming the original problem P1 into the linear
programming problem P4, the proposed algorithm provides a
low-complexity alternative, which achieves sub-optimal per-
formance, without requiring any statistical information of the
system. It can easily cope with an arbitrary number of MGs
with different levels of demand. With all information that
can be obtained locally or through simple communication,
each MG can independently determine its energy control and
trading decisions avoiding disclosure of private information.

V. NUMERICAL SIMULATION
In order to evaluate the performance of the proposed energy
trading model, we set up a distribution network of 10 inter-
connected MGs that are randomly deployed within a square
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FIGURE 2. The simulated MG distribution system (P/L: the ratio of PV generation to demand).

FIGURE 3. An illustrative example of net demand profiles of different
types of MGs.

of 50km×50km with the DS located at the center, as illus-
trated in Fig.2(a). The resistance between any two nodes
R = 0.2�/km and the transformer loss β = 0.02, respec-
tively. The voltages U0 and UM are set to 50 kV and 22 kV,
respectively. Each MG includes a photovoltaic (PV) system
and an ESS with charging and discharging efficiencies of
ηchi = 0.8 and ηdisi = 1.25, respectively, corresponding to
80% efficiency for both charging and discharging for the ESS.
For simplicity’s sake, we assume that Smini = 0.1Smaxi and
Rchi = Rdisi = 0.15Smaxi , and set the initial battery energy
level as 0.5Smaxi . The degradation cost function of an ESS
is assumed to be a quadratic function Qi(x) = 0.01x2 [42].
For the purpose of simple illustration, we choose the same
degradation battery cost function for all MGs. The simulation
is performed for a duration of 90 days with time resolution
T = 4320 and the Time-of-Use tariff of Johannesburg City
Power, in which the peak, standard and off-peak energy prices
are R2.0019, R1.5072 and R1.1586 per kWh, respectively,
is used in the simulation.

We randomly generate 10 MGs, 4 Type I with low energy
generation, 3 Type II with medium energy generation and 3
Type III with high energy generation. The PV systems of the

MGs in the same type generate a similar amount of renewable
energy everyday. The daily solar energy generation of each
MG is then converted into hourly solar energy generation.
Similarly, the stochastic energy demand profile of each MG
is simulated using the appliance demand profile generator
developed in [41] to synthesize the variability in load demand
at different times of day. The average daily solar generations
and load demands of individual MGs are listed in Table 1.
Note that there are just slight differences in the load demands
of different types of MGs, while the solar generations of
different types of MGs differ considerably. An illustrative
example of the net demand (load demand minus renewable
generation) profiles of different types of MGs is shown in
Fig.3. Due to the limited capacity of its PV system and
operational constraints of its ESS, an MG has to purchase
energy from the utility company in the event that its demand
cannot be fulfilled with its own PV generation. For the sake
of easy comparison, the corresponding average daily costs
incurred in purchasing energy from the utility company to
fulfill the demand-supply gapswithout any energy scheduling
mechanism are listed in Table 1 as lower benchmarks.

As observed in Fig.4(a) and (b), as net demand patterns of
MGs are relatively similar, only a small portion of surplus
PV generation sold in trading can be used to directly fulfill
the buyers’ load demands. A large portion of sold PV energy
is stored into the buyers’ ESSs. The stored energy can be
sold later in trading. Thus energy trading among the MGs
further improves the flexibility brought by the ESSs that
allows for energy time-shifting. Meanwhile, a large portion
of energy brought at relatively lower prices in energy trading
is used for load-serving to reduce the operational costs of the
buyers. In addition, in each time slot, each pair of MGs in
energy trading trades energy with a different trading price.
The range of P2P trading prices and the corresponding mean
trading price in each time slot are illustrated in Fig.4(c).
As can be seen, although P2P trading prices are determined
based on the energy supply conditions of each pair of MGs,
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FIGURE 4. Real-time trading decisions and the range of real-time trading prices.

FIGURE 5. Real-time energy storage scheduling and energy purchasing from the utility company.

the mean trading prices (marked with asterisks) reflect the
changes in the energy supply condition of the system: the
mean trading price drops when more energy is available for
trading and vice versa, which encourages local energy trading
and consumption.

To verify the effectiveness of the proposed energy trading
mechanism, comparisons are drawn with the scenario with-
out energy sharing, where each MG operates independently
under the same Lyapunov-based energy control algorithm
and does not share energy with each other. In the case
without energy trading, each MG acquires energy from the
utility company via the DS and the actual energy that an
MG acquires from the utility company is obtained using

(21). Fig.5 compares real-time energy storage scheduling and
energy purchasing actions with and without energy trading.
As can be observed, since stored excess energy in the ESSs
can be traded between the MGs, the proposed energy trading
mechanism allows more surplus solar generation to be used
to fulfill load demands, thereby reducing purchasing energy
from the utility company.

Moreover, under the proposed energy trading mechanism,
the MGs not only trade their stored energy but also share the
storage space of their ESSs in P2P energy trading. Taking
into consideration the battery degradation costs and charging/
discharging losses when making bidding decisions, the use
of the distributed ESSs to provide substantial energy shifting
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FIGURE 6. Comparison of traded and purchased energy with and without energy trading under various scenarios.

FIGURE 7. Comparison under various matching schemes.

is compensated, which incentives the MGs to utilize their
ESSs in a collaborative but competitive way. The collective

use of ESSs in energy trading can be considered analogous
to the case where the MGs share their ESSs, which leads
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TABLE 1. Comparison of energy costs and solar generation curtailment rates of individual MGs.

to a significant improvement in PV generation utilization,
especially for the MGs with higher ratios of PV gener-
ation to load demand (P/L), as demonstrated in Table 1.
The solar generation curtailment rates of Type III, II and I
MGs drop by 48.90%-85.64%, 29.62%-40.74% and 8.53%-
47.54%, respectively. This indicates that, with local energy
trading, it may not be necessary for theMGs to invest in larger
size ESSs.

Although the role of each MG in energy trading dynam-
ically changes with its net demand, it can be observed in
Table 1 that, in energy trading, Type I MGs with low P/L
ratios buy more energy than what they sell, while Type III
MGswithmore solar energy production sell more energy. The
energy trading decisions of the MGs determine how individ-
ual MGs benefit from energy trading. In energy trading, since
the MGs are paired based on their payoff preference lists,
which couple the price-quantity bids/offers of the MGs with
the transmission losses dependent on the distances between
them, their locations are one of the main factors contributing
to the resulting energy trading decisions. However, the energy
trading decisions of anMG also depend on other time-varying
factors, such as the net demands of the MGs, the available
ESS storage capacities and the per unit costs of MGs’ energy
available for trading.

TABLE 2. Comparison of transmission loss rates, operational costs and
solar generation curtailment rates of the whole system.

To investigate the impact of locations ofMGs on the perfor-
mance of the proposed energy trading mechanism, we com-
pare three scenarios, where the locations of MG3, MG5 and
MG6 vary, as illustrated in Fig.2. As observed in Fig.6,
in Scenario1, among the Type III MGs, although MG3 with
a lower P/L ratio and a higher levelized cost is closer to other
MGs, as shown in Fig.2(a), it sells much less energy than
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other Type III MGs that are more distant. Especially, MG5
with a higher P/L ratio and a lower levelized cost, which is
relatively close to Type I and II MGs that are more likely
to buy energy in energy trading, sells more energy in com-
parison to other Type III MGs, thereby gaining more benefit
from energy trading in terms of operational cost reduction.
Similarly, in Scenario3 (Fig.2(c)), where the locations of
MG5 andMG6 are switched,MG6with a higher P/L ratio and
a larger ESS offers more surplus solar energy production and
flexibility in energy shifting, thus gaining more benefit from
energy trading. Since the real-time net demand of an MG as
a seller affects the energy trading decisions of other MGs,
compared to Scenario1, switching MG5 and MG6 results in
less energy exchange among the MGs while the resulting
transmission loss rate remains 3.06%, as shown in Table 2.
In Scenario2 (Fig.2(b)), the locations of MG3 and MG5 are
switched. MG5 with more surplus solar energy production
available for energy trading is more likely to be chosen as
a seller in energy trading. As a result, the transmission loss
decreases to 2.85%, thereby slightly reducing the total energy
cost of the system in comparison to Scenario1 and 3 as shown
in Table 2.
In what follows, we investigate the performance of the

proposed distributed pair matching algorithm in terms of
transmission loss under Scenario2 by a comparison drawn
with a centralized transmission loss minimization (CTLM)
algorithm, where a central controller chooses geographically
closer MGs to exchange energy first, i.e., a seller MG will be
matched to the closest buyer MG whose bid price is greater
than its offer price. As illustrated in Table 2, compared to
the proposed pair matching algorithm, the transmission loss
associated with energy trading under the CTLM algorithm is
0.95% lower and the total energy cost of all MGs is 1.04%
less. As illustrated in Fig.7, under the CTLM algorithm,
without considering the financial benefits of the MGs, MG9
with a higher levelized cost sells more energy as it is closer
to Type I MGs, which in turn reduces its solar generation
curtailment and increases its revenues from energy trading.
However, energy sold by other Type III MGs drops, resulting
in declines in their energy trading revenues. In contrast,
compared to the CTLM algorithm, the proposed matching
algorithm increases the total traded energy in the system,
which slightly increases the total energy cost of the system,
while incentivizing MGs with excess energy to participate in
energy trading in such a competitive energy trading market,
as illustrated in Table 2.

VI. CONCLUSION
This paper studies the real-time energy trading problem in
a smart energy distribution system with interconnected MGs
subject to transmission losses. We present a Lyapunov-based
energy trading system that integrates energy control and
energy bidding, aiming to minimize the long-term time-
averaged operational costs of individual MGs. The proposed
online energy control and bidding algorithm allows each
MG to independently and dynamically optimize its energy

bidding decisions along with its energy control decisions
taking into account the operational constraints of its ESS
without requiring any statistical knowledge of the system.
The trading pair matching algorithm allows MGs to pair with
each other based on their individual payoffs, which couple
price-quantity bids/offers of MGs with distance-dependent
energy transmission losses associated with energy exchange.
Numerical evaluations provide a more comprehensive insight
into the interactions among the self-interested MGs with
various energy generation and storage capacities and diverse
load demand profiles. Simulation results show that, compared
to the scenario without energy sharing, energy exchange via
energy trading reduces the operational costs of individual
MGs, improves the utilization efficiency of local renewable
generation, and reduces dependency on the utility company.
The payoff preference based trading pair matching algorithm
ensures that eachMGbenefits from energy trading taking into
account the associated transmission losses, thereby incen-
tivizing the MGs to participate in energy trading.

APPENDIX A
Proof of Lemma 1:

According to the definition of Li(2i(t)),

Li(2i(t + 1))− Li(2i(t))

=
1
2
[Ei(t + 1)2 − Ei(t)2 + Ki(t + 1)2 − Ki(t)2]. (30)

Based on the queue update rules in (14), we have

Ei(t + 1)2 − Ei(t)2

= 2Ei(t)[ηchi g
ch
i (t)− ηdisi gdisi (t)]+[ηchi g

ch
i (t)− ηdisi gdisi (t)]2

≤ 2Ei(t)[ηchi g
ch
i (t)− ηdisi gdisi (t)]+ (ηchi R

ch
i )2 + (ηdisi Rdisi )2.

(31)

Since battery charging and discharging can not happen simul-
taneously, we have

λi(t) = |ηchi g
ch
i (t)− ηdisi gdisi (t)|

= ηchi g
ch
i (t)+ ηdisi gdisi (t).

Then, based on the queue update rules in (15), we have

Ki(t + 1)2 − Ki(t)2

= 2Ki(t)[γi(t)− λi(t)]+ [γi(t)− λi(t)]2

≤ 2Ki(t)[γi(t)− ηchi g
ch
i (t)− ηdisi gdisi (t)]+3i

2. (32)

Applying inequalities (31) and (32) to (30), taking the condi-
tional expectation over Li(2i(t + 1))− Li(2i(t)) given 2i(t)
and adding the penalty term Vi E{Ci(t)|2i(t)} yield the upper
bound in (16).

APPENDIX B
Proof of Lemma 2:
The optimization problem P4 can be decomposed into the

following two sub-problems to determine the optimal Yi(t)
and γi(t) separately:

P4.1 : min
Yi(t)

[Ei(t)− Ki(t)]ηchi g
ch
i (t)
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− [Ei(t)+ Ki(t)]ηdisi gdisi (t)+ ViPi(t)

s.t. (1)(2)(4)(5)(14) (33)

P4.2 : min
γi(t)

Ki(t)γi(t)+ ViQi(γi(t))

s.t. (11)(15) (34)

We now only study the sub-problem P4.1, from which the
optimal Yi(t) is obtained. We first rearrange P4.1 to

P4.1 : min
Yi(t)

[Ei(t)ηchi − Ki(t)η
ch
i ]gch,Ri (t)

− [Ei(t)ηdisi + Ki(t)η
dis
i ]gdis,Di (t)

+ [Ei(t)ηchi − Ki(t)η
ch
i + Vip

eb
i (t)]geb,Ei (t)

− [Ei(t)ηdisi + Ki(t)η
dis
i + Vip

es
i (t)]g

es,E
i (t)

−Vipu(t)gui (t)+ Vip
eb
i (t)geb,Di (t)

−Vipesi (t)g
es,R
i (t).

s.t. (1)(2)(4)(5)(14) (35)

The following two cases are considered:
• Energy Deficit: when gRi (t) < Di(t), according to (1),
we have gui (t) = Di(t) − gRi (t) − gdis,Di (t) − geb,Di (t),
gch,Ri (t) = 0 and ges,Ri (t) = 0. Then, the optimization
problem P4 can be written as follows:

P4.1− a

min
Yi(t)

Vi[pebi (t)− pu(t)]geb,Di (t)

− [Ei(t)ηdisi + Ki(t)η
dis
i + Vip

u(t)]gdis,Di (t)

+ [Ei(t)ηchi − Ki(t)η
ch
i + Vip

eb
i (t)]geb,Ei (t)

− [Ei(t)ηdisi + Ki(t)η
dis
i + Vip

es
i (t)]g

es,E
i (t)

+ Vipu(t)[Di(t)− gRi (t)].

s.t. (4)(5)(14) (36)

As can been seen
– If pebi (t)−pu(t) ≤ 0, i.e., pebi (t) ≤ pu(t), MG i tends

to increase geb,Di (t). Otherwise, geb,Di (t) = 0;
– If Ei(t)ηdisi + Ki(t)η

dis
i + Vip

u(t) ≥ 0, i.e., pu(t) ≥
−Ei(t)ηdisi −Ki(t)η

dis
i

Vi
, MG i tends to increase gdis,Di (t).

Otherwise, gdis,Di (t) = 0;
– If Ei(t)ηchi − Ki(t)η

ch
i + Vip

eb
i (t) ≤ 0, i.e., pebi (t) ≤

Ki(t)ηchi −Ei(t)η
ch
i

Vi
, MG i tends to increase geb,Ei (t).

Otherwise, geb,Ei (t) = 0;
– If Ei(t)ηdisi +Ki(t)η

dis
i + Vip

es
i (t) ≥ 0, i.e., pesi (t) ≥

−Ei(t)ηdisi −Ki(t)η
dis
i

Vi
, MG i tends to increase ges,Ei (t).

Otherwise, ges,Ei (t) = 0.
Note that, to encourage energy trading amongMGs so as
to reduce conventional energy purchase from the utility
company, the ask price is capped: paski (t) ≤ pu(t). In case

of pu(t) ≥
−Ei(t)ηdisi −Ki(t)η

dis
i

Vi
, we have gdis,Di (t) > 0.

Since energy charging and discharging can not happen
simultaneously, MG i is not able to buy energy via
energy trading to store into its ESS, i.e., geb,Ei (t) = 0.

Hence, the bid price pebi (t) = 0. In case of pu(t) <
−Ei(t)ηdisi −Ki(t)η

dis
i

Vi
, we have gdis,Di (t) = 0. MG i tends

to increase geb,Ei (t) by choosing the bid price pbidi (t) =

min([
Ki(t)ηchi −Ei(t)η

ch
i

Vi
]+, pu(t)).

• Energy Surplus: when gRi (t) ≥ Di(t), we have gui (t) =
0, gdis,Di (t) = 0, ges,Ei (t) = 0 and geb,Di (t) = 0. Then,
the optimization problem P4 can be written as follows:

P4.1− b

min
Yi(t)

[Ei(t)ηchi − Ki(t)η
ch
i ]gch,Ri (t)− Vipesi (t)g

es,R
i (t)

+ [Ei(t)ηchi − Ki(t)η
ch
i + Vip

eb
i (t)]geb,Ei (t).

s.t. (4)(5)(14). (37)

As can been seen
– If Ei(t)−Ki(t) ≤ 0, MG i tends to increase gch,Ri (t).

Otherwise, gch,Ri (t) = 0;
– If Ei(t)ηchi − Ki(t)η

ch
i + Vip

eb
i (t) ≤ 0, i.e., pebi (t) ≤

Ki(t)ηchi −Ei(t)η
ch
i

Vi
, MG i tends to increase geb,Ei (t).

Otherwise, geb,Ei (t) = 0;
– If pesi (t) ≥ 0, MG i tends to increase ges,Ri (t).

Otherwise, ges,Ri (t) = 0;

In case of Ei(t) − Ki(t) > 0, we have gch,Ri (t) = 0,
i.e., MG i’s surplus renewable energy is not able to be
stored into its battery. MG i tends to increase ges,Ri (t) by
choosing the lowest possible ask price cRi (t), which is
the average per unit cost of MG i’s energy available for
trading, to reduce its energy cost and avoid the waste of
renewable energy. On the other hand, in case of Ei(t)−
Ki(t) ≤ 0, MG i tends to store as much as possible of
its surplus renewable energy into its ESS and increase
ges,Ri (t) with any ask price paski (t) ≥ cRi (t) in case there
is not enough storage space in the ESS to store all surplus
renewable energy. To encourage energy trading among
MGs to reduce conventional energy purchase from the
utility company, the ask price is set as the lowest possible
price: paski (t) = cRi (t).

APPENDIX C
Proof of Lemma 3:
Proof of Lemma 3.1:
To prove Lemma 3.1, we first introduce Lemma 4 below:
Lemma 4: The optimal solution γ ∗i (t) of P4.2 is given by

γ ∗i (t) =


0 if Ki(t) ≥ 0;
Q′−1i (−Ki(t)

Vi
) if −ViQ′i(3i) ≤ Ki(t) < 0;

3i if Ki(t) < −ViQ′i(3i),
where

Q′i(·) is the first derivative of Qi(·) and Q
′−1
i (·) is the inverse

function of Q′i(·). Then, we have

Ki(t) ≤ 3i. (38)
Proof: SinceQi(·) is assumed to be a continuous, convex

and increasing function with Qi(·) = 0, for γi(t) ∈ [0,3i],
the first derivation of Qi(γi(t)), Q′i(γi(t)) ≥ 0, increases with
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γi(t) and Q′i(0) = 0. Thus, we have 0 ≤ Q′i(γi(t)) ≤ Q′i(3i).
Let J (γi(t)) = Ki(t)γi(t)+ViQi(γi(t)). We then study the first
derivation of Ji(γi(t)), which is given by J ′i (γi(t)) = Ki(t) +
ViQ′i(γi(t)).
• If Ki(t) ≥ 0, we have Ji(γi(t)) > 0, which indicates
J (γi(t)) monotonically increases. Thus, its minimum
occurs at γ ∗i (t) = 0.

• If −ViQ′i(3i) ≤ Ki(t) < 0, γ ∗i (t) is the root of Ki(t) +
ViQ′i(γi(t)) = 0, i.e., γ ∗i (t) = Q′−1i (−Ki(t)

Vi
);

• If Ki(t) < −ViQ′i(3i), we have Ji(γi(t)) < 0, which
indicates J (γi(t)) monotonically decreases. Thus, its
minimum occurs at γ ∗i (t) = 3i.

We now prove the upper bound of Ki(t) considering the
following cases.
• Ki(t) ≥ 0: We have γ ∗i (t) = 0. Since λi(t) ≥ 0, based on
the dynamics ofKi(t) in (15),Ki(t+1) = Ki(t)−λi(t) ≤
Ki(t), i.e., non-increasing;

• −ViQ′i(3i) ≤ Ki(t) < 0: Since 0 ≤ γi(t) ≤ 3i,
according to (4), the maximum increment of Ki(t + 1)
from Ki(t) in (15) occurs when γ ∗i (t) = 3i and λi(t) =
0. Thus, Ki(t + 1) ≤ Ki(t)+3i ≤ 3i

• Ki(t) < −ViQ′i(3i): We have γ ∗i (t) = 3i. Since the
maximum increment of Ki(t + 1) from Ki(t) in (15)
occurs when λi(t) = 0, Ki(t + 1) ≤ Ki(t) + 3i ≤

−ViQ′i(3i)+3i.
In summary, we have Ki(t) ≤ 3i. �

The per-slot problem P4 includes all constraints of the
original problem P1 except for the energy state constraint.
Hence, to prove the solution derived from P4 is feasible to
P1 is to show the energy state of MG i, Si(t), is bounded
within [Smini , Smaxi ]. The proof proceeds by induction. First,
it is obvious that the lower and upper bounds hold for t = 0.
We now suppose that Smini ≤ Si(t) ≤ Smaxi holds for time slot
t , which in turn indicates Smini − θi ≤ Ei(t) ≤ Smaxi − θi.
Hence, to prove the boundary of Si(t) in (28) also holds for
time slot t + 1, we need to prove Smini − θi ≤ Ei(t + 1) ≤
Smaxi − θi holds.

We now study the energy deficit and energy surplus
cases separately. Let geb,D

∗

i (t), geb,E
∗

i (t), ges,R
∗

i (t), ges,E
∗

i (t),
gch,R

∗

i (t) and gdis,D
∗

i (t) be the optimal solution to P4.
• Energy Deficit: We prove the upper and lower bounds
considering the following cases:
– Case 1. Ei(t) ≥ −Vipesi (t)/η

dis
i − Ki(t): as p

es
i (t) <

pu(t), we have 0 < ges,E
∗

i (t) + gdis,D
∗

i (t) ≤ Rdisi .
Since we assume a priority of using the stored
energy from MG i’s ESS to serve its load demand,
we have geb,E

∗

i (t) = 0 according to (4). Based on
the update equation (14), we have Ei(t + 1) <

Ei(t) ≤ Smaxi − θi. In addition, as pesi (t) <

pu(t) < pumax and Ki(t) ≤ 3i, we have Ei(t) >

−Vipmax/ηdisi − 3i. Then, based on the definition
of θi, we get
Ei(t + 1) ≥ Ei(t)− ηdisi Rdisi > −Vipumaxη

dis
i −3i−

ηdisi Rdisi = Smini − θi.

– Case 2, −Vipesi (t)/η
dis
i − Ki(t) > Ei(t) ≥

−Vipu(t)/ηdisi − Ki(t): we have ges,E
∗

i (t) = 0 and

0 < gdis,D
∗

i (t) ≤ Rdisi . Similar to Case 1, we have
geb,E

∗

i (t) = 0. Thus, Ei(t + 1) < Ei(t) ≤ Smaxi − θi.
Similar to Case 1, as Ei(t) > −Vipu(t)/ηdisi −

Ki(t) ≥ −Vipumax/η
dis
i − 3i, we have Ei(t + 1) =

Ei(t)−ηdisi Rdisi ≥ S
min
i − θi, based on the definition

of θi.
– Case 3, Ei(t) < −Vipu(t)/ηdisi − Ki(t): we have
ges,E

∗

i (t) = 0 and gdis,D
∗

i (t) = 0.

∗ If Ei(t) ≥ −Vipebi (t)/ηchi + Ki(t), we have
geb,E

∗

i (t) = 0. Thus,
Smini − θi ≤ Ei(t + 1) = Ei(t) ≤ Smaxi − θi.

∗ If Ei(t) < −Vipebi (t)/ηchi + Ki(t), we have 0 <
geb,E

∗

i (t) ≤ Rchi . Thus,Ei(t+1) > Ei(t) ≥ Smini −

θi. On the other hand, as Ei(t) < Ki(t) ≤ 3i,
we have Ei(t + 1) < Ei(t) + ηchi R

ch
i ≤ 3i +

ηchi R
ch
i ≤ Smaxi − θi, where the last inequality

holds based on the definition of Vi.

• Energy Surplus:

– Case 1. Ei(t) ≥ Ki(t): we have geb,E
∗

i (t) = 0 and
gch,R

∗

i (t) = 0. Thus, we have Smini −θi ≤ Ei(t+1) =
Ei(t) ≤ Smaxi − θi;

– Case 2. Ki(t) > Ei(t) ≥ −Vipebi (t)/ηchi + Ki(t):

as pebi (t) < pu(t), we have geb,E
∗

i (t) = 0 and 0 <

gch,R
∗

i (t) < Rchi . Based on the update equation (14),
we have Ei(t+1) > Ei(t) ≥ Smini −θi; On the other
hand, as Ei(t) < Ki(t) ≤ 3i, we have Ei(t + 1) <
Ei(t)+ηchi R

ch
i ≤ 3i+η

ch
i R

ch
i ≤ S

max
i −θi, where the

last inequality holds based on the definition of Vi.
– Case 3. Ei(t) < −Vipebi (t)/ηchi + Ki(t), we have

0 < geb,E
∗

i (t) + gch,R
∗

i (t) ≤ Rchi . Thus, similar to
Case 2, we have Ei(t + 1) > Ei(t) ≥ Smini − θi,
and Ei(t + 1) < Ei(t) + ηchi R

ch
i ≤ 3i + η

ch
i R

ch
i ≤

Smaxi − θi.

Proof of Lemma 3.2:
The proof of the performance boundary follows the perfor-

mance result derivation in the Lyapunov optimization frame-
work and is similar to that of our previous work. Interested
readers may refer to [41] for details.
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