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a b s t r a c t

Achieving a sustainable and efficient power systems network and decarbonized environment involves
the optimal allocation of multiple distributed energy resource (DERs) unit types and flexible alternating
current transmission systems (FACTS) to distribution networks. However, while the most focus is on
optimization algorithms and multi-objective techniques, little to no attention is paid to the underlying
mechanisms in planning frameworks. This paper goes beyond existing literature by investigating the
impact of planning mechanisms in smart grid planning frameworks when considering the allocation of
PV distributed generation units, battery energy storage systems, capacitor banks, and electric vehicle
charging station facilities. First, a single- and multi-objective planning problem is formulated. Then, we
propose a novel adaptive-dynamic planning mechanism that uses a recombination technique to find
optimal allocation variables of multiple DER and FACTS types. To cope with the additional complexity
resulting from the expanded solution space, we develop a hybrid stochastic optimizer, named cooper-
ative spiral genetic algorithm with differential evolution (CoSGADE) optimization scheme, to produce
optimal allocation solution variables. Through numerical simulations, it is seen that the proposed
adaptive planning mechanism improves achieves a 12% and 14% improvement to the conventional
sequential (multi-stage) and simultaneous mechanisms, on small to large scale distribution networks.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The growing interest in the decarbonization and stabilization
f utility grids have birthed research in transforming the tra-
itional power grid into an efficient smart grid. To this course,
ifferent studies have integrated different distributed energy re-
ource (DERs) units into the distribution networks. Renewable
nergy sources (RES) have been the main focus, to aid a sustain-
ble power grid while reducing carbon footprints. While RES is
nown for its’ setback in continuous power supply, such as vari-
bility and intermittency, battery energy storage systems (BESS)
re deployed to counter the effects, storing energy for downtime
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nc-nd/4.0/).
use and regulating the voltage fluctuations (Salama and Chikhani,
1993; Yang et al., 2014). However, these systems are very expen-
sive to install and maintain Awad et al. (2015), and even more,
they add to the complexity of the distribution networks, starting
from the simulation software modelling to the implementation.

Furthermore, an inappropriate installation of these units can
be counter-intuitive to the expected results (Schweppe and
Wildes, 1970; Paliwal et al., 2014), hence, previous studies have
developed planning framework to allocate multiple unit types in
power system networks. These unit types include energy sources
and flexible alternating current transmission systems (FACTS) de-
vices, such as photovoltaic distributed generators (PV-DG) units,
wind turbines (WT-DG) units, microturbines, BESS, capacitors,
voltage regulators, static compensators, and fault detectors.

More recently, electric vehicles (EVs) are the promising tech-
nologies to support sustainability and efficiency in modern power
system networks, due to their combustion-free energy and ca-
pability to feed in real and reactive power into an electrical
grid (Zheng et al., 2019). However, their natural charging pattern
may cause potential grid collapse (Uddin et al., 2018). There-

fore, there is a need to strategically coordinate these charging,
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Table 1
A chronological taxonomy of smart grid planning frameworks involving multiple unit type allocation.
Ref. Year Algorithm MOO Planning mode Planning mechanism DG BESS CB EVCS VR

(Rodríguez-Gallegos et al., 2018) 2018 GA Pareto Loc. & size Simultaneous ✓ ✓
(Wong et al., 2019) 2019 WOA ✗ Loc. & size Simultaneous ✓ ✓
(Singh et al., 2020a) 2020 CMSO ✗ Loc. & size Simultaneous ✓ ✓
(Bozorgavari et al., 2019) 2019 LP solver ✗ Allocation & EMS Sequential ✓ ✓ ✓
(Mukhopadhyay and Das, 2020) 2020 PSO ✗ Loc. & size Sequential ✓ ✓
(Erdinc et al., 2018) 2020 SOCP solver ✗ Loc. & size Simultaneous ✓ ✓ ✓
(Gampa et al., 2020) 2020 GOA WSA Loc. & size Simultaneous & Sequential ✓ ✓ ✓
(Abou El-Ela et al., 2021) 2021 equilibrium ✗ Loc. & size Simultaneous ✓ ✓
(Adetunji et al., 2021) 2021 WOAGA Pareto Loc. & size Dynamic ✓ ✓
(Barukčić et al., 2021) 2021 MIDACO Pareto Allocation & EMS Sequential ✓ ✓
(Biswal et al., 2021) 2021 QRSMA ✗ Loc. & size Simultaneous ✓ ✓
(Mouwafi et al., 2021) 2021 CBA ✗ Loc. & size Sequential ✓ ✓
(Janamala and Reddy, 2021) 2021 Coyote ✗ Loc. & size Sequential ✓ ✓
(Abdel-Mawgoud et al., 2021) 2021 HGSO ✗ Loc. & size Simultaneous ✓ ✓
(Shaheen and El-Sehiemy, 2020) 2021 EGWA WSA Loc. & size Simultaneous ✓ ✓ ✓
(Thokar et al., 2021) 2021 CMSO WSA Loc. & size Dynamic ✓ ✓
(Pirouzi et al., 2022) 2022 MILP solver ✗ Loc. & size Simultaneous ✓ ✓
(Pereira et al., 2022) 2022 GA ✗ Allocation & Automated Simultaneous ✓ ✓
either by assigning time slots or recommending charging stations.
Hence, there is a need to consider the optimal allocation of elec-
tric vehicle charging stations (EVCS) in the smart grid planning
models.

1.1. Related works

Table 1 shows the taxonomy of previous related studies on
mart grid planning regarding the allocation of multiple DER, PE,
r EVCS facilities.
We focus on hybrid metaheuristic optimization algorithms

ince they have played a major role in improving planning frame-
ork solutions,. Most studies tap from their unique capabilities
o solve the planning problem cooperatively or each algorithm is
sed to solve different sub-problems. Fang et al. (2022) discusses
he advantage of hybridizing metaheuristic algorithms, especially
or complex problems like unrelated parallel machine scheduling
asks.

Jeddi et al. (2019) combined the Firefly Algorithm (FA) and
he Harmony Search Algorithm (HSA) to increase distribution
etwork companies’ profits by increasing income and reducing
he operational costs of a distribution system. The developed
ptimization scheme uses the FA mechanism for a random search
nd applies the HSA mechanism to search for the optimal util-
ty values in the harmony memory. However, the optimization
cheme is reported to be computationally intensive. In order to
itigate high complexity, Barukčić et al. (2021) developed a co-
imulation framework to allocate DG units while managing DG
ower. In the quest to develop a robust optimal allocation model
hat finds optimal solutions while reducing computational com-
lexity, the authors applied an artificial neural network to reduce
he number of decision variables before finding optimal values,
hich is done by simultaneously outputting optimal solutions
hrough one vector.

Given the longevity of power system networks, it is crucial to
ave an extensive smart grid planning model; a model that in-
olves multiple DER units and/or FACTS devices. Previous studies
n the smart grid have considered two or more of these elements.
odríguez-Gallegos et al. (2018) proposed a novel method to
llocate multiple, different DER units - PV-DG, BESS, and diesel
enerators. The procedure is based on a sequential planning
echanism that first considers finding the total BESS power and
ot considering power losses while defining a fixed PV power
hrough a time horizon into the distribution network. Mouwafi
t al. (2021) developed a two-stage approach to solve a multiple
G units and capacitors problem. The adopted approach is similar

o the sequential mechanism, using optimal capacitor locations

14659
for optimally allocating DG units in a 34- and 118-bus distribution
network. The authors applied a chaotic BAT algorithm to single
objective and multi-objective functions. However, the mechanism
is chosen arbitrarily, with no motivation.

Gampa et al. (2020) used the simultaneous and sequential
mechanisms to allocate DG units, capacitors, and EVCS facilities in
the distribution network, implementing a weighted sum assign-
ment (WSA)-based MOO framework to optimize objective func-
tions. The DG and capacitors are simultaneously allocated in the
first stage, followed by the allocation of EVCS facilities, making
it sequential to the first stage. In Singh et al. (2020b), a simul-
taneous approach was proposed to allocate multiple unit types
optimally — PV-DG, shunt capacitors, and on-load tap chang-
ers. This approach combines all decision variables into a single
one-dimensional vector, making the computation less expensive.
However, no investigation was carried out on the strength of
the mechanism. Although Biswal et al. (2021) identified the
lack of simultaneous planning mechanism in literature, there was
no comparative study on the developed mechanism with the
sequential mechanism. They however varied the power factor
while finding the optimal location and sizes of DG units and
capacitors.

Some studies also investigated the effect of different variables
on installed DER and FACTS units. For example, Janamala and
Reddy (2021) implemented a robust optimal DG and BESS model
that considers the varying nature of EV loads while finding op-
timal DG/BESS locations and sizes. Abou El-Ela et al. (2021)
varied the number of PV-DG units and BESS units, and BESS
state of charge limits to the optimal allocation suitable for a 33-
bus distribution network. In Pereira et al. (2022), a simultaneous
planning mechanism was used to allocate DG and capacitor units,
considering the effects of applying the sequential Monte Carlo
technique to correlate stochastic historical data. The binary GA is
used to optimize the annual loss and investment cost reduction.

Wong et al. (2019) investigated the comparison of a two-step
and a simultaneous approach to allocate PV-DG and BESS units in
the IEEE 33-bus distribution network. However, both approaches
are not based on planning mechanism, but rather a method that
allocates only BESS units regarding their locations and sizes.

Dynamic planning mechanism is another mechanism that has
been scarcely implemented in literature. Although very compu-
tationally expensive, it is effective for finding improved solutions
since it generates a larger solution space. Pirouzi et al. (2022)
considered proposing a dynamic planning model that will allocate
DG units and capacitors in future work. Thokar et al. (2021) de-
veloped a nested dynamic mechanism that dynamically allocates

BESS units given the group installation of solar PV panels in a
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lanning framework. Using the CMSO, the optimal coordination of
he BESS units is achieved, considering the WSA-based optimiza-
ion of objective functions. In Adetunji et al. (2021) and Adetunji
t al. (2022), a dynamic planning mechanism was implemented
o allocate multiple DER and FACTS units in smart grid planning
ramework. However, the optimality of the objective functions
as traded off for a high computational time.
As seen in the review, most smart grid planning frameworks

nvolving multiple DER, FACTS, or EV charging station alloca-
ion are optimized either using a sequential or a simultaneous
lanning mechanism. However, to the best of our knowledge,
ittle attention is paid to the effect of the planning mechanism
nd the application of dynamic planning mechanisms in smart
rid planning frameworks. This paper goes beyond the liter-
ture by investigating the impact of planning mechanisms in
lanning frameworks, specifically improving on the proposed
ynamic planning mechanism in Adetunji et al. (2021). While
ur proposed planning mechanism is hypothesized to reduce
omputational complications from previous studies, the challeng-
ng conditions are the potential residual complexities from the
ultiple iterations of unit allocations. To handle these complex-

ties, we proposed a novel adaptive dynamic planning mecha-
ism in a multiple unit type allocation planning frameworks. The
ontributions are summarized as follows

.2. Contributions

In this paper, we develop a planning framework by opti-
ally allocating multiple unit types to a distribution network.
he framework consists of various objectives, hence adopting a
OO technique to find compromise solutions that represent all
dopted objectives in the view of a decision-maker. The paper
ontributions are

• Adaptive Dynamic Planning Mechanism: We design a novel
adaptive-dynamic planning mechanism as an underlying
blueprint for use by an optimization scheme to solve the
planning problem. Unlike other conventional mechanisms
used in Gampa et al. (2020), Biswal et al. (2021) and Mouwafi
et al. (2021), the dynamic mechanism uses a recombination
technique that considers the feedback of other unit types to
expand the solution space.
• Hybrid Evolutionary Optimization Scheme: We develop a hy-

brid cooperative spiral-based genetic algorithm and differ-
ential evolution (CoSGADE) optimization scheme based on
the newly designed planning mechanism. The scheme de-
composes the problem, splitting the whole problem into
sub-problem and using each algorithm at different stages
of the optimization process. The CoSGADE is implemented
in two forms, hoping to solve the complex model in a
considerably reasonable computational time.
• EVCS Allocation: We introduce a reinforcement learning-

based allocation scheme, using the results from the EV
charging strategy to suggest optimal EVCS locations in dis-
tribution networks. A reinforcement learning technique is
introduced to find the optimal EV charging strategy for
different bus locations.

.3. Paper outline

The rest of the paper follows the structure - Section 2 dis-
usses the different planning mechanisms. Section 3 discusses
he integration model and the problem description, entailing the
bjective functions, constraints, and the MOO technique. Next,
ection 4 discusses the solution methodology, entailing the pro-
osed dynamic planning mechanism and the new optimization
echnique, the CoSGADE. Finally, Section 5 discusses the numer-
cal results, while Section 6 presents the conclusions from the
tudy.
14660
2. Planning mechanisms

First, to understand the concept of planning mechanism, we
need to define the low-level problem, starting with unit type.

Definition 1. In this paper, unit type is defined as the category
of DER or FACTSunits according to their functionality to the grid.
For example, a DG unit is a unit type that supplies power to the
grid irrespective of the generation source, e.g., Wind, Solar, Diesel,
etc.; hence, any form of DG unit is categorized as a unit type. A
BESS unit is another unit type since its operation is coordinated
to optimally charge and discharge to and from the grid, primarily
dependent on renewable-based DG units. Other unit types that
can be optimally allocated are capacitors, voltage regulators, fault
limiters, and EVCS facilities.

Definition 2. In this paper, planning mechanism is defined
as the underlying design in a planning framework to allocate
more than one unit type in a power system network. The op-
timization scheme uses the design to find the optimal planning
scheme. Planning mechanisms are more significant when two or
more unit type allocation is considered for a smart grid planning
framework.

There are three conventional planning mechanisms for allo-
cating multiple unit types: preallocated, sequential, and simulta-
neous. The preallocated form of mechanism involves allocating
one unit type into a distribution network earmarked with one or
more different unit type(s). An example is finding optimal BESS
locations and sizes in the presence of PV-DG and capacitor units.
The step for allocating PV-DG and capacitors will be skipped,
assuming they are optimally allocated, only to focus on allocating
the BESS units. This method is very straightforward and less
complex, but the assumption that earmarked units are optimally
allocated can be costly to derive optimal solutions.

The sequential form of mechanism is allocating multiple unit
types in successive order. The first unit, e.g. a capacitor, is sin-
gularly allocated, followed by another distinct unit type, e.g., the
BESS unit. This mechanism ensures that, within the optimization
framework, unit type allocation is dependent on the effect of
previously allocated unit type on the distribution network. The
simultaneous mechanism allocates all unit types together in one
iteration. The location and size of all unit types are manipulated
at once, considering the utility value as the fitness value to deter-
mine the optimal allocation variable per iteration. The drawback
is a limited number of iterations to find the best permutation
among unit types. Increasing the number of iterations will be
counter-intuitive to the simplicity of the mechanism.

The other form of planning mechanism is the dynamic mech-
anism, where the permutation of unit location is considered.
This mechanism has only been reported in Thokar et al. (2021)
and Adetunji et al. (2021). Fig. 1 shows the visual illustration of
the proposed mechanisms.

As seen in Fig. 1, the preallocated mechanism involves the
most minimal form of manipulating allocation variables, making
it the most straightforward approach. The simultaneous form is
next in simplicity, as it manipulates all variables in one iteration.
Finally, the proposed dynamic mechanism is adapted from the
sequential form but adds a cyclic process to involve sub iterations
in the main iteration cycle.

3. Problem formulation

In this section, a multi-objective optimal allocation problem
consists of multiple different DER technologies and FACTS devices
aiming to optimize adopted objective functions in a smart grid
planning framework. In addition, some terminologies are pre-
defined in the planning framework. The adopted objectives and
constraints are discussed in the following subsections.
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Fig. 1. Mechanisms for smart grid planning models (a) preallocated mech-
anism. (b) simultaneous mechanism. (c) sequential mechanism. (d) dynamic
mechanism.

3.1. Objective functions

The objective of the planning model is to improve grid per-
ormance which has been formalized by adopting three objective
unctions — power loss minimization, voltage stability improve-
ent, and voltage deviation reduction. The objective functions
re defined as follows.

.1.1. Power loss minimization
One of the primary objectives of a utility grid is to deliver

aximum power from the source to all nodes in a power sys-
em network. To achieve maximum power delivery, power loss
ithin the network has to be minimized as best as possible. we,
herefore, consider the power loss minimization as one of the
bjectives, defined as

LOSS
t =

N∑
i=1

N∑
j=1

αij
(
P t
i P

t
j + Q t

i Q
t
j

)
+ βij

(
Q t
i P

t
j − P t

i Q
t
j

)
(1)

here

ij =
rij
ViVj

cos
(
δi − δj

)
(2)

and

βij =
rij
ViVj

sin
(
δi − δj

)
. (3)

Here, i and j are the sending and the receiving bus indices, re-
spectively, while Zij = rij+ jxij represents the branch impedance
from bus i to bus j, P and Q are the real and reactive power at
each bus.

3.1.2. Voltage deviation reduction
Delivery of power also comes with the assurance of quality.

Power quality is affected by the deviation of voltage from the tol-
erance range, which can be aggravated by newly installed units.
Hence, the second objective is to reduce the voltage deviation at
each bus and described as

VD =
N∑
i=2

|V t
i − Vref |, (4)

where the reference voltage, Vref is set at one and Vi represents
the voltage at each bus after the addition of DG or BESS units.

3.1.3. Voltage stability improvement
Another crucial indicator for evaluating grid performance is

the voltage stability of the network. High penetration of power
14661
from DER units to certain buses can destabilize the whole net-
work; hence there is a need to consider this index while finding
optimal planning variables. We expressed the voltage stability
improvement as

vsii+1,t+1 =
(
|Vi,t |

2
− 2Pi,tRi,t − 2Qi,tXi,t

)2
−4 ·

(
P2
i,t + Q 2

i,t

)
·
(
R2
i,t + Xi,t

2) ,
(5)

VSIi,t =
1

min(vsii+1,t+1)
, (6)

VSI =
1
24

N∑
i=2

24∑
t=1

VSIi,t . (7)

3.2. Constraints

A power system network has many constraints that guide
its smooth operation. Therefore, there is a need to formulate
necessary constraints to improve the practicality of the optimal
unit allocation model.

P t
i =

N∑
j=1,j̸=i

YijV t
i V

t
j cos(θij + δj − δi) (8)

and

Q t
i =

N∑
j=1,j̸=i

YijV t
i V

t
j sin(θij + δj − δi). (9)

Although there was no injection of reactive power from PV-DG
unis, it is necessary to monitor boundaries during the injection of
real power.

The operating voltage at every bus must satisfy the range at
all buses. The admittance on a branch is represented as Yij. The
bus voltage limit is formulated as

Vmin
i ≤ Vi ≤ Vmax

i i = 1, 2, . . . ,N, (10)

where Vi is the current voltage at bus i. The tolerance level
of voltage is ±5%, therefore Vmin

i and Vmax
i are 0.95 and 1.05

respectively.
The power flow balance is also considered. The total real

power generation (from all DG and BESS units) must equal the
total real load, total real power loss, and the BESS charging and
discharging power (Kansal et al., 2013). Therefore, a balance of
the power flow is calculated as

PDG
i,t + PDis

j,t = PLOSS
i,t + PLOAD

i,t + PCh
j,t , (11)

where the PDis
j,t and PCh

j,t represent the BESS discharging and charg-
ing power to and from the grid from bus j at time t .

3.2.1. BESS constraints
This paper selected the Lead–acid battery technology due to its

economic viability and reliability since they have a considerably
high tolerance for overcharging. For a practical scenario, the BESS
model is subject to state of charge SoC limit, which prevents
excessive charging or discharging from the battery and defined
as (Das et al., 2018)

SoCmin <
EB
t

EBA
t

< SoCmax, (12)

where the SoCmin and SoCmax are 0.2 and 0.9 respectively. The
charging and discharging power are specified as (Das et al., 2019;
Kaur et al., 2019)

EB
t+1 =

{
EB
t − PB

t ∆tηBc PB
t ⩽ 0

EB
−

PBt ∆t PB > 0
, (13)
t ηBd t
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where EB
t is the energy of the BESS unit at time t , PB

t is the
harging power of the BESS unit at time t , ∆t is the time interval,
Bd and ηBc are the discharging and charging efficiency of the BESS

unit respectively, the battery power is limited by

Emin ⩽ EB
i,t ⩽ Emax, (14)

here Ei,t is the energy of the ith BESS unit at time t .
Given that most EVs use a lithium-ion battery, this study

odelled a lithium-ion battery, which injects current to a bus at
given time. The current is expressed as

i =
(P t

i + Q t
i )

V t
i

, (15)

here Pi and Qi are the real and reactive power at bus i at time,
. V t

i is the bus voltage at bus k at time, t . The reactive power Q t
i

will always be zero at every time, t , since only real power will
only be considered.

3.2.2. Capacitor constraints
The capacitor banks are also bounded by maximum sizes,

given as

CAPmin ⩽ CAPi ⩽ CAPmax (16)

3.2.3. EVCS constraints
The EVCS is modelled as a load, according to the EVs roaming

to charge in a network. Therefore, EVCS facilities must not exceed
the total EV load and distributed evenly across all EVCS facilities,
hence having the same capacity. The constraint is represented in
(17)∑

PEV
i,t ⩽

∑
PEVCS
k |N(µ, σ ), (17)

where
∑

PEVCS
k is the charging of the kth EVCS that follows a

normal distribution of a mean and standard deviation across all
EVCS.

3.3. Multiobjective approach

The adopted objective functions are processed simultaneously
processed using the weight sum aggregate method. The weights
indicates the level of preference and are equally distributed to
all objective functions. Therefore, w1 = w2 = w3 = 0.33. The
final value represents the utility value of the model, which is used
to determine the fitness value in the optimization process. The
utility value is expressed as

U = w1PLOSS
+ w2VD+ w3VSI. (18)

To standardize the problem as minimization problem, we used
the inverse of VSI, shown in (6).
 s
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4. Solution methodology

4.1. Proposed adaptive dynamic planning mechanism

This section seeks to address the gap observed in the litera-
ture, as in Sections 1.1 and 2, by proposing an adaptive dynamic
mechanism to increase potential solutions for the optimal multi-
ple DER allocation problem. Already established that the dynamic
planning mechanism performs better than other planning mech-
anisms, but with intense computational time, we introduce a
sub-convergence barometer that monitors the sequence of values
to determine the convergence in each stage of the optimization
process. The barometer works with a memory block, which stores
the last best fitness values of the previous ten iterations. The al-
gorithm sub-converges and moves to the next stage if the fitness
value remains the same with ±0.005 tolerance. The process of
the convergence barometer and the memory block can be seen
in Fig. 2.

With SB representing the sub-convergence barometer in Fig. 2,
it is seen that the barometer and the memory block starts at the
second iteration of the whole allocation process. The barometer
fastens the optimization process by helping to quickly move out
of an allocation when there is no improvement in the fitness
value. The effect of this function is illustrated in the results
section, Section 5.6.

4.2. Heuristic proof

Using the Big O notation complexity analysis, we show the
difference in complexity for different planning mechanisms (in-
dependent of the optimization algorithm) on the mixed-integer
linear problem-based smart grid planning problem. Given that we
have Ni is the number of variables for a variable type i, T , the
number of processes (or iterations), and number of constraints
and uncertainties are constant across all planning mechanism
modes, the notation for sequential will be O(T Ni

2 + TNi) which
sums to O(2T 3

2Ni). The simultaneous planning mechanism is
(TNi), while the dynamic mechanism is O(T 2Ni). The adaptive

orm yieldsO((T−p)2Ni), where p, an absolute value always lesser
han T , is the remainder of the number of iterations when there
s a sub-convergence.

.3. Hybrid optimization strategy

CoSGADE is a hybrid evolutionary algorithm developed to
andle large scale optimization problems, such as the optimal
lanning of smart grid networks. The high-level approach is to
ivide the planning framework into sub-iterations of different
nit allocations, shown in Fig. 3
As seen in Fig. 3, the first vector contains DG locations and

izes while the second and third vectors accommodates the BESS
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Fig. 3. High-level process of the planning optimization scheme.

nits (BU) and capacitor banks (CB) respectively. Each of these
ectors are solved at a sub-iteration level. The lower level of the
ptimization scheme uses two evolutionary algorithms, namely
he DE and GA, to solve the planning problem cooperatively.
he problem is split into two sub-problems: (i) discrete variable,
hich handles the location of units, and (ii) continuous variables,
hich involve the sizing of the units. Given its effective capability
o manipulate discrete variables, the GA is dedicated to solving
ptimal unit locations. The DE, on the other hand, uses a similar
pproach but with some extra parameters that make it efficient
or manipulating continuous variables. The DE also models the
olution variables as chromosomes, with each gene representing
unit type size. Finally, the DE uses a scaling factor to ensure
ositive integers during the mutation process in addition to the
A’s operator.
The DE’s mutation operator also differs from the traditional GA

ecause it uses the difference of parent vector (or chromosome).
hile the DE is effective, simple, and less complex to implement,

t often suffers from stagnation due to the complexity of manipu-
ating continuous large-scale optimization problems (Islam et al.,
012; Das and Suganthan, 2011). Stagnation is a common draw-
ack in stochastic search algorithms, where results are no longer
mproved during the iteration process, even when there are better
olutions in the solution space. A spiral mechanism is adopted to
vercome this drawback, adapted from the WOA (Mirjalili and
ewis, 2016) due to its effective finding of optimal solutions in a
elatively quick manner. The CoSGADE’s search operator is then
aintained by implementing a probabilistic roulette wheel that
ontrols the switch between the DE’s search and the spiral search
or every new generation. Eq. (19) shows the illustration of the
oSGADE’s search mechanism.

i,G+1 =

⎧⎨⎩ XDE, p < 0.5

X rand
− D · ebl · cos(2π l) p ⩾ 0.5

, (19)

here [Xi,G+1|∀xdi,G ∈ xDi,G] is ith vector solution for the next
eneration, G + 1 and d is the variable (gene) in the vector
chromosome). The randomly spiralled phase occurs when the
oulette wheel produces a ⩾ 0.5 probability value. This phase
iversifies the search away from local optima, using the Xrand.
he D parameter represents the distance between the current
ector solution and the best vector solution, expressed as D =
C · X∗G − XG|, where C = 2 · r is a random parameter that is
pdated at every generation.
The DE’s manipulation process starts with the mutation pro-

ess, creating a donor vector, represented as

i,G = X∗G + F (Xr1i,G
− Xr2i,G

), (20)

hich corresponds to each target vector, Xi,G. The r i1 and r i2
re mutually exclusive random integers peculiar to every iter-
tion; the scaling factor, F , is a control parameter to ensure
ositive integers while calculating the difference donor vector.
he crossover operator is performed on V , manipulating its
i,G
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olution variables to form a trial vector, Ui,G|∀ud
i,G ∈ uD

i,G. The
ector is determined using

d
i,G =

{
vd
i,G, if z ⩽ Cr

xdi,G, otherwise (21)

where z is a uniformly distributed random parameter between 0
and 1, called anew for manipulation of each dth variable of the
ith vector of population in generation G. The z parameter also
ensures that Ui,G gets at least one solution variable from Xi,G.
Finally, the selection process determines the surviving vector to
the next generation, G+ 1, shown as

Xi,G+1 =

{
Ui,G, if f

(
Ui,G

)
⩽ f (Xi,G)

Xi,G, if f
(
Ui,G

)
> f (Xi,G)

(22)

where f (·) is the utility function value for a known vector of
allocation variables.

Having explained the CoSGADE mechanism and the dynamic
modelling, the optimization scheme will obviously suffer a high
complexity. Firstly, the recombination technique uses more it-
erations to converge. Secondly, the operation or effect of the
units to be allocated has to be carried at T number of itera-
tions. Hence, we propose two implementations for applying the
CoSGADE optimizer to mitigate this setback.

CoSGADE-I. Here, the process involves the optimization of each
unit type in a sub-iteration. This process indeed requires a high
computational time which increases drastically according to the
number of unit types to be allocated. To overcome the limita-
tion, the CoSGADE is incorporated with a convergence barometer
and a memory block. Fig. 4 illustrates the process. As seen in
Fig. 4, the memory block is initialized after the first round of
iterations, beginning the storage of utility values. Then, the con-
vergence barometer is implemented to utilize the memory block,
computing the difference in utility values across every ten it-
erations. A nominal value terminates the current sub-iteration,
i.e., suspending the optimizer to use optimal unit type allocation
solutions in the memory block. This process significantly reduces
computational time. The capacitor allocation module involves
an optimization process similar to PV-DG and BESS allocation
process. It is to note that other unit types, e.g., EVCS, can easily
be replaced or added to the optimization scheme.

CoSGADE-II. To achieve the control mechanism that checks dif-
ferent unit type allocation against each other, it is proposed to
have one vector representing all the allocation variables, but ar-
ranging the vector such that the location and size of all unit types
are categorized. The mechanism uses each algorithm for a sub-
iteration, containing distinct variable types. Here, the location
is first optimized by the GA then the final solution of the sub-
iteration is pushed to DE for the size to be optimized. The process
is repeated until convergence is reached. Fig. 5 illustrates the
procedure.

It is observed in Fig. 5 that there are fewer steps, which trans-
lates to a faster computational time. Compared to CoSGADE-I, the
unit locations are checked against their sizes at every iteration.
The solution vectors in a population are represented as follows.

−→
X G =

⎛⎜⎜⎜⎜⎝
xL1,1 · · · xLD,1 xS1,1 · · · xSD,1

xL1,2 · · · xLD,2 xS1,2 · · · xSD,2

...
. . .

...
...

. . .
...

xL1,M · · · xLD,M xS1,M · · · xSD,M

⎞⎟⎟⎟⎟⎠ , (23)

where xL1,1 is the first unit type location of the first chromosome,
given a total number of D unit types sizes in M number of
population. xS represents the sizes in the same context.
1,1
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Fig. 4. Flowchart of the first implementation of the CoSGADE optimization scheme.
Fig. 5. Flowchart of the second implementation of the CoSGADE optimization scheme.
w
a

.4. EVCS allocation model using reinforcement learning

This section discusses the allocation of the EVCS facilities into
istribution networks. The problem is formed based on a Markov
ecision Process, in which the optimum performance of the grid
s determined by the EVCS locations that produce the best control
trategy. Algorithm 1 shows the procedure of the EVCS allocation
cheme.
The MDP structure is depicted as M = ⟨St ,At ,Rt , T , γ ⟩,

where state St = ⟨It , ds⟩ given It is the set of EV chargers
drawing power from the distribution network, ds is the power
demand in the network. The action, A = ⟨a ⟩, where a is
t EVCS EVCS

14664
the set of EVCS allocated to EV drivers. The reward, Rt offered to
the agent that takes action A in state S is measured using (24), to
be used for the next state, S + 1. The probability of transitioning
from state S to the next state, S + 1 is expressed as

T = f (S,A, Lt ). (24)

Therefore, the outcome of carrying out all actions in different
states yielding rewards will follow policies π , represented as

Q π (St ,At ) = E[Rt (St ,At )+ γQ πp(St+1,At+1)], (25)

here γ = {0, 1} is the discount factor that offers rewards for
ctions over an expectation E given a time horizon, T . Given
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Algorithm 1 EVCS Allocation Scheme
Initialize maximum number of generations G
nitialize a population P of chromosomes, V = {v1, v2, . . . , vn}, as
he EVCS locations
et voltage stability as the fitness value of each chromo-
omes
while g < Gmax do

for all V ∈ P do
procedure EV_Charge_control(V )
Sort best chromosome, V ∗ in the current generation g ++

end for
end while
Print chromosome with best fitness from the control strategy
V ← V ∗
return V

Eq. (25), an optimal policy which maximizes the grid performance
the most is expressed as

Q ∗(S,A) = max
π

Q π (St ,At ) (26)

This optimal policy is learned using a recursive algorithm to
update the state–action pairs, mapped as

Q ∗(St ,At ) = (1− α)Q (St ,At )+ α[Q π (St ,At )], (27)

where α is the learning rate of the algorithm, chosen between 0
and 1. Algorithm 2 shows the SARSA learning procedure for the
control problem.

Algorithm 2 SARSA-Learning Algorithm
Initialize number of episodes, E
Initialize the EV charging demand for set of EVs as state S
nitialize EVCS location selection as action A
et power loss (1) as reward R
while e < E do

Collect distribution network and EVCS features to realize
state, S
Select action A from S
Receive reward R, receive new data, and generate next state
S + 1
Update Q (S,A) using (25)
Find the optimal policy using (26) and learn this policy using
(27)
S ← S + 1
Terminate at desired state e++

end while
Output the best policy π

5. Numerical analysis

In order to demonstrate the efficiency and practicality of
he proposed planning framework, we evaluate the proposed
daptive-dynamic mechanism and the CoSGADE optimization on
15-bus, IEEE 69-bus and 118-bus test distribution network.

he load consumption is processed as a probability density func-
ion, to handle uncertainties from consumers’ daily and seasonal
ehaviour. The same technique is applied to PV power output
hrough the modelling of the solar irradiance and temperature
ata. The simulation was carried out using MATLAB

®
2022 on

n Intel
®

CoreTM i7-10510U 16 GB RAM CPU @ 1.80 GHz and
.30 GHz.
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Table 2
Different cases for numerical analysis.
Case PV-DG & BESS CB EVCS

Case 1 ✓ ✗ ✗

Case 2 ✓ ✓ ✗

Case 3 ✓ ✓ ✓

5.1. Evaluation of the planning optimization framework

For a robust explanation of the proposed mechanism’s effi-
ciency on solving the planning problem, we draft the analysis into
3 cases. Table 2 shows the cases.

It is to note that the EVCS is a function of the number of EVs to
be charged, which must not exceed the combined total capacity of
EVCS facility in the distribution network. Hence, the size of EVCS
is the product of EV chargers (11.2 kW) and the total number of
EVs. Each case is analysed for three study systems — 15-bus, IEEE
69- and 118-bus test distribution network. All cases are analysed
using a single objective framework, with power loss minimiza-
tion as the objective function. We adopted some conventional
optimization algorithms to test the proposed CoSGADE on the
study systems using the proposed underlying proposed dynamic
mechanism.

5.2. Study system I

This study involves the evaluation of the planning model on
the IEEE 15-bus distribution network; a 11 kV, 100 KVA base KVA,
with a real and reactive power of 1226.400 kW and 1251.178
kVAr, respectively. The three cases are implemented for this
system, with the results shown in Table 3.

From Table 3, it is observed that Case 3 has the most power
loss and minimum network voltage, given that a multitude of
EVs is added to the distribution network model. However, the
CoSGADE optimization scheme shows a better performance than
the adopted schemes, indicating an improved power loss mini-
mization of 76.7%, 83.8%, and 76.7%, respectively for cases 1 to 3.
The voltage profile is also analysed, shown in Fig. 6. It is seen that
the CoSGADE produces the best voltage profile for the network.

5.3. Study system II

This study involves the evaluation of the planning model on
the 69-bus distribution network; a 12.66 kV network, with a
3.715MW/2.300MVaR as the real and reactive power respec-
tively. To grasp the strength of the proposed mechanism perfor-
mance, the simulation results are compared to the conventional
mechanism.

Table 4 depicts a similar scenario to Table 3, with Case 3
having the most power loss and minimum network voltage. The
CoSGADE optimization scheme also shows a better performance
than the adopted schemes, indicating an improved power loss
minimization of 78.3%, 86%, and 80.1%, respectively for cases 1
to 3. The voltage profile is also analysed, shown in Fig. 7. It is
seen that the CoSGADE produces the best voltage profile for the
network.

5.4. Study system III

This study involves the evaluation of the planning model on
the IEEE 118-bus distribution network; a 11 kV network, with a
22.710MW/17.041MVaR as the real and reactive power respec-
tively. To grasp the strength of the proposed mechanism perfor-
mance, the simulation results are compared to the conventional
mechanism.
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Table 3
Unit allocation variables for the IEEE 15-bus distribution network.
Case Optimizer DG Allocation

Location(size(KW))
BESS Allocation
Location(size(KW))

CB Allocation
Location(size(KW))

EVCS
Allocation

% PL VS VD

I GA 10(119.56), 4(131.04) 8(92) – – 56.1 0.0531 0.9518
PSO 10(112.11),

11(110.18)
8(84) – – 63.2 0.0514 0.9523

PSOGA 11(129.45), 10(92.21) 8(77) – – 71.1 0.0337 0.9775
WOAGA 15(158.14),

11(114.28)
10(142) – – 72.1 0.0204 0.9801

CoSGADE 11(131.02),
15(128.33)

8(59) – – 76.7 0.0161 0.9829

II GA 10(123.56), 4(138.42) 8(91) 4(120), 8(184) – 68.9 0.0063 0.9626
PSO 10(112.09),

11(108.41)
8(79) 4(136), 9(106) – 73.9 0.0050 0.9694

PSOGA 11(114.22), 10(94.82) 8(79) 6(186), 12(113) – 79.8 0.0037 0.9837
WOAGA 15(147.08),

11(112.75)
10(142) 6(177), 12(201) – 80.7 0.0028 0.9853

CoSGADE 11(130.76),
15(141.38)

8(55) 3(165), 10(189) – 83.8 0.0016 0.9881

III GA 10(269.23), 4(254.42) 8(105) 4(120), 12(197) 3, 7, 12 39.3 0.0645 0.9312
PSO 10(262.92),

11(275.11)
8(99) 4(166), 9(113) 3, 7, 13 49.7 0.0621 0.9341

PSOGA 11(230.35),
10(184.57)

8(106) 6(242), 12(201) 3, 7, 12 64.7 0.0456 0.9662

WOAGA 15(275.62),
11(217.88)

10(137) 6(297), 12(261) 3, 7, 12 67.2 0.0392 0.9665

CoSGADE 11(272.92),
15(241.38)

8(95) 4(188), 12(222) 3, 6, 12 76.7 0.0311 0.9825
Fig. 6. Study system I voltage profile for all cases (A) PV-DG and BESS allocated to the network. (B) PV-DG, BESS, and Capacitors allocated to the network. (C) PV-DG,
BESS, Capacitors, and EVCS allocated to the network.
Fig. 7. Study system II voltage profile for all cases (A) PV-DG and BESS allocated to the network. (B) PV-DG, BESS, and Capacitors allocated to the network. (C)
PV-DG, BESS, Capacitors, and EVCS allocated to the network.
The CoSGADE optimization scheme in Table 5 shows a familiar
mprovement as in Tables 3 and 4. An observation is the large
cale problem difficulty for the optimization schemes, especially
ith Case 3, the CoSGADE still outperforms other optimizers in
educing power loss., showing 41.4%, 52.7%, and 32.6% minimiza-
ion for Cases 1 to 3 respectively. The voltage profile is also
nalysed, shown in Fig. 8. It is seen that the CoSGADE produces
he best voltage profile for the network.
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5.5. Performance Analysis of the CoSGADE optimization scheme

This section discusses the performance of the proposed opti-
mization scheme, done by comparing the efficiency of the scheme
to other traditional optimization methods. The first check is to
evaluate the power loss for each case in the 69-bus and 118-bus
systems, shown in Figs. 9 and 10 respectively.
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Table 4
Unit allocation variables for the 69-bus distribution network.
Case Optimizer DG Allocation

Location(size(KW))
BESS Allocation
Location(size(KW))

CB Allocation
Location(size(KW))

EVCS
Allocation

% PL VD VS

II GA 12(524.11),
25(509.02),
49(498.12),
62(659.29)

15(382), 63(355) 22(452), 41(376),
60(403)

– 53.7 0.0582 0.9337

PSO 14(535.56),
25(518.33),
45(513.18),
63(661.77)

21(376), 63(352) 22(451), 40(334),
60(412)

– 54.3 0.0564 0.9351

PSOGA 10(555.18),
25(500.83),
49(477.22),
66(650.96)

15(382), 66(377) 20(448), 44(386),
64(411)

– 68.9 0.0329 0.9667

WOAGA 11(592.62),
27(573.92),
52(523.68),
66(689.68)

61(453), 66(468) 22(475), 43(408),
67(442)

– 72.5 0.0167 0.9703

CoSGADE 12(511.24),
21(521.83),
62(518.89),
61(647.47)

21(385), 68(461) 22(464), 48(374),
64(367)

– 89.4 0.0084 0.9826

III GA 02(889.15),
29(814.03),
21(877.42),
61(999.48)

15(552), 65(470) 22(591), 36(415),
65(493)

10, 32, 50, 64 41.1 0.0526 0.9229

PSO 23(902.22),
21(827.63),
60(865.11),
61(998.03)

18(567), 66(478) 22(587), 38(433),
64(497)

08, 21, 55, 64 41 0.0492 0.9254

PSOGA 49(882.54),
21(793.69),
61(863.52),
60(991.48)

31(492), 62(467) 20(495), 39(483),
65(567)

10, 32, 52, 64 66.1 0.0341 0.9383

WOAGA 12(899.75),
50(801.15),
21(831.22),
61(986.59)

62(457), 65(492) 21(492), 37(498),
68(594)

10, 28, 52, 64 65.6 0.0298 0.9478

CoSGADE 12(781.75),
29(834.03),
61(849.52),
21(993.72)

62(452), 61(483) 22(499), 46(558),
69(592)

14, 28, 52, 64 79.3 0.0184 0.9625
Fig. 8. Study system III voltage profile for all cases (A) PV-DG and BESS allocated to the network. (B) PV-DG, BESS, and capacitors allocated to the network. (C)
PV-DG, BESS, capacitors, and EVCS allocated to the network.
In Figs. 9 and 10, cases 4 and 5 are implemented to show
the impact of EVCS facilities on the grid operation performance.
The uncontrolled case is where EVCS facilities are installed on
arbitrary buses, and charging is not coordinated using a con-
trol strategy; hence the case shows a high power loss, severely
disrupting grid performance.

A second implementation is developed to explore the benefit
of the simultaneous planning mechanism, finding a less complex
framework, discussed in Section 4.3. Like the preceding section,
the section analyses the optimizer’s strength in both the single
and multi-objective optimization framework.
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5.5.1. Single objective analysis
To further understand the efficiency of our proposed opti-

mization scheme, we carry out a convergence test using the
utility values from the IEEE 15-bus distribution network, shown
in Fig. 11. It is observed from Fig. 11 that both proposed algo-
rithms performs better than the benchmark algorithms. The effect
of the EVCS implementation is also seen in Case 3 where the
dynamic nature of the CoSGADE-I shows the fluctuation of utility
values. The fluctuations are caused by the changes in grid per-
formance after allocating EV charging stations at each iteration,
meaning that the EVCS facilities can deter the planning solutions
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Table 5
Unit allocation variables for the IEEE 118-bus distribution network.
Case Optimizer DG Allocation

Location(size(KW))
BESS Allocation
Location(size(KW))

CB Allocation
Location(size(KW))

EVCS
Allocation

% PL VS VD

III GA 10(751.29),
35(792.84),
68(799.02),
90(879.71),
105(891.50),
113(778.34)

46(579),
80(650.59),
105(809.05),
113(799.89)

21(457), 45(736),
105(666), 69(733)

3, 9, 25, 47, 58,
84, 96, 115

13.6 0.0442 0.9203

PSO 10(746.24),
34(794.07),
68(783.12),
95(883.72),
105(897.62),
113(779.18)

46(583.88),
83(682.83),
106(811.39),
113(784.27)

30(505), 44(581),
65(622), 105(587)

4, 11, 24, 42,
51, 78, 91, 105

13.5 0.0410 0.9221

PSOGA 10(771.31),
33(798.04),
69(827.41),
86(882.11),
105(897.63),
116(772.92)

33(692),
81(589.43),
102(629.45),
117(554.02)

21(627), 45(730),
105(566), 69(705)

3, 9, 22, 47, 58,
84, 95, 115

29.4 0.0382 0.9310

WOAGA 15(788.11),
38(792.74),
69(885.81),
85(889.59),
103(898.04),
117(789.59)

26(698.95),
83(595.58),
96(643.21),
117(561.72)

21(688), 45(771),
105(575), 69(719)

3, 9, 24, 47, 58,
84, 95, 115

29.8 0.0372 0.9333

CoSGADE 32(675.96),
109(562.22),
113(384.17),
74(899.79),
33(450.05),
79(1015.66)

111(409.61),
110(350.11),
97(578.68),
117(670.99)

28(676), 43(651),
50(700), 64(669)

3, 9, 24, 47, 58,
84, 95, 115

32.3 0.0233 0.9409
Fig. 9. Power loss profile of the 69-bus system for 5 case scenarios.

according to the next location of other DER or FACTS units.
Also, we adopt the power loss minimization function to generate
the convergence characteristic and computational complexity of
each optimizer for the 69-bus and 118-bus distribution networks,
shown in Figs. 12 and 13.

From Figs. 12 and 13, it is observed that the CoSGADE-I con-
verges better than the other optimizers, including the CoSGADE-
II. The CoSGADE-II follows a more practical evolutionary algo-
rithm since all unit types are allocated at once for every iteration.
Although less computationally complex, as seen from the com-
putational time, its trade-off for optimality is marginally and
relatively high. It is also observed that other optimizers use more
14668
Fig. 10. Power loss profile of the 118-bus system for 5 case scenarios.

computational time, given that the optimizers are not tailored for
the proposed mechanism. Fig. 14 shows the boxplot that gives
more insight into the performance of the algorithms. The boxplot
is generated using solutions from 50 runs. The distribution of
the solution is analysed, focusing on the variance to determine
the consistency of each optimizer. It is seen from Fig. 14 that
CoSGADE-I and II possess the smallest variance values, which can
be determined by measuring the height of the box.

5.5.2. Multi-objective analysis
The performance of multi-objective optimizers is very impor-

tant for practicality. In real-world scenarios, many objectives are
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Fig. 11. Convergence plots of each algorithm for the IEEE 15-bus network. (A) PV and BESS unit allocation only, (B) PV, BESS, and CB allocation, and (C) PV, BESS,
B, and EVCS allocation.
Fig. 12. Convergence and complexity analysis for the 69-bus system.
onsidered when planning a complex project like power system
etworks. This section provides information on the effect of the
roposed optimizer via the proposed adaptive-dynamic planning
echanism in a multi-objective framework. The multi-objective

orm of the proposed optimizers, which are dubbed M-CoSGADE-
and II - Multi-objective CoSGADE, are formulated using the
OPSIS approach to generate optimal solutions. The MOO tech-
iques are compared with other multi-objective optimizers. A
pacing metric (SP-metric) is adopted for measuring the quality
f solution distribution, determining the spread of all solutions
nd understanding the distribution. Table 6 shows the metrics for
ach multi-objective optimizer. It is observed that the proposed
rameworks yield a better standard deviation score than other
rameworks, interpreted as a compact solution distribution with
ood confidence in producing reliable, consistent results.

.6. Validation of the adaptive-dynamic planning mechanism

To verify the efficacy of the proposed mechanism, we analyse
ts optimality and practicality on single and multi-objective opti-
ization, comparing it with conventional planning mechanisms.
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Table 6
Performance comparison of multi-objective optimization frameworks.
Technique Mean Best Worst Std. Dev.

MOPSO 0.062 0.065 0.081 0.015
NSGA-III 0.061 0.066 0.078 0.016
M-CoSGADE-II 0.053 0.054 0.063 0.012
M-CoSGADE-I 0.051 0.053 0.060 0.012

Firstly, the CoSGADE optimizer is applied to all mechanisms to
produce statistical parameters that determine the performance.
Table 7 displays the statistical values for all mechanisms, showing
a statistical measure of a 50-solution distribution for Case 3 of
the 118-bus system, generated by the CoSGADE optimizer via
different planning mechanisms.

It can be inferred from the table that the dynamic mecha-
nism has a good standard deviation score, varying insignificantly
from other schemes. It is to note that the main purpose of this
analysis is to validate the correctness of the proposed planning
mechanism, which passed successfully. The computational time
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Fig. 13. Convergence and complexity analysis for the 118-bus system.
Fig. 14. Box plot analysis of each optimization scheme for the 15-bus system.

Table 7
Statistical comparison of the planning mechanisms.
Stat metric Planning mechanisms

Sequential Simultaneous Dynamic

Best score 916.12 902.51 789.41
Worst score 931.45 930.67 806.62
Variance 0.41 0.26 0.23
Time (s) 253 126 369

is relatively fast when considering the multiple phases for every
iteration.

Using 50 independent simulation runs, Fig. 15 illustrates the
uality of solution distribution for each planning mechanism. It
14670
Fig. 15. Box plot analysis of each planning mechanism for the 118-bus system.

is seen that there is a strong similarity among all boxes, meaning
that they have closely uniform distribution that a small variance
and an efficient mechanism.

5.7. Further discussion

In this section, we discuss more on the numerical results from
the simulation of the planning model. Attention is paid to the
impact of the planning mechanism and the optimization scheme
on different system scales, aiming at efficiency and optimality.
Sampling the simulation results for each case, it is seen that the
introduction of EVCS facilities deters the grid operation perfor-
mance, even with an EV charging control strategy. Although still



K.E. Adetunji, I.W. Hofsajer, A.M. Abu-Mahfouz et al. Energy Reports 8 (2022) 14658–14672

i
t
n
e
m
—
i
b
w
g
p
p

d
i
1
i
t
p
a
C
t
i
w
s
o
l

o
t
P
G
s
a
t
f
o
i

6

a
f
o
b
p
p
m
e
u
o
b
v
c
v
i
r
i

p
u

y
d
v
F
M
W

D

c
t

D

R

A

A

A

A

A

B

B

B

D

D

D

E

F

G

I

J

mproved by the CoSAGDE optimizer, it is important to know
he significance of introducing such facilities to a distribution
etwork. The introduction of capacitors reduces the negative
ffect, as seen in case 2 for all study systems. This effect is even
ore distinct in Section 5.5, where another case is introduced
allocating only PV-DG, BESS, and EVCS facilities. However, it

s essential to note that capacitors are expensive and may not
e practically viable. Bearing this in mind, another case; case 5,
as introduced to inject reactive power from EV chargers into the
rid network. As a result, relatively minimized real and reactive
ower losses can be seen in Figs. 9 and 10, hence improving grid
erformance.
Another observation is the performance of the optimizers on

ifferent study systems. The 15-bus and 69-bus systems clearly
mprove grid performance after implementing all cases, while the
18-bus has a less significant improvement. This effect shows the
nfluence of a scaled problem on the algorithm performance and
he manifesting of the No Free Lunch Theorem even for the same
roblem of different scales. Furthermore, Figs. 12 and 13 show
convergence curve that depicts the behaviour of the proposed
oSGADE-I, particularly for the 118-bus system, where the op-
imizer converges differently for different cases. It is seen that
ntroducing EVCS facilities influence the complexity of the model,
hich results in the slow convergence of the CoSGADE-I. The
lowness results from a systematic exploration and exploitation
f the search space, which proves fruitful as it has a better power
oss for its allocation variables.

Finally, the impact of evolutionary algorithms for discrete
ptimization is evident in the location variables. Remembering
hat the adopted benchmark hybrid algorithms — WOAGA and
SOGA are implemented using the same approach as the CoS-
ADE, where each algorithm solves different variable types, it is
een that the optimal location variables produced by all adopted
lgorithms are very similar. For example, the EVCS locations are
he same for the 15-bus and 69-bus systems and vary slightly
or the 118-bus system. The same is observed for the location of
ther unit types, with only the PSO algorithm producing dissim-
lar solutions.

. Conclusion

In this paper, we investigated the impact of planning mech-
nisms on optimal allocation variables in smart grid planning
rameworks. To this effect, we formulated a single- and multi-
bjective planning problem, considering power loss, voltage sta-
ility, and voltage deviation. After that, an adaptive-dynamic
lanning mechanism, which is an underlay for the optimization
rocess, is proposed to generate optimal solutions. The planning
echanism, formed using a recombination technique, showed an
xpanded solution space, validated using two-, three-, and four-
nit type allocation schemes for both single- and multi-objective
ptimization frameworks on 15-bus, 69-bus, and 118-bus distri-
ution networks. The numerical simulations demonstrate a good
ariance in the distribution of optimal allocation variables but
ome with relatively higher complexity when compared to con-
entional planning mechanisms. To address this challenge, two
mplementations of the proposed CoSGADE is developed, which
educe the complexity (adopting computational time) and also
mprove grid performance.

Future work will research on reducing the complexity of the
lanning mechanism. Focus will also be on the addition of more

nit types and constraints to observe the increase in complexity.

14671
CRediT authorship contribution statement

Kayode E. Adetunji: Conceptualization, Software, Formal anal-
sis, Data curation, Validation, Visualization, Writing – original
raft. Ivan W. Hofsajer: Supervision, Resources, Writing – re-
iew & editing. Adnan M. Abu-Mahfouz: Supervision, Resources,
unding acquisition, Writing – review & editing. Ling Cheng:
ethodology, Formal analysis, Supervision, Funding acquisition,
riting – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

eferences

bdel-Mawgoud, H., Kamel, S., Khasanov, M., Khurshaid, T., 2021. A strategy for
PV and BESS allocation considering uncertainty based on a modified Henry
gas solubility optimizer. Electr. Power Syst. Res. 191, 106886.

bou El-Ela, A.A., El-Seheimy, R.A., Shaheen, A.M., Wahbi, W.A., Mouwafi, M.T.,
2021. PV and battery energy storage integration in distribution networks
using equilibrium algorithm. J. Energy Storage 42, 103041.

detunji, K.E., Hofsajer, I.W., Abu-Mahfouz, A.M., Cheng, L., 2021. Category-based
multiobjective approach for optimal integration of distributed generation
and energy storage systems in distribution networks. IEEE Access 9,
28237–28250.

detunji, K.E., Hofsajer, I.W., Abu-Mahfouz, A.M., Cheng, L., 2022. An optimization
planning framework for allocating multiple distributed energy resources and
electric vehicle charging stations in distribution networks. Appl. Energy 322,
119513.

wad, A.S., El-Fouly, T.H., Salama, M.M., 2015. Optimal ESS allocation for load
management application. IEEE Trans. Power Syst. 30 (1), 327–336.

arukčić, M., Varga, T., Jerković Štil, V., Benšić, T., 2021. Co-simulation framework
for optimal allocation and power management of DGs in power distribution
networks based on computational intelligence techniques. Electronics 10
(14), 1648.

iswal, S.R., Shankar, G., Elavarasan, R.M., Mihet-Popa, L., 2021. Optimal alloca-
tion/sizing of DGs/capacitors in reconfigured radial distribution system using
quasi-reflected slime mould algorithm. IEEE Access 9, 125658–125677.

ozorgavari, S.A., Aghaei, J., Pirouzi, S., Vahidinasab, V., Farahmand, H., Kor-
pås, M., 2019. Two-stage hybrid stochastic/robust optimal coordination of
distributed battery storage planning and flexible energy management in
smart distribution network. J. Energy Storage 26, 100970.

as, C.K., Bass, O., Kothapalli, G., Mahmoud, T.S., Habibi, D., 2018. Overview of en-
ergy storage systems in distribution networks: Placement, sizing, operation,
and power quality. Renew. Sustain. Energy Rev. 91 (March), 1205–1230.

as, C.K., Bass, O., Mahmoud, T.S., Kothapalli, G., Masoum, M.A., Mousavi, N.,
2019. An optimal allocation and sizing strategy of distributed energy storage
systems to improve performance of distribution networks. J. Energy Storage
26 (June), 100847.

as, S., Suganthan, P.N., 2011. Differential evolution: A survey of the
state-of-the-art. IEEE Trans. Evol. Comput. 15 (1), 4–31.

rdinc, O., Tascikaraoglu, A., Paterakis, N.G., Dursun, I., Sinim, M.C., Catalao, J.P.,
2018. Comprehensive optimization model for sizing and siting of DG units,
EV charging stations, and energy storage systems. IEEE Trans. Smart Grid 9
(4), 3871–3882.

ang, W., Zhu, H., Mei, Y., 2022. Hybrid meta-heuristics for the unrelated parallel
machine scheduling problem with setup times. Knowl.-Based Syst. 108193.

ampa, S.R., Jasthi, K., Goli, P., Das, D., Bansal, R.C., 2020. Grasshopper optimiza-
tion algorithm based two stage fuzzy multiobjective approach for optimum
sizing and placement of distributed generations, shunt capacitors and electric
vehicle charging stations. J. Energy Storage 27 (November 2019), 101117.

slam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N., 2012. An adaptive
differential evolution algorithm with novel mutation and crossover strategies
for global numerical optimization. IEEE Trans. Syst. Man Cybern. B 42 (2),
482–500.

anamala, V., Reddy, D.S., 2021. Coyote optimization algorithm for optimal allo-
cation of interline–photovoltaic battery storage system in islanded electrical
distribution network considering EV load penetration. J. Energy Storage 41,
102981.

http://refhub.elsevier.com/S2352-4847(22)02314-9/sb1
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb1
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb1
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb1
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb1
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb2
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb2
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb2
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb2
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb2
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb3
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb3
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb3
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb3
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb3
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb3
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb3
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb4
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb4
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb4
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb4
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb4
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb4
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb4
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb5
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb5
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb5
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb6
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb6
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb6
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb6
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb6
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb6
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb6
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb7
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb7
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb7
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb7
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb7
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb8
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb8
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb8
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb8
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb8
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb8
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb8
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb9
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb9
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb9
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb9
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb9
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb10
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb10
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb10
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb10
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb10
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb10
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb10
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb11
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb11
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb11
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb12
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb12
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb12
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb12
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb12
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb12
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb12
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb13
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb13
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb13
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb14
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb14
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb14
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb14
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb14
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb14
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb14
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb15
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb15
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb15
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb15
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb15
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb15
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb15
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb16
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb16
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb16
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb16
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb16
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb16
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb16


K.E. Adetunji, I.W. Hofsajer, A.M. Abu-Mahfouz et al. Energy Reports 8 (2022) 14658–14672

J

K

K

M

M

M

P

P

P

R

eddi, B., Vahidinasab, V., Ramezanpour, P., Aghaei, J., Shafie-khah, M.,
Catalão, J.P., 2019. Robust optimization framework for dynamic distributed
energy resources planning in distribution networks. Int. J. Electr. Power
Energy Syst. 110 (February 2018), 419–433.

ansal, S., Kumar, V., Tyagi, B., 2013. Optimal placement of different type of DG
sources in distribution networks. Int. J. Electr. Power Energy Syst. 53 (1),
752–760.

aur, K., Kumar, N., Singh, M., 2019. Coordinated power control of electric
vehicles for grid frequency support: MILP-based hierarchical control design.
IEEE Trans. Smart Grid.

irjalili, S., Lewis, A., 2016. The whale optimization algorithm. Adv. Eng. Softw.
95, 51–67.

ouwafi, M.T., El-Sehiemy, R.A., Abou El-Ela, A.A., 2021. A two-stage method
for optimal placement of distributed generation units and capacitors in
distribution systems. Appl. Energy 118188.

ukhopadhyay, B., Das, D., 2020. Multi-objective dynamic and static reconfigura-
tion with optimized allocation of PV-DG and battery energy storage system.
Renew. Sustain. Energy Rev. 124 (February), 109777.

aliwal, P., Patidar, N.P., Nema, R.K., 2014. Planning of grid integrated distributed
generators: A review of technology, objectives and techniques. Renew.
Sustain. Energy Rev. 40, 557–570.

ereira, L.D., Yahyaoui, I., Fiorotti, R., de Menezes, L.S., Fardin, J.F., Rocha, H.R.,
Tadeo, F., 2022. Optimal allocation of distributed generation and capacitor
banks using probabilistic generation models with correlations. Appl. Energy
307, 118097.

irouzi, S., Zaghian, M., Aghaei, J., Chabok, H., Abbasi, M., Norouzi, M., Shafie-
khah, M., Catalão, J.P., 2022. Hybrid planning of distributed generation and
distribution automation to improve reliability and operation indices. Int. J.
Electr. Power Energy Syst. 135, 107540.

odríguez-Gallegos, C.D., Yang, D., Gandhi, O., Bieri, M., Reindl, T., Panda, S.K.,
2018. A multi-objective and robust optimization approach for sizing and
placement of PV and batteries in off-grid systems fully operated by diesel
generators: An Indonesian case study. Energy 160, 410–429.
14672
Salama, M.M., Chikhani, A.Y., 1993. A simplified network approach to the var
control problem for radial distribution systems. IEEE Trans. Power Deliv. 8
(3), 1529–1535.

Schweppe, F.C., Wildes, J., 1970. Power system static-state estimation, Part I:
Exact model. IEEE Trans. Power Appar. Syst. PAS-89 (1), 120–125.

Shaheen, A.M., El-Sehiemy, R.A., 2020. Optimal co-ordinated allocation of dis-
tributed generation units/ capacitor banks/ voltage regulators by EGWA. IEEE
Syst. J. 1–8.

Singh, P., Bishnoi, S.K., Meena, N.K., 2020a. Moth search optimization for optimal
DERs integration in conjunction to OLTC tap operations in distribution
systems. IEEE Syst. J. 14 (1), 880–888.

Singh, P., Bishnoi, S.K., Meena, N.K., 2020b. Moth search optimization for optimal
DERs integration in conjunction to OLTC tap operations in distribution
systems. IEEE Syst. J. 14 (1), 880–888.

Thokar, R.A., Gupta, N., Niazi, K., Swarnkar, A., Meena, N.K., 2021. Multiobjective
nested optimization framework for simultaneous integration of multiple
photovoltaic and battery energy storage systems in distribution networks.
J. Energy Storage 35, 102263.

Uddin, M., Romlie, M.F., Abdullah, M.F., Abd Halim, S., Abu Bakar, A.H., Chia
Kwang, T., 2018. A review on peak load shaving strategies. Renew. Sustain.
Energy Rev. 82 (October 2017), 3323–3332.

Wong, L.A., Ramachandaramurthy, V.K., Walker, S.L., Taylor, P., Sanjari, M.J., 2019.
Optimal placement and sizing of battery energy storage system for losses
reduction using whale optimization algorithm. J. Energy Storage 26 (July),
100892.

Yang, Y., Li, H., Aichhorn, A., Zheng, J., Greenleaf, M., 2014. Sizing strategy of
distributed battery storage system with high penetration of photovoltaic
for voltage regulation and peak load shaving. IEEE Trans. Smart Grid 5 (2),
982–991.

Zheng, Y., Niu, S., Shang, Y., Shao, Z., Jian, L., 2019. Integrating plug-in electric
vehicles into power grids: A comprehensive review on power interac-
tion mode, scheduling methodology and mathematical foundation. Renew.
Sustain. Energy Rev. 112 (June), 424–439.

http://refhub.elsevier.com/S2352-4847(22)02314-9/sb17
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb17
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb17
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb17
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb17
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb17
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb17
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb18
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb18
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb18
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb18
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb18
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb19
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb19
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb19
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb19
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb19
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb20
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb20
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb20
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb21
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb21
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb21
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb21
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb21
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb22
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb22
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb22
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb22
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb22
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb23
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb23
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb23
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb23
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb23
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb24
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb24
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb24
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb24
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb24
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb24
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb24
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb25
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb25
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb25
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb25
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb25
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb25
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb25
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb26
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb26
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb26
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb26
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb26
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb26
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb26
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb27
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb27
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb27
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb27
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb27
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb28
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb28
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb28
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb29
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb29
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb29
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb29
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb29
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb30
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb30
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb30
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb30
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb30
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb31
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb31
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb31
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb31
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb31
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb32
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb32
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb32
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb32
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb32
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb32
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb32
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb33
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb33
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb33
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb33
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb33
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb34
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb34
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb34
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb34
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb34
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb34
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb34
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb35
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb35
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb35
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb35
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb35
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb35
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb35
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb36
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb36
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb36
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb36
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb36
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb36
http://refhub.elsevier.com/S2352-4847(22)02314-9/sb36

	A novel dynamic planning mechanism for allocating electric vehicle charging stations considering distributed generation and electronic units
	Introduction
	Related Works
	Contributions
	Paper Outline

	Planning Mechanisms
	Problem Formulation
	Objective functions
	Power loss minimization
	Voltage deviation reduction
	Voltage stability improvement

	Constraints
	BESS constraints
	Capacitor constraints
	EVCS constraints

	Multiobjective approach

	Solution methodology
	Proposed Adaptive Dynamic Planning Mechanism
	Heuristic proof
	Hybrid Optimization Strategy
	EVCS Allocation Model using Reinforcement Learning

	Numerical analysis
	Evaluation of the planning optimization framework
	Study System I
	Study System II
	Study System III
	Performance Analysis of the CoSGADE optimization scheme
	Single objective analysis
	Multi-objective analysis

	Validation of the adaptive-dynamic planning mechanism
	Further Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


