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A B S T R A C T   

Electroluminescence (EL) images enable defect detection in solar photovoltaic (PV) modules that are otherwise 
invisible to the naked eye, much the same way an x-ray enables a doctor to detect cracks and fractures in bones. 
This paper presents a benchmark dataset and results for automatic detection and classification using deep 
learning models trained on 24 defects and features in EL images of crystalline silicon solar cells. The dataset 
consists of 593 cell images with ground truth masks corresponding to the pixel-level labels for each feature and 
defect. Four deep learning models (U-Net_12, U-Net_25, PSPNet, and DeepLabv3+) were trained using equal class 
weights, inverse class weights, and custom class weights for a total of twelve sets of predictions for each of 50 test 
images. The model performance was quantified based on the median intersection over union (mIoU) and median 
recall (mRcl) for a subset of the most common defects (cracks, inactive areas, and gridline defects) and features 
(ribbon interconnects and cell spacing) in the dataset. The mIoU measured higher for the two features compared 
to the three defects across all models which correlates with the size of the large features compared to the small 
defects that each class occupies in the images. The DeepLabv3+ with custom class weights scores the highest in 
terms of mIoU for the selected defects in this dataset. While the mIoU for cracks is low (25%) even for the 
DeepLabv3+, the recall is high (86%), and the resulting prediction masks reliably locate the defects in complex 
images with both large and small objects. Therefore, the model proves useful in the context of detecting cracks 
and other defects in EL images. The unique contributions from this work include the benchmark dataset with 
corresponding ground truth masks for multi-class semantic segmentation in EL images of solar PV cells and the 
performance metrics from four semantic segmentation models trained using three sets of class weights.   

1. Introduction 

Electroluminescence (EL) images enable defect detection in solar 
photovoltaic (PV) modules that are otherwise invisible to the naked eye, 
much the same way an x-ray enables a doctor to detect cracks and 
fractures in bones. Millions of EL images are taken every day in factories, 
labs, and PV plants across the globe. The EL images are essential to 
identify cracks and other defects in the finished product before the 
module is sent to market. EL images are also regularly captured during 
quality testing and troubleshooting over the 25-year typical lifetime of a 
PV module. 

The purpose of this work is to present a unique dataset and evaluate 
several deep learning models for semantic segmentation applied to the 
detection of defects and features in EL images of solar cells. Two U-Nets, 
a PSPNet, and a DeepLabv3+ model were trained to detect 12 features 

and 12 defects simultaneously. The objective of the analysis was to 
identify the most promising model suited to the task which will then be 
optimized in future work. The unique contributions from this work 
include the benchmark dataset with corresponding ground truth masks 
for multi-class defect detection in EL images of solar PV cells. This new 
dataset provides the first detailed pixel-level labels for EL images of solar 
cells. 

2. Background 

Automatic defect detection and classification in solar cells is the 
subject of many publications since EL imaging of silicon solar cells was 
first introduced by Fuyuki et al. [1] for detection of deteriorated areas in 
solar cells in 2005. Since that time, progress has been made towards 
in-situ EL imaging [2–5], improving image quality [6,7], imaging under 
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challenging conditions [8], and correlating defects to power output of 
PV modules [9–16]. A review of EL camera technology and field appli-
cations was published in Ref. [17]. 

Automated analysis and defect detection of PV module level EL im-
ages are critical to derive useful information from batches of PV modules 
bought and sold throughout the PV value chain. Techniques have been 
developed to extract and enhance images of solar cells from the PV 
module-level images [18–21] as a pre-processing step to automate the 
defect detections and classification typically conducted on cell-level 
images. Deep learning models have been trained on EL images to clas-
sify cells and modules into defect types or varying levels of defect 
severity [19,20,22–28]. Methods for object detection and localization of 
multiple defects in EL images have been presented [29–31]. Binary 
segmentation methods have been used to detect and localize cracks and 
gridline defects at the pixel level [32–36]. Fioresi et al. [36] presented 
results using semantic segmentation to detect and localize three classes 
simultaneously on EL images from a private dataset with 14 labelled 
classes. However, the labels for cracks and gridline defects in Ref. [36] 
were assigned to large areas of the cell image, as discussed in Section 
3.2. 

This paper builds on previous work in which the results of a U-Net 
model trained on 24 defects and features were presented [37]. In that 
work, semantic segmentation was introduced as a promising approach 
for detection and quantification of multiple defect classes in EL images 
of PV modules. The key contribution from semantic segmentation lies in 
the pixel-level classification of images [38,39] which enabled the 
translation from an unstructured image to a structured dataset. 
Pixel-level classification enabled the model to detect and quantify 
multiple defect types on a single solar cell rather than simply classify 
each cell image as having a specific defect or not. The structured dataset 
was used to quantify the extent of each defect at the module level by 
summing up the number of pixels associated with each defect observed 
in the cell-level EL images taken at multiple stages during a sequence of 
accelerated stress tests. The electrical performance of the PV module can 
then be correlated to the defects detected in the EL images to better 
understand the root cause of module performance and degradation over 
time. In this current work, the labelled dataset is made public and the 
results from twelve deep learning models are compared and summarized 
to identify models that might be better suited for defect detection in EL 
images of PV modules. The comparison includes the same U-Net model 
presented in Ref. [37] (see Table 1, model ‘1a’) with results from 
training on the updated dataset. 

3. Materials and methods 

3.1. Electroluminescence images 

EL images of PV modules constructed from crystalline silicon cells 
are essential for defect detection because micro-cracks and inactive 
areas impact module performance but often escape detection by the 
naked eye. An EL image is captured with a camera optimized to record 

photon emissions near 1100 nm wavelengths, outside the visible light 
spectrum. The PV module is connected to a power supply and an elec-
trical current is applied to excite the photons during imaging. The 
camera captures the photon emissions when the electron-hole pairs 
recombine [17]. 

Fig. 1 shows ten examples of EL images from the dataset. The top row 
consists of cells from multi-crystalline silicon wafers with the charac-
teristic square corners and grain boundaries that appear as small, dark 
regions throughout the cell. The bottom row consists of cells from mono- 
crystalline silicon wafers with the characteristic rounded corners and 
noticeable lack of grain boundaries due to the single crystal orientation 
of the wafer. The images also show examples of some features like cell 
spacing, ribbon interconnects and text. The defects shown include 
cracks, inactive areas, gridline defects, and corrosion. 

3.2. Dataset 

The dataset consists of 593 EL images of solar cells originating from 
three private and two public sources [40,41] with a roughly equal 
number of multi-crystalline and mono-crystalline wafers. The original 
number of labelled images exceeded 600, but some images were 
excluded following a quality control review by the PV expert. The 
contributions from the private sources consisted of module-level EL 
images while the contributions from the public sources consisted of 
cell-level EL images. The original images were pre-processed following a 
method described in Ref. [37]. The final 512 × 512 image contains a full 
cell in the center surrounded by adjacent cells, the module edge, or 
padding depending on the source of the image and location of the cell 
within the module-level image. The two public sources published 
single-cell images and therefore required padding on all four sides to 
maintain the full cell at the center of each image. 

The images in the benchmark dataset were curated by a PV expert 
from the 80,000 + images available from the five data sources com-
bined. The images were chosen by the expert during a visual scan of 
randomly selected samples from the 80,000 images to form a repre-
sentative sample of mono- and multi-crystalline cells with common 
features and defects so that the model would be as generalized as 
possible given a relatively small sample. The PV expert identified 12 
features intrinsic to most PV modules to provide context for the semantic 
segmentation models. In this paper, a feature refers to a specific 
component of a PV module such as a busbar, ribbon interconnect, or cell 
spacing. This should not be confused with a feature designed by a data 
scientist to improve predictions. The PV expert also identified 12 defects 
extrinsic to solar cells such as cracks, inactive areas, and gridline defects 
that can negatively impact module performance. Collectively, the fea-
tures and defects combine to create 24 classes for the pixel level 
classification. 

A ground truth mask was then created for each image in the dataset 
using the GNU Image Manipulation Program (GIMP) [42] to assign a 
unique color code to each class. The selected samples were distributed to 
a team of labelers who were trained to identify the features and defects. 

Table 1 
Model ID and descriptions.  

ID Class Weights Architecture Github Authors Trainable Parameters 

1-a Equal U-Net Divam 12,333,720 
1-b Inverse 
1-c Custom 
2-a Equal U-Net Tomar 25,858,887 
2-b Inverse 
2-c Custom 
3-a Equal PSPNet Kamikawa 58,038,784 
3-b Inverse 
3-c Custom 
4-a Equal DeepLabv3+ Yakubovskiy and Kawakita 22,443,368 
4-b Inverse 
4-c Custom  
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The labelers were also assigned a common set of images so that the 
process could be assessed for consistency and further training re-
quirements in the early stages. The labelled images were then analyzed 
to identify and correct any pixels not consistent with the pre-determined 
RGB color codes. Finally, the PV expert reviewed the ground truth masks 
and provided instructions to one expert labeler for final revisions. 

Fig. 2 shows the EL images and corresponding ground truth masks for 
the multi-crystalline silicon cells shown in Fig. 1. The labeling of ground 
truth masks presented challenges when labelling the long, narrow de-
fects such as cracks and gridline defects. A slight misalignment between 
the image and the ground truth mask can easily lead to false positives 
and false negatives when the object of interest is only a few pixels wide 
such as the case for cracks. In Ref. [36], the ground truth masks assign 
large areas of the image to cracks and gridline defects that extend far 
beyond the specific pixels associated with either defect as seen in the EL 
image. While the labelling approach in Ref. [36] minimizes the impact 
from errors along the edges, the localization of defects is less precise. 
The dataset presented in this work provides a finer resolution for the size 
and shape of cracks (white) and gridline defects (orange) as shown in 
Fig. 2. 

The dataset was split into subsets for training, validation, and testing. 
Fifty images with a prevalence of cracks, gridline defects, and inactive 
areas were assigned to testing, evenly split for mono- and multi-silicon 
wafers. Fifty-four images were randomly selected from the remaining 
images for validation. The remaining images were assigned for training 
and augmented using a 180◦ rotation, mirror, and flip yielding 896 
mono-si cell images and 1016 multi-si cell images for a total of 1912 
images in the training dataset. 

3.3. Deep learning models 

Table 1 summarizes the 12 fully supervised deep learning models 

trained and tested to identify the best performing architecture for this 
benchmark dataset. The model ID is used in the subsequent analysis to 
identify each of the 12 models. The python code for training each model 
was adapted from code published on the respective GitHub repositories 
[43–47]. The U-Net was included because it performs well with a small 
set of labelled data [48], and it pioneered the symmetric 
encoder-decoder model with skip connections [38] which forms the 
basis of many current deep learning models. A second, more complex 
U-Net was included to determine if the additional trainable parameters 
would result in better predictions compared to the smaller U-Net. The 
PSPNet was selected for the depth and complexity of the model which 
includes a novel pyramid pooling module to improve complex scene 
understanding [49]. DeepLabv3+ was selected for the promise of 
improved predictions especially along the object boundaries [50]. 

Weighted cross entropy was selected for the training loss function as 
it is widely used for semantic segmentation with imbalanced datasets 
[51]. Each model was trained with three different sets of class weights. 
The equal class weights (Set A) assigned a value of one to all classes 
(wA1 = wA2 = … = wAc = 1) where, wAc is the equal class weight for the 
cth class. The ‘inverse’ class weights (Set B) assigned a value for each 
class equal to the inverse of the median percentage of pixels in each class 
across all images in the training dataset. (1) 

wBc =
1

median(pc1, pc2, …, pcn)
(1)  

wBc = inverse class weight for the cth class pcn = percentage of pixels in 
the cth class for the nth image n = number of images in the test dataset 

The custom class weights (Set C) were pre-defined based on engi-
neering judgement to improve detection of cracks, gridlines, and inac-
tive areas by assigning larger weights to those classes (Table 2). 

The ratio of 100:1 for cracks to background was set to enhance crack 
detection and minimize the impact of noise from the grain boundaries in 

Fig. 1. EL images from multi-crystalline silicon wafers (top) and mono-crystalline silicon wafers (bottom).  

Fig. 2. EL images and ground truth masks for a sample of multi-crystalline silicon cells.  
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the multi-crystalline solar cells. The class weights for gridline and 
inactive regions were set to ten to improve detection relative to other 
defects. The class weight for ribbons was set to 3 to improve detection of 
this feature and use it to classify the cell type with respect to the number 
of interconnect ribbons in future work. The choice of the custom weights 
was validated with a 16-run screening Design of Experiment (DOE) 
using these custom weights as the center point. The low values were set 
to one-half the custom weights and the high values were set to one-half 
the inverse weights. Analysis of the DOE showed the custom weights 
ranked among the best solutions for detecting background, cracks, 
gridlines, ribbons, and inactive areas on this benchmark dataset. 

Fig. 3 plots the training and validation logs from all twelve models. 
However, not all loss functions are shown because of the scale chosen for 
this graphic. The training loss exceeded one for all the DeepLabv3+
models. The validation loss exceeded one for the DeepLabv3+ and the 
remaining models with inverse class weights. 

3.4. Method overview 

Fig. 4 summarizes the methodology followed for this work. The EL 
images and ground truth labels were curated, split into subsets, 
augmented, and trained using three different class weights. The models 
were used to generate a prediction mask for each image in the test 
dataset in which each pixel was labelled from 0 to 23 corresponding to 
the predicted class. The mask was colored to facilitate the visual analysis 
of each mask. The median IoU was computed for each image/class 
combination and plotted for comparison. The EL images and the corre-
sponding ground truth masks were published on github (https://github. 
com/TheMakiran/BenchmarkELimages). 

4. Results and discussion 

Fig. 5 presents the prediction masks for the EL image of one cell 
(CFVS 00035_r8_c4) from all 12 models. This cell was selected because it 
contains the three defects of primary concern: cracks, gridline defects, 
and inactive areas. The rows correspond to the model: U-Net_12 (row 1), 
U-Net_25 (row 2), PSPNet (row 3), and DeepLabv3+ (row 4). The col-
umns correspond to class weights: equal class weights (a), inverse class 
weights (b), and custom class weights (c). All four models generate 
similar prediction masks across the three sets of class weights, i.e., all the 
rows look similar. They all detect cell spacing (grey) and ribbons (green) 
well. However, the equal class weights predict fewer/smaller cracks 
compared to inverse class weights and custom class weights. The pre-
diction masks generated from inverse class weights and custom class 
weights tend to show dilated cracks and gridline defects. 

Fig. 6 shows the IoU for three defects and two features on the pre-
dictions from the 12 models for the test dataset. The lines connect the 
mIoU for each class and the colors correspond to mono- (blue) and multi- 
crystalline (red) silicon wafers. The grid layout is consistent with Fig. 5 
to facilitate a visual comparison of one sample image and the combined 
results for the test dataset. All models detect the features (spacing and 
ribbons) better than the defects (cracks, gridlines, and inactive areas). 
This correlates to the relative size of the features and defects. The fea-
tures occupy a greater number of pixels in the images than the defects. 
Based on the median value for number of pixels in the test dataset, the 
cracks account for 557 pixels, the inactive areas account for 1288 pixels, 
and the gridlines account for 1750 pixels. The spacing accounts for 
12,529 pixels, and the ribbons account for 12,871 pixels. Thus, the 
features are roughly 10 to 20 times larger than the defects, which may 
explain the higher mIoU for features compared to defects. The best re-
sults for both multi- and mono-silicon wafers was observed on the 
DeepLabv3+ with custom weights. The mIoU for cracks and gridline 
defects was generally higher on mono-crystalline silicon compared to 
multi-crystalline wafers. 

Fig. 7 shows a heatmap for the mIoU for the five selected classes 
across 12 models and the average of the mIoU for defects (crack, grid-
line, inactive) and features (ribbons, spacing). The darker green cells 
correspond to high mIoU in each column and red cells correspond to low 
mIoU. All the models with equal class weights (1a, 2a, 3a, 4a) have 
relatively high scores for the larger features (0.73–0.75) and relatively 
low scores for defects (0.04–0.24). The mIoU for the larger features 
compares reasonably well to the IoU values reported in Ref. [52] for 
detecting objects such as bikes (0.41), boats (0.68), chairs (0.43), tables 
(0.65), sofas (0.64), and TVs (0.73). However, the examples in Ref. [52] 
also illustrate the challenges around detecting long, narrow objects such 
as bird feet, table legs, chair legs, cat tails, and tires which form part of 
the larger object. These smaller features were often reduced, dilated, or 
missing altogether in the predictions presented in Ref. [52]. The mean 
IoU scores in Ref. [52] ranged from 62.2% to 78% across a range of 
objects despite the fact that many of the smaller features were missing in 
the predictions. The mIoU for cracks and gridlines reported in Fig. 7 is 
understandably low because cracks and gridlines consist exclusively of 
long, narrow features which are challenging to precisely locate at 
pixel-level resolution. The highest average mIoU for defects (0.28) was 
generated by the DeepLabv3+ with custom class weights (4c) making it 
the best choice for detecting long, narrow defects in this dataset. This 
result may be due to improved detection along object boundaries by the 
DeepLabv3+ model as claimed in Ref. [50]. 

Fig. 8 shows a heatmap for the median recall (mRcl) and the corre-
sponding averages for the same five classes and models shown in Fig. 7. 
The models using equal class weights (1a, 2a, 3a, 4a) show the lowest 
average mRcl for defects (0.05–0.3). The models using inverse class 
weights (1b, 2b, 3b, 4b) show the highest average mRcl for defects 
(0.48–0.77). These statistics are consistent with the images in Fig. 5 
which show dilated cracks and gridline defects in predictions from 
models when the inverse class weights were applied compared to models 

Table 2 
Custom class weights.  

Description Value 

wCbackground 0.2 
wCribbons 3.0 
wCgridline 10.0 
wCinactive 10.0 
wCcrack 20.0 
otherwise 1.0  

Fig. 3. Median IoU and loss functions for U-Net_12 (1a/b/c), U-Net_25 (2a/b/ 
c), PSPNet (3a/b/c), and DeepLabv3+ (4a/b/c). 
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with equal class weights. The models using custom class weights (1c, 2c, 
3c, 4c) also show relatively high average mRcl for defects and visually 
dilated defects in Fig. 5. The DeepLabv3+with custom class weights (4c) 
is among the top performers for the average of the mRcl for both features 
and defects. The mRcl for cracks (0.86) and gridline defects (0.85) from 

model 4c as shown in Fig. 8 also compares favorably to the recall for 
cracks (0.82) and gridline/contact defects (0.78) reported in Ref. [36]. 

While the DeepLabv3+ (4c) shows a high recall averaged across the 
three defect classes, the mIoU remains relatively low due to the low 
precision. Fig. 9 provides some insight to explain the low precision. The 
ground truth mask accurately reflects the cracks and gridline defects in 

Fig. 4. Graphical summary of the method.  

Fig. 5. Prediction masks for cell CFVS 00035_r8_c4: U-Net_12 (row 1), U- 
Net_25 (row 2), PSPNet (row 3), DeepLabv3+ (row 4), equal class weights 
(column a), inverse class weights (column b), and custom class weights (col-
umn c). 

Fig. 6. IoU for mono-crystalline (blue circles), multi-crystalline (red) circles), 
and mIoU (solid lines) for selected defects and features in 50 test images across 
12 models. 
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the corresponding EL image. The prediction mask identifies and local-
izes the defects in the EL images, but the defects are dilated relative to 
the ground truth mask leading to low precision. 

The accuracy of the ground truth image can also impact the IoU and 
recall during testing. Some mismatch between the EL and the ground 
truth masks is inevitable, despite efforts to mitigate this issue during the 
labelling process. Fig. 10 shows the bottom left corner of 

ARTS_00020_r7_c3 to illustrate the potential for error especially for long, 
narrow objects. The spacing layer in the prediction mask (gray) covers 
the corresponding feature in the EL image more completely than the 
ground truth mask which shows some dark pixels along the edges of the 
spacing layer unmasked. Similarly, the ribbons layer in the prediction 
mask (green) may reflect the corresponding feature in the EL image 
better than the ground truth mask. Errors in labelling along the edges of 
cracks and gridline defects have a particularly big impact on the mIoU 
due to the higher perimeter to area aspect ratios of those defects. The 
prediction mask in Fig. 10 also shows some additional gridline defects 
that should be added to the ground truth mask. 

The low mIoU values for defects are driven by the low precision. The 
low precision is driven more by dilated predictions of the correct fea-
tures/defects rather than detection of spurious features/defects. How-
ever, the extent of the dilation and spurious detections was deemed 
acceptable at this stage. The impact of the dilation could be mitigated by 
adapting the class weights, resulting in a trade-off between recall and 
precision. As seen in Fig. 5, when the class weights are equal, the dilation 
of features and defects is minimal. 

In addition to the key defects and features analyzed above, the 
models also learned to detect other features and defects despite rela-
tively small sample sizes. Fig. 11 shows the EL image, ground truth, and 
prediction mask for an image sourced from [19], one of the public 
datasets used for training. The authors originally trained models to 
classify images as ‘good’, ‘cracked’, or ‘corroded’. In this work, the 
model detected and localized the corrosion defect in the image despite 
having only 17 images with the corrosion defect in the training dataset. 
The corrosion defect (dark green) was detected around the ribbon 
feature (bright green). The large olive padding feature added around the 
cell during pre-processing was clearly detected, as was the smaller 
border feature (brown) surrounding the cell. Some of the gridline defects 
were detected but the crack was not. The model also learned to correctly 
ignore the grain boundaries prevalent in multi-crystalline silicon cells. 

5. Conclusion 

Four deep learning models (U-Net_12, U-Net_25, PSPNet, and 
DeepLabv3+) were trained using equal class weights, inverse class 
weights, and custom class weights for a total of twelve sets of predictions 
for each of 50 test images. The models were trained to simultaneously 
detect 24 classes in EL images of solar PV cells using semantic seg-
mentation. Twelve classes correspond to intrinsic features of a solar cell, 
and twelve classes correspond to extrinsic defects. This paper focused on 
the detection of three critical defects and two common features in 
crystalline silicon solar cells. The DeepLabv3+ with custom class 
weights was found to have the highest mIoU averaged across three 
critical defects identified in this dataset. The mIoU for the features was 
significantly higher than the mIoU for the defects for all models tested. 
Notably, the models achieved lower mIoU and mRcl on the small, nar-
row defects such as cracks and gridlines compared to large features such 
as spacing and ribbons. This is likely driven more by the dilated features 
in the predication masks and less due to spurious misclassifications. The 
models tested are effective in detecting, localizing, and quantifying 
multiple features and defects in EL images of solar cells. These models 
can thus be used to not only detect the presence of defects, but to track 
their evolution over time as modules are re-imaged throughout their 
lifetime. 

The unique contributions from this work include the benchmark 
dataset published on github and benchmark performance metrics for 
semantic segmentation on EL images of solar PV cells. 

Future work 

Future work will focus on semi-supervised learning to incorporate 
information from the 80,000+ unlabeled EL images available. Image-to- 
image translation techniques will be investigated for improving the 

Fig. 7. mIoU for five classes across 12 models and the average of the mIoU for 
features and defects. 

Fig. 8. mRcl for five classes across 12 models and the average of the mRcl for 
features and defects. 
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accuracy of ground truth images. Finally, the ground truth dataset will 
be updated and increased to incorporate new features and defects such 
as half-cut cells, scuffs and edge corrosion. 
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