

Aeronautical Society Of South Africa Annual Conference 2022 CSIR ICC 07 November 2022

John Weston Memorial Lecture

Wind Tunnel Testing - A Career at High Speed -While Standing Still! 1990-2022

Mauro Morelli

CSIR Experimental Aerodynamics Research Group Leader Wind Tunnel Facilities Manager

Content

- Introduction
- John Weston
- Wind Tunnel Testing Basics
- Wind Tunnel Types
- Wind Tunnel Processes
- Wind Tunnel Balances
- Model Design and Procurement
- Test Types and Data

John Weston (1872–1950)

- Born: Maximillian, John Ludwick Weston
 - South African aeronautical engineer, pioneer aviator, farmer and soldier (en.Wikipedia.org)
 - Eclectic engineer, pioneer aviator, farmer, family man, soldier, globetrotter and overland traveller..in a caravan.
 (www.johnwestonaviator.uk)
 - He travelled extensively in a motor caravan (RV) that he designed and built himself. Weston was a pioneer of aviation in South Africa.
 - In 1911, Weston founded the Aeronautical Society of South Africa.
 - The Society hosts a bi-annual memorial lecture in his honour.

3

FIRST AIRBORNE A/C IN UNION OF S. AFRICA JUNE 1911. TYPE, BRISTOL BIPLANE. PILOT, JOHN WESTON.

Wind Tunnel Testing Basics

Wind tunnel testing basics

- Frank H. Wenham (1824-1908) credited with designing and operating the first wind tunnel in 1871
 - Member of the Aeronautical Society of Great Britain
- Wright Brothers conducted wind tunnel experiments in an upgraded wind tunnel in 1901, which led to the understanding of the wing performance of the Wright Flyer in 1903
 - Replica of the Wright Brothers wind tunnel of 1901

 Orville Wright wind tunnel design 1916

Wind tunnel testing basics

- Can experiments conducted on scale models of airframes be correlated to the aerodynamic behaviour of full-scale airframes?
 - Osborne Reynolds (1842-1912) conducted experiments at the University of Manchester to demonstrate the validity of scale testing if certain fundamental non-dimensional parameters (ratios) were kept the same between scale model and full-scale airframe (principle of Aerodynamic Similarity)
 - **Reynolds number** (Viscous forces, flow pattern)
 - Mach number (Elastic forces, compressibility of the air)
 - Froude number (Gravitational forces, motion through the air)
 - Reduced frequency (Dynamic similarity, oscillations)
 - Reynolds number presents the greatest mismatch in small scale testing
 - Mach number similarity neglected in incompressible flow testing
 - Froude number and reduced frequency neglected during static testing

Wind tunnels can be classified according to:

- Architecture
- Wind speed
- Mode of operation
- ...and many other attributes

Touching lives through innovation

- Architecture
 - Closed circuit, closed test section

• Closed circuit, open jet

Open circuit, closed test section

• Open circuit, open jet

- Mode of operation
 - Continuous

Intermittent

- Particular tunnels:

Wind Tunnel Processes

STAGE 7: Project closure

Wind Tunnel Processes

- Airframe aerodynamic load measuring device:
 - Most common type of measurement during wind tunnel testing
 - But one of many....
 - Complete airframe aerodynamic load measurements, generally 6 components:
 - NF, SF, AF, PM, YM, RM (5 or 4 components in particular cases)
 - Can be internal or external balances
 - Control surface aerodynamic load measurements, 1, 2 or 3 component balances:
 - NF, HM, BM

- Selecting a balance:
 - Balance sizing.
 - Consider balance for which max expected loads saturate from 50 to 85% of the balance design load range:
 - Good resolution and accuracy.
 - With reserve for unknown dynamic effects on the model
 - Consider balance diameter compatible with model internal spaces and tail pipe exit diameter.
 - Follow-up immediately with sting deflection calculations and internal and external "grounding" verifications.
 - Beware of oversimplifying assumptions when calculating sting deflections.
 - Consider that the balance could the most flexible element.
- Balance fitment
 - Ensure positive fit, rolling moment anti-torque devices.
 - Ensure positive, unique and measurable alignment.

• External balances:

- Pyramidal or virtual centre balances

Touching lives through innovation

- External balances:
 - Side-wall balances

Touching lives through innovation

Internal balances:

Sting balances

• Internal balances:

- Sting balances

- Internal balances:
 - Carriage balances

- Internal balances:
 - Carriage balances

Internal balances:

- Special purposes balances
 - 3 component port and starboard wing balances

• Internal balances:

- Special purposes 3 component fin balances on 4 fins

Internal balances: ۲

- Special purposes 3 component fin balances on 2 fins

• Internal balances:

Special purposes 3 component fin balances on 2 fins

- Fundamental sizing aspects:
 - Need to reproduce every aerodynamically significant geometric detail..
 - Largest possible scale compatible with blockage ratio and wall interference effects.
 - In addition if supersonic speed tests are planned..
 - Largest possible scale compatible with shock rhombus compatibility
 - Select model support interface to wind tunnel systems.
 - Internal balance with sting support
 - Internal balance with ventral or dorsal blade support
 - External balance with strut supports
 - Calculate model loads.
 - Calculate loads at highest nominal Dynamic Pressure at which tests can be conducted
 - Select balance compatible with above model loads..
 - Iterate on dynamic pressure until a balance match has been obtained

• Full-scale airframe geometry – model component breakdown...

• Full-scale airframe geometry – model component breakdown...

• Use of Additive Manufacturing to achieve detail....

• Use of additive Manufacturing to achieve detail....

Distorted tailpipe

• Use of additive Manufacturing to achieve detail....

ECS panel

• Use of additive Manufacturing to achieve detail....

• Use of additive Manufacturing to achieve detail....

• The final product....

• The final product....

• Half model on side-wall balance....

...satisfied designer

Touching lives through innovation

Half model on side-wall balance.... 5M89MCR-1111-CC-01 Noven or Wing Split casy EM 59.MOR-1110-00-01 dt Novemor Wing ossy EMBYAICR 1121 00 01b FM89MOR-1000-00-01 d NoVemo: Model in MSWI casy Novemar Euselage upper awy EVB9/VOR-1122-00-01 Novemor Euseloge lower assy EMB9MOR-1120-00-010 Novemen Fuscinge cissy FM89MOR-1123-00-01 Novembr Nese osse EM69MOR- 00.00 DTa Novembr Model assy EM89MOR-1124-00-01 Novemor ToT casy Drowing Number Convention: EM89MOR-XXXX-YY-222 Novemor Assembly Hierarchy XXXXX : Assy/Sub-assy number Part number (Assy: 00: Parth 01, 02, 03, etc.) SIR YY ZZZ : Revision number CSIR EMB9MOR-0000-00-01

Half model on side-wall balance, phases of workmanship...

Half model on side-wall balance, assembly diagrams...

• Half model on side-wall balance, assembly and checkout...

• Half model on side-wall balance, final installation...

EMB9MOR model in MSWT

Test installation.....

CAL GOCIETY ON GOUTH AFR

- Support system angle calibrations
 - Pitch/roll
- Balance installation
 - Alignment with support
 - Checkloads
- Model installation
 - Alignment
 - Offset angles measurement

At the same time...

- Software setup
 - Test directories
 - Project specific calculation coding
 - Aerodynamic calculations ATPs

Finally....

- Tare measurement runs
- Air-off tare verification runs
- Data output formats verification
- Pre-test briefing

Test types and data

- There are many test types, essentially too many to list comprehensively:
- Description of most test types performed at the CSIR in addition to my own extemporary experience:
 - Static force tests
 - CTS/Grid testing
 - Static pressure tests
 - Subsonic inlet characterization
 - Dynamic derivatives evaluation

Can be executed in 2 modes:

Move-pause mode

- Pure static testing
- Data taken when model is still at the desired attitude
- Low sampling rates (~20Hz, data averaging, low pass filters set at 1-5Hz
- Tight tolerances on tunnel environmental conditions

Condition	Tolerance	Units	
Mach number	0.005		
Stagnation pressure	0.25	kPa	
Stagnation temperature	1	К	
Pitch	0.1	deg	
Roll angle	0.1	deg	

- Move-pause mode
 - Highly Accurate data
 - Data sparse
 - Time consuming

Condition	Tolerance	Units	
Mach number	0.005		
Stagnation pressure	0.25	kPa	
Stagnation temperature	1	К	
Pitch	0.1	deg	
Roll angle	0.1	deg	

• Continuous sweep mode

- Quasi-static testing
- Low sweep rates (0.1-0.3 deg/s)
- Data taken with model on the move
- Low sampling rates (~20Hz, low data averaging, low pass filters set at 1-5Hz)
- Lag in data due to hardware filters (need to correct with software)
- Environmental set before start of sweep (no check between tunnel and data acq. during sweep)

- Grid testing
 - MSWT FFPS boom in addition to the MMS
 - Two model system:
 - Parent model on MMS
 - Store model on 6 DOF secondary support

- Grid testing
 - To measure the effect of the interference flow field on the store while it is positioned at pre-determined distances and attitudes w.r.t the parent model.

- Captive Trajectory Testing
 - MSWT FFPS boom in addition to the MMS
 - Two model system:
 - Parent model on MMS
 - Store model on 6 DOF secondary support
 - NB: Trajectory Generation software.

- CTS testing
 - To simulate the "real time" release path of the store w.r.t. the parent aircraft.

Static Pressure Testing

- Pressure testing
 - Investigative technique
 - Complex in nature due to the requirement of surface pressure taps
 - Use of multi-channel ESPs
 - Complex model manufacture

Static Pressure Testing

- Pressure testing
 - Limited discrete data

Figure 4.11: Location of control airfoils on wing of Example 3.

Complex • Expensive ٠ • Very effective ٠ Not in use at the CSIR! Pressure plot

Static Pressure Testing

Pressure testing

٠

- Continuous pressure data using PSPs •
 - - Now both static and unsteady pressure

Subsonic inlet characterization

- Requirement:
 - To characterize the AIP flow in terms of :
 - Total pressure recover
 - Distortion coefficients
 - Active mass flow control
 - Inlet duct pressure distribution and flow vizualisation

Subsonic inlet characterization

- Measurements:
 - Scanivalve ESPs for the 40 probe rake
 - Scanivalve ESPs for the remaining pressures

- Premise:
 - Good fortune to encounter a job offer on wind tunnel testing of the Aermacchi M346 (now Leonardo-Finmeccanica Master)
 - Executed 4 test campaigns as company WT test engineer
 - 2 transonic external stores carriage loads entries at NLR Amsterdam
 - 2 low speed small-amplitude forced-oscillation tests to measure the aircrafts dynamic derivatives at ONERA in Lille.

- The Aircraft:
 - Light weight two-seater twin-engine fly-by-wire trainer
 - Empty weight: 4900 kg
 - MTO weight: 9600 kg
 - Max speed: M0.95
 - Range: 1925 km
 - Endurance: 2hrs 45min

• Operators:

- Italy
- Isreal
- Egypt
- Greece
- Azerbaijan
- Nigeria
- Poland
- Qatar
- Signapore
- Turkmenistan

• Requirements:

	Dynamic Derivative Coefficients	Combined terms
from pitch- oscillations	C _{Nq +} C _{Na*}	
	C _{mq +} C _{ma*}	Damping derivative
from yaw-oscillations	$C_{nr-} C_{n\beta^* \cos \alpha}$	Damping derivative
	$C_{lr} - C_{l\beta^* \cos \alpha}$	Cross derivative
	$C_{Yr} - C_{Y\beta^* \cos \alpha}$	

- Oscillation around an axis methodology:
 - Gives combined derivatives (except roll axis)

• Requirements:

Configuration :	Nose Droops	Flaps	HT	VT
CRuise	0°	0°	0°	0°
MAN –20	-20°	0°	0°	0°
MAN30	-30°	0°	0°	0°
MAN-30 HT off	-30°	0°	off	0°
MAN –30 VT off	-30°	0°	0°	off
LAND	-25°	37.5°*	0°	0°
ТО	-20°	-20°	0°	0°00

- Requirements:
- Airframe attitudes and tunnel environmental parameters:
 - The test speed was chosen as 35m/s, compatible with the model structural integrity
 - Angle-of-attack and sideslip ranges:

-10° to 30° or -10° to 60° depending on the configuration With additional sweeps performed at 5° sideslip angle (only in pitch plane)

- Oscillation frequencies:

v = 1.2 Hz (Kc = 0.026 to comparable to TsAGI data)

v = 3.0 Hz (Kc = 0.066, similar to 0.5Hz on Aircraft @ M0.2, 15Kft)

v = 6.0 Hz (Kc = 0.133, similar to 1.0Hz on Aircraft @ M0.2, 15Kft)

- Oscillation amplitude:
 - $\lambda = 3^{\circ}$ (compatible with required oscillation frequency values)
 - $\lambda = 1^{\circ}$ (to investigate oscillation amplitude effects on data)

• Facility selection:

- The approach selected was that of: "Small amplitude forcedoscillation tests" in a low-speed wind tunnel
- The supplier required needed:
 - appropriate facilities
 - a proven track record in this type testing
 - as well as data post-processing capabilities
- The supplier was identified as:
 - **ONERA-Lille** Center
 - In particular:
 - The Applied Aerodynamics Department (DAAP) using the L1 wind tunnel *and in a second phase:*
 - The Systems Control and Flight Dynamics Department (DCSD) using the SV4 wind tunnel

ONERA-Lille L1 wind tunnel:

- Eiffel type, closed circuit wind tunnel
 - Open test section: 2.4m diameter, 2.4m test section length
 - Duct coefficient: 4.31
 - Max test speed: 60m/s
 - Turbulence: 1.3% (0-1KHz range)
 - Critical Re: 287000 (100mm sphere)

PQR apparatus:

- 3 d.o.f. rotation rig about the main model axes:
 - Euler angles ϕ , θ and ψ and rotations p, q and r
 - -15° < ψ <20° manual, resolution of 0.05°
 - -50° <θ<90° motorised, θ'< 600° /s, θ"< 9000° /s², resolution 0.01°
 - -180° < ϕ <180° manual, 5° steps for straight sting

- <u>Lateral dynamics</u> in the ONERA-Lille SV4 vertical wind tunnel:
 - Eiffel type, closed circuit wind tunnel
 - Open test section: 4m diameter, 4m test section length
 - Duct coefficient: not available
 - Max test speed: 40m/s
 - Turbulence: not available
 - Critical Re: not available

"Tourne-broche" apparatus:

- 4 d.o.f. rotary balance rig:
- \Box θ : longitudinal attitude of the model, 0° < θ <45°, motorised θ '<0.3°/s
- □ ψ : heading angle of model, 0° < ψ <360°, motorised, Ω < 600°/s, Ω '< 50°/s²
- $\square \lambda$: tilt angle between rotary axis and tunnel vertical axis;
 - $0^{\circ} < \lambda < 30^{\circ}$, motorised, $\lambda' < 1^{\circ}$ /s

Touching lives through innovation

- Model characteristics:
 - Model main geometrical parameters:
 - Model scale: 1:11
 - Maximum fuselage length: 1.0445 m
 - Reference area, S_w: 0.1944 m²
 - Reference span, b: 0.8836 m
 - Mean aerodynamic chord, C: 0.2436 m
 - Inertial parameters:
 - Model "gross" weight: 6.8 kg
 - Model ballast: 0.45 kg
 - Model CG: 4mm aft of B.R.C and PQR rotation centre
 - 21mm above B.R.C. and PQR rotation centre

- Instrumentation:
 - Same model instrumentation for both L1 and SV4 tunnel installations:
 - Load measurements:
 - ONERA Φ 26 N°6, 6 component internal strain-gauge balance, fitted to an ONERA straight sting in the L1 tunnel
 - In the SV4 tunnel, a sting was adapted to simulate the same set-up as in the L1 tunnel, so that the same balance and adaptors could be used.
 - Model acceleration measurements:
 - Adaptors for 5 accelerometers have been positioned in the aluminium stiffener structure:
 - » 2 forward accelerometers sensing in the Y-axis and Z-axis directions
 - » 2 rear mounted accelerometers sensing in the Y-axis and Z-axis directions
 - » 1 mid-mounted accelerometer sensing in the X-axis direction

65 70 50 55 60 CSIR

- L1 Results:
 - Some typical results (dynamic measurements):
- •

Touching lives through innovation

- L1 Results:
 - Some typical results (dynamic measurements):

L1 Results:

- Some typical results (dynamic measurements):

- SV4 Results:
 - Some typical results (oscillatory/coning test measurements):

- SV4 Results:
 - Some typical results (oscillatory/coning test measurements):

- SV4 Results:
 - Some typical results (oscillatory/coning test measurements):

- SV4 Results:
 - Some typical results (oscillatory/coning test measurements):

Wind tunnel techniques

Touching lives through innovation

....and many other techniques not described here!

