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John Weston (1872–1950)

• Born: Maximillian, John Ludwick Weston

– South African aeronautical engineer, pioneer aviator, farmer and soldier 

(en.Wikipedia.org)

– Eclectic engineer, pioneer aviator, farmer, family man, soldier, 

globetrotter and overland traveller..in a caravan. 

(www.johnwestonaviator.uk)

– He travelled extensively in a motor caravan (RV) that he designed and 

built himself. Weston was a pioneer of aviation in South Africa.

– In 1911, Weston founded the Aeronautical Society of South Africa.

– The Society hosts a bi-annual memorial lecture in his honour.

http://www.johnwestonaviator.uk/
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Wind Tunnel Testing Basics
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Wind tunnel testing basics

• Replica of the Wright 

Brothers wind tunnel of 

1901

– Frank H. Wenham (1824-1908) credited with designing and operating 
the first wind tunnel in 1871

• Member of the Aeronautical Society of Great Britain

– Wright Brothers conducted wind tunnel experiments in an upgraded wind 
tunnel in 1901, which led to the understanding of the wing performance 
of the Wright Flyer in 1903

• Orville Wright wind tunnel 

design 1916
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Wind tunnel testing basics

– Can experiments conducted on scale models of airframes be correlated 

to the aerodynamic behaviour of full-scale airframes?

• Osborne Reynolds (1842-1912) conducted experiments at the University of 

Manchester to demonstrate the validity of scale testing if certain fundamental 

non-dimensional parameters (ratios) were kept the same between scale 

model and full-scale airframe (principle of Aerodynamic Similarity)

– Reynolds number (Viscous forces, flow pattern)

– Mach number (Elastic forces, compressibility of the air)

– Froude number (Gravitational forces, motion through the air)

– Reduced frequency (Dynamic similarity, oscillations)

• Reynolds number presents the greatest mismatch in small scale testing

• Mach number similarity neglected in incompressible flow testing

• Froude number and reduced frequency neglected during static testing
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Wind tunnel types

– Wind tunnels can be classified according to:

• Architecture

• Wind speed

• Mode of operation

• ..and many other attributes
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Wind tunnel types

– Architecture

• Closed circuit, closed test section

• Closed circuit, open jet

• Open circuit, closed test section

• Open circuit, open jet
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Wind tunnel types

– Wind Speed
• Subsonic (M0.1 – M0.8)

• Transonic (M0.8 – M1.2)

• Supersonic (M1.0 < M5.0)

• Hypersonic ( >M5.0)
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Wind tunnel types

– Mode of operation

• Continuous • Intermittent
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Wind tunnel types

– Particular tunnels:
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Wind Tunnel Processes
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Wind Tunnel Processes
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Wind tunnel balances

– Airframe aerodynamic load measuring device:

• Most common type of measurement during wind tunnel testing

• But one of many….

• Complete airframe aerodynamic load measurements, generally 6 

components:

– NF, SF, AF, PM, YM, RM (5 or 4 components in particular cases)

– Can be internal or external balances

• Control surface aerodynamic load measurements, 1, 2 or 3 component 

balances:

– NF, HM, BM
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Wind tunnel balances

• Selecting a balance:

– Balance sizing.

• Consider balance for which max expected loads saturate from 50 to 85% of 

the balance design load range:
– Good resolution and accuracy.

– With reserve for unknown dynamic effects on the model

• Consider balance diameter compatible with model internal spaces and tail 

pipe exit diameter.

• Follow-up immediately with sting deflection calculations and internal and 

external “grounding” verifications.
– Beware of oversimplifying  assumptions when calculating sting deflections.

– Consider that the balance could the most flexible element.

• Balance fitment
• Ensure positive fit, rolling moment  anti-torque devices.

• Ensure positive, unique and measurable alignment.
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Wind tunnel balances

• External balances:

– Pyramidal or virtual centre balances
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Wind tunnel balances

• External balances:

– Side-wall balances
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Wind tunnel balances

• External balances:

– Side-wall balances
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Wind tunnel balances

• Internal balances:

– Sting balances
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Wind tunnel balances

• Internal balances:

– Sting balances
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Wind tunnel balances

• Internal balances:

– Carriage balances
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Wind tunnel balances

• Internal balances:

– Carriage balances
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Wind tunnel balances

• Internal balances:

– Special purposes balances

• 3 component port and starboard wing balances
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Wind tunnel balances

• Internal balances:

– Special purposes 3 component fin balances on 4 fins
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Wind tunnel balances

• Internal balances:

– Special purposes 3 component fin balances on 2 fins

– Length ~ 2.5 - 3 cm
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Wind tunnel balances

• Internal balances:

– Special purposes 3 component fin balances on 2 fins
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Wind tunnel balances
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Model design and procurement

• Fundamental sizing aspects:

• Need to reproduce every aerodynamically significant geometric detail..
• Largest possible scale compatible with blockage ratio and wall interference effects.

• In addition if supersonic speed tests are planned..
• Largest possible scale compatible with shock rhombus compatibility

• Select model support interface to wind tunnel systems.
• Internal balance with sting support
• Internal balance with ventral or dorsal blade support
• External balance with strut supports

• Calculate model loads.
• Calculate loads at highest nominal Dynamic Pressure at which tests can be conducted

• Select balance compatible with above model loads..
• Iterate on dynamic pressure until a balance match has been obtained
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Model design and procurement

• Full-scale airframe geometry – model component breakdown… 
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Model design and procurement

• Full-scale airframe geometry – model component breakdown… 
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Model design and procurement

• Use of Additive Manufacturing to achieve detail…. 
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Model design and procurement

• Use of additive Manufacturing to achieve detail…. 

• Distorted tailpipe
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Model design and procurement

• Use of additive Manufacturing to achieve detail…. 

• ECS panel
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Model design and procurement

• Use of additive Manufacturing to achieve detail…. 

• Inlet brackets
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Model design and procurement

• Use of additive Manufacturing to achieve detail…. 

• Vortex generators
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Model design and procurement

• The final product…. 
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Model design and procurement

• The final product…. 
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Model design and procurement

• Half model on side-wall balance….

…satisfied designer
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Model design and procurement

• Half model on side-wall balance….
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Model design and procurement

• Half model on side-wall balance, phases of workmanship…



41

Model design and procurement

• Half model on side-wall balance, assembly diagrams…
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Model design and procurement

• Half model on side-wall balance, assembly and checkout…
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Model design and procurement

• Half model on side-wall balance, final installation…

EMB9MOR model in MSWT
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Test installation…..

• Support system angle calibrations
• Pitch/roll

• Balance installation
• Alignment with support
• Checkloads

• Model installation
• Alignment
• Offset angles measurement

At the same time…
• Software setup

• Test directories
• Project specific calculation coding
• Aerodynamic calculations ATPs

Finally….
• Tare measurement runs
• Air-off tare verification runs
• Data output formats verification
• Pre-test briefing
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Test types and data

– There are many test types, essentially too many to list comprehensively:

– Description of most test types performed at the CSIR in addition to my 

own extemporary experience:

• Static force tests

• CTS/Grid testing

• Static pressure tests

• Subsonic inlet characterization

• Dynamic derivatives evaluation
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Static force tests

– Can be executed in 2 modes:

• Move-pause mode
• Pure static testing
• Data taken when model is still 

at the desired attitude
• Low sampling rates (~20Hz, 

data averaging, low pass filters 
set at 1-5Hz

• Tight tolerances on tunnel 
environmental conditions

Condition Tolerance Units

Mach number 0.005

Stagnation pressure 0.25 kPa

Stagnation temperature 1 K

Pitch 0.1 deg

Roll angle 0.1 deg
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Static force tests

• Move-pause mode
• Highly Accurate data
• Data sparse
• Time consuming 

Condition Tolerance Units

Mach number 0.005

Stagnation pressure 0.25 kPa

Stagnation temperature 1 K

Pitch 0.1 deg

Roll angle 0.1 deg
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Static force tests

• Continuous sweep mode
• Quasi-static testing
• Low sweep rates (0.1-0.3 deg/s)
• Data taken with model on the 

move
• Low sampling rates (~20Hz, low 

data averaging, low pass filters 
set at 1-5Hz)

• Lag in data due to hardware 
filters (need to correct with 
software)

• Environmental set before start 
of sweep (no check between 
tunnel and data acq. during 
sweep)
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Static force tests

• Continuous mode
• Accurate data
• Data more frequent
• More efficient
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CTS/Grid Testing

• Grid testing
• MSWT FFPS boom in addition to 

the MMS
• Two model system:

• Parent model on MMS
• Store model on 6 DOF 

secondary support
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CTS/Grid Testing

• Grid testing
• To measure the effect of the interference flow field on the store 

while it is positioned at pre-determined distances and attitudes 
w.r.t the parent model.
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CTS/Grid Testing

• Captive Trajectory Testing
• MSWT FFPS boom in addition to 

the MMS
• Two model system:

• Parent model on MMS
• Store model on 6 DOF 

secondary support
• NB: Trajectory Generation 

software.
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CTS/Grid Testing

• CTS testing
• To simulate the “real time” release path of the store w.r.t. the 

parent aircraft.



54

CTS/Grid Testing

• CTS testing
• To simulate the “real time” release path of the store w.r.t. the 

parent aircraft.



55

Static Pressure Testing

• Pressure testing
• Investigative technique
• Complex in nature due to the requirement of surface pressure taps
• Use of multi-channel ESPs
• Complex model manufacture



56

Static Pressure Testing

• Pressure testing
• Limited discrete data
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Static Pressure Testing

• Pressure testing
• Continuous pressure data using PSPs

• Complex
• Expensive
• Very effective

• Now both static and unsteady pressure

• Not in use at the CSIR!
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Subsonic inlet  characterization

• Requirement:
• To characterize the AIP flow in 

terms of :
• Total pressure recover
• Distortion coefficients

• Active mass flow control
• Inlet duct pressure distribution 

and flow vizualisation
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Subsonic inlet  characterization

• Measurements:
• Scanivalve ESPs for the 40 probe 

rake
• Scanivalve ESPs for the remaining 

pressures
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Dynamic Derivatives

• Premise:
• Good fortune to encounter a job offer on wind tunnel testing of 

the Aermacchi M346 (now Leonardo-Finmeccanica Master)
• Executed 4 test campaigns as company WT test engineer

• 2 transonic external stores carriage loads entries at NLR 
Amsterdam

• 2 low speed small-amplitude forced-oscillation tests to 
measure the aircrafts dynamic derivatives at ONERA in 
Lille.
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Dynamic Derivatives

• The Aircraft:
• Light weight two-seater twin-engine fly-by-wire trainer
• Empty weight: 4900 kg
• MTO weight: 9600 kg
• Max speed: M0.95
• Range: 1925 km
• Endurance: 2hrs 45min

• Operators:
• Italy
• Isreal
• Egypt
• Greece
• Azerbaijan
• Nigeria
• Poland
• Qatar
• Signapore
• Turkmenistan
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Dynamic Derivatives

• Requirements:

• Oscillation around an axis methodology:
• Gives combined derivatives (except roll axis)

Dynamic Derivative 

Coefficients
Combined terms

from pitch-

oscillations

CNq +CNα*

Cmq + Cmα*

Damping 

derivative

from yaw-oscillations

Cnr – Cnb* cosα

Damping 

derivative

Clr  – Clb* cosα Cross derivative

CYr – CYb* cosα
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Dynamic Derivatives

• Requirements:

Configuration

:

Nose 

Droops
Flaps HT VT

CRuise 0° 0° 0° 0°

MAN –20 -20° 0° 0° 0°

MAN –30 -30° 0° 0° 0°

MAN-30 HT 

off
-30° 0° off 0°

MAN –30 VT 

off
-30° 0° 0° off

LAND -25° 37.5°* 0° 0°

TO -20° -20° 0° 0°
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Dynamic Derivatives

• Requirements:

• Airframe attitudes and tunnel environmental parameters:

– The test speed was chosen as 35m/s, compatible with the model structural 

integrity

– Angle-of-attack and sideslip ranges:

-10° to 30° or -10° to 60° depending on the configuration

With additional sweeps performed at 5° sideslip angle (only in pitch plane)

– Oscillation frequencies:

n = 1.2 Hz (Kc = 0.026 to comparable to TsAGI data)

n = 3.0 Hz (Kc = 0.066, similar to 0.5Hz on Aircraft @ M0.2, 15Kft)

n = 6.0 Hz (Kc = 0.133, similar to 1.0Hz on Aircraft @ M0.2, 15Kft)

– Oscillation amplitude:

l = 3° (compatible with required oscillation frequency values)

l = 1° (to investigate oscillation amplitude effects on data)
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Dynamic Derivatives

• Facility selection:

– The approach selected was that of: “Small amplitude forced-

oscillation tests” in a low-speed wind tunnel

– The supplier required needed:

• appropriate facilities

• a proven track record in this type testing

• as well as data post-processing capabilities

– The supplier was identified as:
ONERA-Lille Center

In particular:

• The Applied Aerodynamics Department (DAAP) using the L1 wind tunnel

and in a second phase:

• The Systems Control and Flight Dynamics Department  (DCSD) using the SV4 wind tunnel
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Dynamic Derivatives

• ONERA-Lille L1 wind tunnel:

– Eiffel type, closed circuit wind tunnel

• Open test section: 2.4m diameter, 2.4m test section length

• Duct coefficient: 4.31

• Max test speed: 60m/s

• Turbulence: 1.3% (0-1KHz range)

• Critical Re: 287000 (100mm sphere)
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Dynamic Derivatives
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Dynamic Derivatives

PQR apparatus:

• 3 d.o.f. rotation rig about the main model axes:
• Euler angles f, q and y and rotations p, q and r

• -15°<y<20° manual, resolution of 0.05°
• -50°<q<90° motorised, q’< 600°/s, q’’< 9000°/s2, resolution 

0.01°
• -180°< f<180° manual, 5° steps for straight sting
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Dynamic Derivatives

• Lateral dynamics in the ONERA-Lille SV4 vertical wind tunnel:

– Eiffel type, closed circuit wind tunnel

• Open test section: 4m diameter, 4m test section length

• Duct coefficient: not available

• Max test speed: 40m/s

• Turbulence: not available

• Critical Re: not available

“Tourne-broche” apparatus:

• 4 d.o.f. rotary balance rig:
 f: lateral attitude of the model (roll), -180°<f<180°, motorised 

f’<2°/s

 q: longitudinal attitude of the model, 0°<q<45°, motorised q’<0.3°/s

 y: heading angle of model, 0°<y<360°, motorised, W< 600°/s, W’< 

50°/s2

 l: tilt angle between rotary axis and tunnel vertical axis;

• 0°<l<30°, motorised, l’<1°/s
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Dynamic Derivatives
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Dynamic Derivatives

• Model characteristics:

– Model main geometrical parameters:

• Model scale: 1:11

• Maximum fuselage length: 1.0445 m

• Reference area, Sw: 0.1944 m2

• Reference span, b: 0.8836 m

• Mean aerodynamic chord, C: 0.2436 m

– Inertial parameters:

• Model “gross” weight: 6.8 kg

• Model ballast: 0.45 kg

• Model CG: 4mm aft of B.R.C and PQR rotation centre

21mm above B.R.C. and PQR rotation centre
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Dynamic Derivatives
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Dynamic Derivatives

• Instrumentation:

– Same model instrumentation for both L1 and SV4 tunnel 

installations:

• Load measurements:

– ONERA F26 No6, 6 component internal strain-gauge balance, fitted to an 

ONERA straight sting in the L1 tunnel

– In the SV4 tunnel, a sting was adapted to simulate the same set-up as in the 

L1 tunnel, so that the same balance and adaptors could be used.

• Model acceleration measurements:

– Adaptors for 5 accelerometers have been positioned in the aluminium 

stiffener structure:

» 2 forward accelerometers sensing in the Y-axis and Z-axis directions

» 2 rear mounted accelerometers sensing in the Y-axis and Z-axis 

directions

» 1 mid-mounted accelerometer sensing in the X-axis direction
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Dynamic Derivatives

• L1 Results:

– Some typical results (dynamic  measurements):
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Dynamic Derivatives

• L1 Results:

– Some typical results (dynamic  measurements):
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Dynamic Derivatives

• L1 Results:

– Some typical results (dynamic  measurements):
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Dynamic Derivatives

• SV4 Results:

– Some typical results (oscillatory/coning test measurements):



78

Dynamic Derivatives

• SV4 Results:

– Some typical results (oscillatory/coning test measurements):
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Dynamic Derivatives

• SV4 Results:

– Some typical results (oscillatory/coning test measurements):



80

Dynamic Derivatives

• SV4 Results:

– Some typical results (oscillatory/coning test measurements):
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Wind tunnel techniques

– ….and many other techniques not described here!

– ….Thank you
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