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ABSTRACT This paper studies the real-time energy trading problem in a smart community consisting of
a group of grid-connected prosumers with controllable loads, renewable generations and energy storage
systems. We propose a peer-to-peer (P2P) energy trading system, which integrates energy trading with
energy management, enabling each prosumer to jointly manage its energy consumption, storage scheduling
and energy trading in a dynamic manner for smart communities consisting of a group of grid-connected
prosumers with controllable loads, renewable generations and energy storage systems. The proposed
community-based P2P energy trading system combines an online energy control and trading algorithm with
a double auction mechanism. The energy control and trading algorithm is designed based on the Lyapunov
theory, allowing each prosumer to independently determine its bid in each time slot only based on its current
energy supply condition, while the trading price, which is determined via the double auction mechanism,
reflects the collective energy supply conditions of all prosumers participating in energy trading. The
integration of the Lyapunov-based energy control and trading algorithm and the double auction mechanism
yields a dynamic energy trading pricing mechanism that induces the prosumers to participate in energy
trading in a coordinated manner by influencing the energy consumption, energy charging/discharging and
energy trading decisions of the prosumers. Numerical simulation results demonstrate that energy exchange
in the proposed scalable energy trading system yields significant improvements in terms of energy cost
savings and renewable energy utilization efficiency, while ensuring the fair sharing of the benefits reaped
from energy trading among the prosumers.

INDEX TERMS Demand side management, double auction, energy management, energy trading, Lyapunov
optimization, peer-to-peer, smart grids.

LIST OF MAIN SYMBOLS
t Time slot index.
Di(t) Prosumer i’s served load demand.
Di(t) Maximum energy demanded by prosumer i.
Di(t) Minimum energy demanded by prosumer

i that cannot be shed.
δi(t) Indicator of the sensitivity of prosumer

i towards its energy consumption
deviation Di(t)− Di(t).

εi Upper bound of prosumer i on the
long-term time-averaged load shedding ratio.
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gRi (t) Prosumer i’s harvested renewable energy.
gli(t) Energy purchased from the utility grid

by prosumer i that directly supplies its load.
gsi (t) Energy purchased from the utility grid that is

stored into prosumer i’ ESS.
gch−Ri (t) Excess renewable energy

charged into prosumer i’s ESS.
ges−Ri (t) Excess renewable energy sold by prosumer i

in energy trading.
gdis−Di (t) Energy discharged from prosumer i’ ESS that

supplies the prosumer i’s load.
geb−Di (t) Energy bought by prosumer i via

energy trading that supplies its load.
gchi (t) Total energy charged into prosumer i’s ESS.
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gdisi (t) Total energy discharged from prosumer i’ ESS.
p(t) Unit energy price from the utility grid.
pmax Maximum unit energy price from

the utility grid.
pmin Minimum unit energy price from

the utility grid.
paskes,i(t) Ask price of prosumer i.
pbideb,i(t) Bid price of prosumer i.
pET (t) Unit energy trading price.
gETes,i(t) Energy sold by prosumer i in energy trading.
gETeb,i(t) Energy bought by prosumer i

in energy trading.
Ci(t) Energy cost of prosumer i.
cRi (t) Average per unit cost of prosumer i’s energy

available for trading.
Si(t) State of Charge (SoC) of prosumer i’s ESS.
Smaxi Maximum energy limit of prosumer i’s ESS.
Smini Minimum energy limit of prosumer i’s ESS.
Rchi Maximum charging rate of prosumer i’s ESS.
Rdisi Maximum discharging rate of

prosumer i’s ESS.
ηchi Charging efficiency coefficient of

prosumer i’s ESS.
ηdisi Discharging efficiency coefficient of

prosumer i’s ESS.

I. INTRODUCTION
Peer-to-peer (P2P) energy trading enabling energy shar-
ing among multiple interconnected distributed energy
resource (DER) owners is envisaged to be a next-generation
energy management mechanism for collaborative energy
communities [1]–[5]. In P2P energy trading communi-
ties, proactive electricity consumers, so-called prosumers,
with renewable energy production and storage capabilities,
actively manage their production and consumption and trade
their excess energy with other interested consumers at a rel-
atively cheaper rate. The development of community-based
P2P energy trading has the potential to benefit the prosumers
in earning revenues, reducing electricity costs and improving
returns on investments in distributed generation [1]. On the
other hand, the utility grid can benefit from the lowered
reliance of the prosumers on the main electricity grid [6]–[8],
such as reducing peak demand, improving reliability, etc.
In addition, increasing local consumption of renewable gen-
eration through energy trading in a community is more attrac-
tive than the conventional peer-to-grid (P2G) trading, which
could lead to adverse impacts on the utility grid stability [9].
Nonetheless, it is challenging to design a proper energy
management mechanism to motivate prosumers, who only
aim to maximize their own benefits, to participate in energy
trading so as to facilitate a sustainable and reliable balance
between the generation and consumption of renewable energy
within energy communities.

In this paper, we study the energy trading problem in a
community with grid-connected prosumers in close proxim-
ity. Specifically, prosumers with excess renewable energy
have to decide to store the extra energy into their energy
storage systems (ESSs) or sell to other prosumers and at
what prices, while prosumers with energy deficit have to
decide whether to buy energy from other prosumers and at
what prices, or to purchase energy from the utility grid. Due
to the finite capacity of ESSs, all the charging/discharging
actions are coupled across time. Inevitably, the inherent
time-coupling feature of ESSs affects the energy trading and
purchasing actions. Furthermore, the ESS scheduling, energy
trading and energy purchasing decisions of a prosumer not
only affect each other, but also impact those of other pro-
sumers. In addition, the role of a prosumer in the P2P trading
system varies according to the change in its energy supply
condition due to its time-varying demand and renewable
generation. A prosumer has to make energy control and trad-
ing decisions based on its current energy supply condition,
while its time-varying energy supply condition is not only
dependent on its own energy control and trading decisions
but also affected by the energy trading decisions of other
prosumers. Therefore, the energy trading problem and the
energy control problem need to be jointly considered when
making the energy control and energy trading decisions that
are interrelated with one another over time.

A properly designed trading pricing mechanism that facil-
itates energy sharing among prosumers through financial
incentives is important for the implementation of the P2P
energy trading system. Auctions that handle situations where
multiple buyers and sellers bid to exchange a designated
good have been widely applied in P2P energy trading studies
to model the interactions among autonomous self-interested
prosumers. Intensive research and development efforts have
been conducted in this regard. Various auction mechanisms
presented for P2P energy trading in energy communities
in literature can be broadly divided into two categories:
(a) autonomous mode, where prosumers trade energy with
each other directly under an internal energy price mechanism
aiming to optimize their own benefits individually [10]; and
(b) coordinated mode, where prosumers trade energy via a
third-party entity that coordinates energy trading in a cen-
tralized or distributed way aiming to optimize the overall
economic benefits of the trading system.

Most of the studies on autonomous energy trading have
mainly focused on prosumer-centric interaction mechanisms
for decentralized negotiation processes between prosumers
and complicated decentralized iterative algorithms are devel-
oped to determine trading decisions with short-term opti-
mization models [11]–[15]. A real-time P2P energy trading
model with the goal of maximizing per-slot individual wel-
fare is established in [11], [12] without fully exploiting the
potential of ESSs in energy cost saving from a long-term
point of view. In [13], [14], to minimize daily energy cost,
a day-ahead optimal dispatch model is developed to deter-
mine hourly trading prices and optimal scheduling of DERs
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in advance. It is assumed that renewable generation and load
demand are perfectly known a day-ahead, which is difficult to
achieve in practice due to the stochastic nature of renewable
generation and load demand.

On the other hand, the studies on coordinated energy
trading have mainly focused on coordination methods for
controlling DERs of prosumers [16]–[19] or inducing pro-
sumers to reach optimal solutions (from the community per-
spective) by indirectly influencing prosumers’ energy trading
decisions and demand response actions via certain pricing
signals [20]–[24]. Energy trading prices are simply defined
based on supply-demand ratio (SDR) [18], [19] or
mid-market rate (MMR) [21]–[23], which is the mid-value of
the buying and selling prices set by the utility grid. However,
without considering the utility maximization objective of
prosumers, both SDR andMMRpricingmechanismsmay not
be able to financially incentivize self-interested prosumers to
participate in P2P trading.

Given the inherent time-coupling feature of ESSs, ran-
domness of renewable energy generation, arbitrary changes
in load demand and time-varying energy consumption pref-
erences of individual prosumers, an effective and system-
atic control strategy that jointly carries out energy control
and energy trading while efficiently adapting the dynamic
changes in such a P2P trading system, with the objective of
maximizing the benefits of individual prosumers, is neces-
sary to determine the above-mentioned interrelated decisions
optimally.

Lyapunov optimization, a technique that provides a
per-slot optimal solution with lower computation complexity
for time-average stochastic optimization problems without
requiring any knowledge of the probability distributions of
the random event processes, has been widely applied in
designing online energy management mechanisms, such as
demand side management (DSM) and energy storage man-
agement [25]–[29]. There have been attempts employing the
Lyapunov optimization techniques in studying joint optimiza-
tion of energy control and energy trading. A Lyapunov-based
online energy sharing method is proposed in [30], aiming to
improve the self-sufficiency of the NGC without consider-
ing the economic benefits of individual nanogrids. A joint
energy scheduling and trading algorithm based on Lyapunov
optimization and a double-auction mechanism are proposed
for multiple microgrids with multi-energy resources in [31],
mainly focusing on the synergies among various energy
systems.

In this paper, energy trading is integrated with DSM and
energy storagemanagement for energy cost optimization. The
joint energy control and trading optimization problem in the
presence of the randomness of renewable energy generation
and arbitrary changes in load demand is exploited. The main
contributions of this paper are as follows:
• We propose an energy management framework that
incorporates energy trading with demand response
and energy storage management. Based on Lyapunov
optimization, we develop a joint energy control and

trading algorithm for each prosumer to individually and
dynamically determine its energy trading parameters
(how much energy to trade and at what price) along with
its energy consumption and storage scheduling decisions
only based on its current energy supply condition and
energy consumption preference.

• We design a double auction based energy trading sys-
tem. The scalable energy trading system combines a
double auction mechanism with the Lyapunov-based
energy control and trading algorithm, enabling the
cost-minimizing bids of individual prosumers, which are
decided based on the changes in their individual energy
supply conditions over time, to contribute to the deci-
sions of the final trading prices. The energymanagement
actions of the prosumers are accordingly influenced by
the final trading prices, which reflect the time-varying
energy supply conditions of all prosumers participating
in energy trading. Thus, the dynamic online double auc-
tion mechanism yields a dynamic energy trading pricing
mechanism reflecting the changes in the energy supply
state of the system over time. The dynamic price signal
is essential to inducing the prosumers to participate
in energy trading in a collaborative and coordinated
manner by influencing the demand response and energy
trading decisions of individual prosumers.

• In the distributed coordination energy trading system,
where the bid of each prosumer is private and inde-
pendent of the bids from other prosumers, the double
auction mechanism determines the trading price with
little global information, while ensuring the truthfulness
of the ask and buy prices that the prosumers submit in
energy trading and guaranteeing the participating pro-
sumers economically benefit from energy trading.

The rest of the paper is organized as follows: Section II
briefly discusses the related work. A joint energy con-
trol and trading system model is presented in Section III.
In Section IV, a double auction based online P2P energy
trading system is developed, where a Lyapunov-based online
energy control and trading algorithm is integrated with a
double auction mechanism. Simulation evaluations are pre-
sented in Section V. Finally, Section VI provides concluding
remarks.

Notations: The main symbols used in this paper are sum-
marized in List of Main Symbols.

II. BACKGROUND ON COMMUNITY-BASED P2P ENERGY
TRADING AND RELATED WORK
Energy trading has been viewed as an effective solution
that allows prosumers to trade their surplus renewable
generation within their local community market, improves
self-consumption and self-sufficiency of local renewable gen-
eration, and reduces energy costs. Various bidding policies
have been applied to develop P2P energy trading mech-
anisms and approaches for community-based energy trad-
ing. Most of the studies on autonomous P2P energy trading
focus on different prosumer-centric interaction mechanisms
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for negotiation processes between prosumers. In autonomous
mode based P2P energy sharing systems, intensive sensing
and communication infrastructures are required for direct
information exchange between prosumers and complicated
decentralized iterative algorithms are required to determine
trading prices and optimal schedules of DERs. In [11], the
authors proposed a game-theoretic real-time P2P energy trad-
ing model for small community microgrids with PVs and
ESSs, where the seller selection competition among buyers is
modeled as an evolutionary game and the direct negotiating
interaction between the sellers and buyers is modeled as an
M-leader and N-follower Stackelberg game. Two iterative
algorithms were used to find the equilibrium states of the
games. The iterative frameworks are subjected to divergence
concerns and require intensive communications and compu-
tation for energy price bidding. Two computationally efficient
mechanisms were proposed to construct a stable grand coali-
tion of prosumers and optimize the operation of their ES units
cooperatively at each time interval in [12]. A two-stage opti-
mization strategy with two iterative algorithms was proposed
based on the Nash bargaining theory for day-ahead energy
trading and scheduling in [13]. The authors in [14] proposed
a multiagent based framework, where multiple autonomous
agents interact, negotiate and cooperate with each other to
achieve their individual objectives. An auction based energy
tradingmechanism, where sellers provide bids by announcing
their available capacities and linear cost models, and passive
buyers announce the amount to purchase, was designed to
allow agents to dispatch their DERs with a day-ahead dis-
patch schedule.

Compared to the autonomous mode of energy trading,
which involves direct negotiation processes, the coordi-
nated mode requires simpler communication systems (only
bi-communication links between the central coordinator and
prosumers are required) and less data processing. However,
well-designed incentive mechanisms are required to encour-
age prosumers to participate in energy sharing while ensuring
the fairness of energy sharing.

Under centralized coordination [16]–[20], while presumers
trade energy with others via a third party, each presumer
directly controls and manages its DER. Hence, direct con-
trol is extensively studied. For instance, in [17], the authors
integrated DSMwith P2P energy trading and proposed a cen-
tralized coordinated model to schedule the loads and DERs
of smart homes within the connected community, aiming to
maximize the benefit of all participants in P2P trading. The
authors in [18] proposed a time-ahead internal pricing model,
where the internal trading prices are defined as a function
of the feed-in tariff of the utility grid and the SDRs of PV
prosumers, to allow PV prosumers to carry out price-based
demand response after the energy trading prices are set.
An energy sharing provider (ESP)was proposed to coordinate
the trading processes among prosumers and a distributed
iterative algorithm was developed to solve the optimization
problem of energy sharing and demand response. However,
the iterative pricing process affected by the demand response

participation level might not converge. A variant of the SDR
method was used in [19], where an energy storage (ES)-
equipped ESP facilitates energy trading among neighboring
PV prosumers to ensure cost fairness among the prosumers.
Similarly, an MMR trading pricing scheme was used in [20],
where a centralized P2P energy trading model was proposed
based on cooperative game theory to encourage all peers to
form a grand coalition by maximizing the total social welfare
of the coalition.

Under distributed coordination [21]–[24], prosumers trade
energy with others and manage their loads and DERs via
a third party, e.g., a coordinator, which usually influences
prosumers’ energy trading decisions and demand response
actions indirectly via energy trading price signals [32]. The
distributed coordination model combines the features of the
autonomous mode and the centralized coordination model.
Hence, it provides a higher level of privacy and autonomy
for prosumers and delivers a higher level of flexibility as
compared to the centralized coordination model, while the
behaviors of prosumers can be better coordinated to improve
social welfare as compared to the autonomous model.

One of the core issues of P2P energy trading under dis-
tributed coordination is pricing mechanisms for energy trad-
ing. In [21], with an objective to improve the participation
of prosumers, the authors developed a coalition game based
peer-to-peer trading approach employing a rule-based MMR
pricing scheme, in which the trading (buying and selling)
prices are set based on the grid selling and buying prices
depending on the difference between the total surplus energy
and the load demands of the prosumers. Similarly, a coalition
formation game model was designed utilizing the MMR as a
pricing mechanism for P2P trading to form a grand coalition
in [22]. The authors proposed a multi-cluster deep reinforce-
ment learning approach in [23] to motivate households to
engage in P2P trading through an incentive-driven market
mechanism based on the MMR pricing scheme to attract pro-
sumers to participate in energy trading. Despite the simplicity
of implementation of the MMR pricing scheme, the result-
ing energy trading and control decisions may not be utility-
maximizing. In [33], the authors proposed a game-theoretic
based energy trading framework, which combines a double
auction mechanism with a non-cooperative game allowing a
number of storage unit owners to strategically and individu-
ally decide the amount of stored energy to sell to a number
of buyers who need a certain amount of energy without con-
sidering DSM. An iterative algorithm, under which the sellers
can reach a Nash equilibrium point, was designed to solve the
non-cooperative game in which the reservation prices/bids of
the seller/buyers are predefined.

In the online P2P energy trading system proposed in this
paper, where a double auction mechanism is combined with
a Lyapunov based energy control and trading algorithm, each
prosumer dynamically decides its cost-minimizing bidding
prices and quantities based on the changes in its energy supply
condition over time. The cost-minimizing energy manage-
ment actions of each prosumer are accordingly influenced by
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FIGURE 1. P2P energy trading in a smart community.

the final trading prices, which reflect the time-varying energy
supply conditions of all prosumers participating in energy
trading. The resulting dynamic energy trading pricing mech-
anism provides a simple tool to enable efficient distributed
coordination of self-interested prosumers.

III. SYSTEM MODEL
In this paper, we consider a smart community with I =
{1, 2, . . . , I } prosumers in close proximity, which are inter-
connected to each other through bi-directional power links
and connected to the utility grid. The prosumers, each of
which is equipped with a small-scale renewable energy sys-
tem and a finite capacity ESS to store energy for future
use, can trade energy with each other via an auctioneer,
which manages double auctions among the prosumers. Each
prosumer independently determines and submits its bid
(the price and amount of energy to sell/buy) to the auctioneer,
who computes the trading price based on all the submitted
bids using the proposed double auction mechanism. Thus,
only bi-directional communications between the auctioneer
and prosumers are required for auction in the energy trading
system. A cloud infrastructure can be a suitable platform to
implement the proposed double auction mechanism. As illus-
trated in Fig.1, the bids submitted by the prosumers are
processed in a cloud using the proposed double auctionmech-
anism and the resulting trading price and quantities are sent
to the respective prosumers. The traded energy can be used
to serve a prosumer’s loads and/or stored into its ESS. The
power system operates in slotted time t ∈ {0, 1, . . . ,T − 1}.

A. LOAD DEMAND AND SERVING
The time-varying load demand of each prosumer can be
served with energy harvested from its own renewable energy
generator, drawn from its ESS, exchanged from other pro-
sumers, and/or purchased from the utility grid. Note that all
power quantities are in the unit of energy per time slot in this
paper. We consider a DSM strategy, where flexible loads can
be shed in response to supply conditions. Thus, prosumer i’
load that is served in time slot t , Di(t), is bounded by:

Di(t) ≥ Di(t) ≥ Di(t), (1)

whereDi(t) is the maximum energy demanded by prosumer i
in time slot t , i.e., the most preferred energy consumption of
prosumer i, and Di(t) is the minimum power demanded by
prosumer i in time slot t that cannot be shed. Note that Di(t)
and Di(t) are the demand requests decided by prosumer i
based on its energy consumption preference. If a prosumer
refuses load shedding in time slot t , the Di(t) and Di(t) will
be the same. Themaximum andminimumdemand requests of
each prosumer in each time slot are assumed to be stochastic.

However, load shedding used for cost saving may cause
discomfort to the prosumers. Discomfort experienced by pro-
sumer i can be represented by a discomfort cost function,
which is given by

CCOM ,i(t) = δi(t)[Di(t)− Di(t)]2, (2)

where the weighted coefficient δi(t) is a positive constant that
represents the sensitivity of prosumer i towards the power
consumption deviation Di(t)−Di(t) in time slot i: the higher
the value of δi(t), the more sensitive the prosumer i towards
the power consumption deviation.

Meanwhile, in order to control the quality-of-service
(QoS) [28] for each prosumer, an upper bound is imposed
on the long-term time-averaged load shedding ratio (the ratio
of the shed elastic loads to the elastic loads), which can be
formally expressed by [34]

lim
T→∞

1
T

T−1∑
t=0

[
Di(t)− Di(t)

Di(t)− Di(t)

]
≤ εi, (3)

where Di(t)−Di(t) is the shed load demand, Di(t)−Di(t) is
the total elastic load demand that can be shed in time slot t ,
and εi ∈ (0, 1] is a pre-designed threshold for controlling
the QoS. The threshold εi reflects the tolerance of prosumer i
to the energy consumption deviation. A smaller εi indicates
a tighter QoS control. Note that δi(t) and εi are decided by
prosumer i based on its energy consumption preference and
δi(t) could vary over time in a stochastic manner.

Prosumer i’ harvested renewable energy in time slot t is
denoted by gRi . We assume a priority of using the harvested
renewable energy gRi (t) to directly supply Di(t) and consider
the following two cases:
• If Di(t) > gRi (t), i.e., energy deficit, all the harvested
renewable energy is used to serve load and the residual,
Di(t)− gRi (t), can be served by
– discharging energy, gdis−Di (t), from its own ESS;
– buying energy, geb−Di (t), from other prosumers;
– purchasing energy, gli(t), from the utility company

in case the energy drawn from its ESS and brought
from other prosumers is insufficient.

Thus, a balance between purchasing energy and dis-
charging energy must be struck under the following
feasibility condition:

gli(t)+ g
dis−D
i (t)+ geb−Di (t) = Di(t)− gRi (t). (4)

• If Di(t) ≤ gRi (t), i.e., energy surplus, prosumer i can
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– store the excess renewable energy into its own ESS.
Let gch−Ri (t) denote the amount of excess renewable
energy charged into prosumer i’s ESS in time slot t;

– sell the excess renewable energy to other pro-
sumers. Let ges−Ri (t) denote the amount of excess
renewable energy sold to other prosumers by pro-
sumer i in time slot t .

We then have

gch−Ri (t)+ ges−Ri (t) ≤ gRi (t)− Di(t). (5)

Note that, due to the finite storage capacity, a portion of
the excess renewable energy could be curtailed if there
is not enough storage space.

B. ENERGY STORAGE DYNAMICS
In each time slot, prosumer i can store its own extra renewable
energy, gch−Ri (t), the energy bought through energy trading,
geb−Ei (t), and/or the energy purchased from the utility com-
pany, gsi (t), into its ESS. Each prosumer can then draw the
stored energy from its ESS to serve its loads, gdis−Di (t), and/or
sell to other prosumers, ges−Ei (t). We now consider the energy
storage model of the ESS at each prosumer.

In practice, energy conversion losses occur during the
charging and discharging processes. Denote Si(t) as the
energy state of prosumer i’s ESS, i.e., state of charge (SoC),
at the beginning of time slot t , which evolves as follows:

Si(t) = Si(t − 1)+ ηchi [gch−Ri (t)+ geb−Ei (t)+ gsi (t)]

−ηdisi [gdis−Di (t)+ ges−Ei (t)]

= Si(t − 1)+ ηchi [gchi (t)+ gsi (t)]− η
dis
i gdisi (t), (6)

where ηchi ∈ (0, 1] and ηdisi ∈ [1,∞) are the charging
and discharging efficiency coefficients of prosumer i’s ESS,
respectively, and gchi (t) , gch−Ri (t)+ geb−Ei (t) and gdisi (t) ,
gdis−Di (t) + ges−Ei (t) are the total charging and discharging
amounts in time slot t , respectively.
Note that, energy charging and discharging should not

happen simultaneously, i.e.,

[gchi (t)+ gsi (t)] ∗ g
dis
i (t) = 0 (7)

Due to limitation imposed by charging and discharging
circuits, the amount of energy that can be charged/discharged
into/from prosumer i’s ESS is upper bounded. The maxi-
mum charging and discharging rates of prosumer i’s ESS are
denoted by Rchi and Rdisi , respectively. We have

0 ≤ gchi (t)+ gsi (t) ≤ R
ch
i

0 ≤ gdisi (t) ≤ Rdisi . (8)

Charging an ESS near its capacity or discharging it close to
zero will significantly reduce its lifetime [35]. Thus, the SoC
of prosumer i’s ESS in time slot t is bounded by

Smini ≤ Si(t) ≤ Smaxi , (9)

where Smini and Smaxi are the preferred energy lower and upper
bounds respectively.

Combining (6), (8) and (9), in time slot t , the amounts of
charging and discharging energy are bounded by the capacity
constraint and energy availability constraint, which can be
compactly expressed by

0 ≤ gchi (t)+ gsi (t) ≤ min{Rch,i,
Smaxi − Si(t − 1)

ηchi
} (a)

0 ≤ gdisi (t) ≤ min{Rdis,i,
Si(t − 1)− Smini

ηdisi
} (b). (10)

Note that all feasible control decisions on charging and dis-
charging energy must ensure that both the capacity constraint
in (10).a and the energy-availability constraint in (10).b are
satisfied for all time.

IV. ONLINE P2P ENERGY TRADING SYSTEM
A. ENERGY CONTROL AND TRADING ALGORITHM BASED
ON LYAPUNOV OPTIMIZATION
1) ENERGY COST MINIMIZATION OF INDIVIDUAL
PROSUMERS
In each time slot, each prosumer can purchase energy from
the utility company at the unit price p(t), pmin ≤ p(t) ≤ pmax ,
which is time-varying, to supply its load and/or store into
its battery to take advantage of price variations. In addition,
each prosumer can trade energy with other prosumers at the
buying or selling price pebi (t) or pesi (t). To encourage energy
trading among proumers so as to reduce conventional energy
purchase from the utility company, the buying and selling
prices are capped by p(t), i.e., pesi (t) ≤ p(t) and p

eb
i (t) ≤ p(t).

Thus, the energy cost of prosumer i in time slot t consists
of the cost incurred for energy purchase from the utility
company, the expense/revenue incurred/generated in energy
tradingwith other prosumers, and the discomfort costs of load
shedding, which is given by

Ci(t) = [gli(t)+ g
s
i (t)]p(t)+[g

eb−D
i (t)+ geb−Ei (t)]pebi (t)

−[ges−Ri (t)+ ges−Ei (t)]pesi (t)+ δi(t)[Di(t)− Di(t)]
2.

(11)

The objective of each prosumer is to minimize its long-
term time-averaged energy cost subject to the time-varying
renewable energy generation and load demand along with the
operational constraints of its ESS, by jointlymanaging energy
purchasing, energy trading and energy charging/discharging
actions. Thus, the strategy set of prosumer i can be denoted
as

Yi(t) , [geb−Di (t), geb−Ei (t), ges−Ri (t), ges−Ei (t), pebi (t),

pesi (t), g
ch−R
i (t), gdis−Di (t), gli(t), g

s
i (t),Di(t)].

Then the optimization problem of prosumer i is to find a
control strategy that determines the optimal strategy set based
on its current renewable energy generation, load demand and
SoC of its ESS in each time slot tominimize its time-averaged
energy cost, which can be formulated as the following
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stochastic control optimization problem, called P1,

P1 : min
Yi(t)

lim
T→∞

1
T

T−1∑
t=0

E {Ci(t)}

s.t. (3) (4) (5) (7) (10), (12)

whereE{·} is takenwith respect to prosumer i’s energy supply
states Xi(t) , [gRi (t),Di(t),Di(t), Si(t), p(t)]. We assume
statistics of gRi (t), Di(t) and Di(t) are unknown and their
dynamics are arbitrary. Taking into account the system
dynamics, the stochastic optimization problem P1 seeks con-
trol decisions for the whole process. However, the con-
trol actions Yi(t) that are correlated over time due to the
time-coupling constraints make P1 a particularly challenging
problem to solve.

2) ONLINE ENERGY CONTROL AND TRADING ALGORITHM
DESIGN
The Lyapunov optimization theory [36] provides simple
online solutions based on the current information of the sys-
tem state as opposed to approaches like Markov decision pro-
cesses and dynamic programming, which require statistical
information of the random variables for forecasting future
information and suffer from high computational complex-
ity. In this paper, the Lyapunov drift optimization theory is
applied to solve the time-coupling optimization problem P1.
Employing the concept of one-slot look-ahead queue stability
to handle the time-coupling constraints through successive
problem relaxation and transformation, the Lyapunov based
optimization algorithm determines the control vector Yi(t)
for each prosumer in each time slot based only on its cur-
rent energy supply state Xi(t), without requiring any statis-
tical knowledge of its renewable energy generation and load
demand.

In general, for complex dynamic systems, time-averaged
constraints are transformed into queue stability constraints
and simple real-time algorithms can be constructed based on
the virtual queues to achieve system optimization using the
Lyapunov optimization theory. However, the constraint in (9)
couples the charging and discharging decisions across time
slots, making the standard Lyapunov optimization technique
inapplicable directly to the problem P1. To overcome such
time-coupling, the constraint (6) can be relaxed to the fol-
lowing soft constraint:

lim
T→∞

1
T

T−1∑
t=0

E
{
ηchi g

ch
i (t)+ ηchi g

s
i (t)− η

dis
i gdisi (t)

}
= 0.

(13)

Instead of bounding the energy state, Si(t), in each time
slot, (13) maintains the stability of the mean rate of the
effective charging and discharging amounts in the whole
process. The derivation of (13) follows the framework of
Lyapunov optimization [36] and is given in our previous
work [37].

Accordingly, P1 is relaxed to the following problem:

P2 : min
Yi(t)

lim
T→∞

1
T

T−1∑
t=0

E {Ci(t)}

s.t. (3) (5) (7) (8) (13). (14)

In the relaxed problem P2, the dependency of per time slot
control decisions on the battery state is removed, so that the
standard Lyapunov optimization techniques can be applied
to tackle P2. As in [37], we now introduce a virtual energy
queue Ei(t) and a QoS-control load queue Qi(t) to transform
the time-averaged constraints (13) and (3) in P2 into con-
straints with queue stability.

The virtual energy queue is defined as Ei(t) = Si(t) − θi,
where θi is a perturbation parameter that can be designed to
guarantee the energy state constraint in (9) is satisfied. The
dynamics of Ei(t) is given by

Ei(t) = Ei(t − 1)+ ηchi g
ch
i (t)+ ηchi g

s
i (t)− η

dis
i gdisi (t). (15)

The QoS-control load queue is defined as

Qi(t + 1) = max {Qi(t)− εi, 0} +
Di(t)− Di(t)

Di(t)− Di(t)
, (16)

where the arrival rate is the shedding percentage and the
departure rate is εi. To ensure the QoS-control load queue
Qi(t) to be stable, the time-averaged load shedding percent-
age must be less than or equal to εi. Hence, maintaining the
stability of Qi(t) is equivalent to keeping the constraint (3)
satisfied [36].

We then define 2i(t) , [Ei(t),Qi(t)] as the concatenated
vector of the virtual queues and a Lyapunov function asso-
ciated with 2i(t) as Li(2i(t)) , 1

2 [Ei(t)
2
+ Qi(t)2]. In a

decisionmaking algorithmminimizing a drift of the quadratic
Lyapunov function of Ei(t), keeping the quadratic Lyapunov
function small pushes the value of Si(t) towards θi. Hence,
carefully choosing the value of the perturbation parameter
will ensure the battery queue always lies in the feasible
region.

Define the conditional one-slot Lyapunov drift, which rep-
resents the expected change in the Lyapunov function from
one time slot to the next, as follows:

1i(t) , E {Li(t + 1)− Li(t)|2i(t)} ,

where the expectation is taken with respect to all the ran-
dom processes associated with the energy supply state,
[gRi (t),Di(t),Di(t), Si(t)], given the current virtual queue
states of Ei(t) and Qi(t).

We now incorporate a weighted version of the time-
averaged energy cost into the Lyapunov drift and obtain the
following drift-plus-penalty expression: 1i(t) + Vi E{Ci(t)},
where the Lyapunov drift in the first term represents the
stability of the virtual energy queue, and Vi in the second
item serves as a weight controlling the performance tradeoff
between minimizing the queueing delay and minimizing the
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energy cost. A larger Vi indicates a greater priority to mini-
mize the energy cost at the expense of a greater size of the
virtual energy queue and vice versa.

Based on the drift-plus-penalty minimization method [36],
the control decisions are chosen to minimize the upper
bound on the drift-plus-penalty expression, which is given
in Lemma 1, to jointly maintain the stability of the virtual
energy queue and minimize the time-averaged energy cost of
prosumer i.
Lemma 1: For any possible control decision, the drift-

plus-penalty expression for all t is upper bounded by:

1(t)+ Vi E{Ci(t)}
≤ Bi + Ei(t)E

{
ηchi [gchi (t)+ gsi (t)]− η

dis
i gdisi (t)|2i(t)

}
+ Qi(t)E

{
Di(t)− Di(t)

Di(t)− Di(t)
− εi|2i(t)

}
+ Vi E {Ci(t)} ,

(17)

where Bi , 1
2 [(η

ch
i R

ch
i )2 + (ηdisi Rdisi )2 + (1+ εi)2].

Proof: See Appendix A. �
The energy control and trading algorithm is then con-

structed: in each time slot t , the control decision Yi(t) of
each prosumer i is determined based on its current virtual
queue state [Ei(t),Qi(t)] and energy state Xi(t) by solving
the following linear programming problem P3:

P3 : min
Yi(t)

Ei(t)[ηchi g
ch
i (t)+ ηchi g

s
i (t)− η

dis
i gdisi (t)]

+Qi(t)
Di(t)− Di(t)

Di(t)− Di(t)
+ ViCi(t)

s.t. (4) (5) (7) (8) (15) (16). (18)

Selling energy in energy trading will reduce a prosumer’s
instantaneous energy cost in a time slot. However, an optimal
solution to P3 could lead to a situation, in which a prosumer
sells toomuch energy at relatively lower energy trading prices
to other prosumers, so that it has to purchase more energy
from the utility company to serve its own load demand later
on. To address the over-selling problem, the accumulated
energy gap between prosumer i’s stored energy available for
trading and discharged energy for load serving is bounded:

EGi(t) =
t−1∑
τ=1

ηchi [gchi (τ )+ gsi (τ )]− η
dis
i gdis−Di (τ ) ≥ φi.

(19)

In time slot t , if EGi(t) < φi, prosumer iwill not sell its stored
energy in energy trading, i.e., ges−Ei (t) = 0.

B. DOUBLE AUCTION MECHANISM
Due to the intermittent renewable energy generation, time-
varying electricity demand and finite energy storage capacity,
a prosumer might be unable to meet its load demand with
only its own DER. In this respect, the prosumers with energy
deficit can acquire energy from other prosumers who are
willing to sell their extra renewable energy or stored energy

in their ESSs. In each time slot, each prosumer determines
its ask/bid price and the amount of energy to sell/buy, with
which it is willing to participate in energy trade with other
prosumers, by solving the optimization problem P3 based
only on its current energy supply state. The prosumers who
are willing to trade energy with others report their ask/bid
prices, which are given in Lemma 2, to the auctioneer who
facilitates the prosumers to determine the trading price and
the amounts of energy to trade using a double-auction mech-
anism based on the strategy-proof double auction schemes
proposed in [33], [38].
Lemma 2: In time slot t, the ask/bid price paskes,i(t)/p

bid
eb,i(t)

of prosumer i is given by
• Energy Deficit: when gRi (t) < Di(t),

paskes,i(t) =


min

(
max

(
−Ei(t)ηdisi

Vi
, cRi (t)

)
, p(t)

)
if Ei(t) ≤ 0

0
if Ei(t) > 0

pbideb,i(t) = min

(
max

(
−Ei(t)ηchi

Vi
, 0

)
, p(t)

)
; (20)

• Energy Surplus: when gRi (t) ≥ Di(t),

paskes,i(t) = cRi (t)

pbideb,i(t) = min

(
max

(
−Ei(t)ηchi

Vi
, 0

)
, p(t)

)
, (21)

where cRi (t) is the average per unit cost of prosumer i’s
stored energy available for trading in time slot t, which
refers to the total cost of stored energy available for
trading divided by the amount of stored energy available
for trading, i.e.,

cRi (t) =

∑t−1
τ=1 [g

s
i (τ )p(τ )+g

eb−E
i (τ )pET (τ )+g

ch−R
i (τ )cDERi ]∑t−1

τ=1 [g
s
i (τ )+g

eb−E
i (τ )+gch−Ri (τ )]

,

where cDERi is the per unit cost of prosumer i’s stored
renewable energy, which reflects prosumer i’s capital
costs and maintenance costs of its renewable energy
generator and ESS.
Proof: See Appendix B. �

In time slot t , assumeM prosumers, referred to as potential
sellers, submit their offers about the amounts of energy they
want to sell and at what prices, and N prosumers, referred
to as potential buyers, submit their bids about the amounts
of energy they seek to acquire and at what prices. The M
potential sellers and N potential buyers form a P2P energy
trading market. Note that M and N vary in each time slot
and could be zero. The auctioneer first sorts the offer prices
in increasing order and the bid prices in decreasing order as
follows:

paskes,1(t) < paskes,2(t) < . . . < paskes,m(t) < . . . < paskes,M (t)

pbideb,1(t) > pbideb,2(t) > . . . > pbideb,n(t) > . . . > pbideb,N (t),

to determine the ask and bid intersection point, which corre-
sponds to a seller K and a buyer L with paskes,K (t) > pbideb,L(t)
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and paskes,K−1(t) ≤ pbideb,L−1(t). Once the intersection point is
identified, it implies that the sellersK = {1, 2, . . . ,K−1} and
the buyers L = {1, 2, . . . ,L − 1} will participate in energy
trading and the trading price can be selected within the inter-
val [paskes,K (t), p

bid
eb,L(t)] [39]. As in [33], theK−1 participating

sellers and L − 1 participating buyers will exchange energy
at a trading price given by

pET (t) =
paskes,K (t)+ p

bid
eb,L(t)

2
. (22)

Note that paskes,K (t) < pET (t) < pbideb,L(t).
Given the trading price in (22), the participating sellers K

and buyers L redetermine the amounts of energy to sell
and buy, gadjes,k (t) and gadjeb,l(t), respectively, by solving the
optimization problem P3. Then in order to match the supply
and demand, the market clearing scheme developed in [38]
is adopted to decide the amount of energy traded between
each of the K −1 participating sellers and L−1 participating
buyers, which is given in the following two rules, such that the
total energy demand and supply will balance while ensuring
a strategy-proof double auction.
• Rule 1: if

∑K−1
k=1 g

adj
es,k (t) ≥

∑L−1
l=1 g

adj
eb,l(t), i.e., the total

supply exceeds the total demand, the amount of energy
traded by each participating seller k ∈ K and each
participating buyer l ∈ L is given by

gETes,k (t) = gadjes,k (t)−

∑K−1
k=1 g

adj
es,k (t)−

∑L−1
l=1 g

adj
eb,l(t)

K − 1
gETeb,l(t) = gadjeb,l(t). (23)

• Rule 2: if
∑K−1

k=1 g
adj
es,k (t) <

∑L−1
l=1 g

adj
eb,l(t), i.e., the total

demand exceeds the total supply, the amount of energy
traded by each participating seller k ∈ K and each
participating buyer l ∈ L is given by

gETes,k (t) = gadjes,k (t)

gETeb,l(t) = gadjeb,l(t)−

∑L−1
l=1 g

adj
eb,l(t)−

∑K−1
k=1 g

adj
es,k (t)

L − 1
.

(24)

As elaborated in [38], using Rule 1 or Rule 2 to balance
the demand and supply among the participating sellers and
buyers, we have
Lemma 3: In each time slot, no prosumer participating

in the energy trading auction benefits by deviating from its
truthful offer price paskes,i(t) or bid price p

bid
eb,i(t) given in (20)

and (21), and the double auction is strategy-proof.
Proof: See Appendix C. �

After balancing the demand and supply, the participating
sellers and buyers decide their optimal control actions Yi(t)
using the finalized trading price, pET (t), given in (22), and
the quantities of energy to trade, gETes,k (t)/g

ET
eb,l(t), obtained

by (23)/(24).
The online P2P energy trading system is summarized in

Fig.2. In summary, by transforming the original stochastic
control optimization problem P1 into the linear program-
ming problem P3, the Lyapunov based energy control and

FIGURE 2. Implementation of the online P2P energy trading system.

trading algorithm provides a low-complexity alternative for
each prosumer to independently determine its energy control
decisions along with energy trading decisions by solving its
optimization problem P3 on a per slot basis with all infor-
mation obtained locally or through simple bi-communication
between each prosumer and the auctioneer, without requiring
any statistical information of the system. The integration of
the energy control algorithm with the double auction mecha-
nism allows each prosumer to determine its energy manage-
ment decisions as a response to its energy supply condition
as well as the collective energy supply condition of other
prosumers, which is reflected through the energy trading
price. The proposed energy trading framework is relatively
simple to be implemented and can cope with an arbitrary
number of prosumers while preserving the privacy of the
prosumers.

C. PERFORMANCE ANALYSIS
Since the time-coupling constraint (6) is replaced with the
time-average constraint (13), the solution to P3 might not be
feasible for P1. It is shown in the following Lemma that the
boundedness of the energy states (8) in P1 can be satisfied
by appropriately designing the perturbation parameter, θi and
the control parameter, Vi, so that the solution to P3 meets all
constraints of P1. Thus, the control decisions Y(t) derived
from P3 are a feasible set of P1.
Lemma 4: Set the perturbation parameter θ as

θi , Smini + η
dis
i Rdisi + Vip

max/ηdisi , (25)
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where

0 < Vi ≤
ηdisi (Smaxi − Smini − η

ch
i R

ch
i − η

dis
i Rdisi )

pmax
. (26)

Then, under the energy control and trading algorithm,
we have

1) In each time slot t,

Smini ≤ Si(t) ≤ Smaxi , ∀t, (27)

i.e., the control decision Yi(t) derived from P3 is feasi-
ble to P1.

2) The resulting time-averaged cost under the proposed
energy control and trading algorithm by solving P3,
C∗P3,i, is within bound Bi/Vi of the optimal cost of P1,
C∗P1,i, i.e.,

C∗P3,i − C
∗

P1,i ≤
Bi
Vi
, (28)

where Bi , 1
2 [(η

dis
i Rdisi )2 + (ηchi R

ch
i )2 + (1+ εi)2].

Proof: See Appendix D. �
Lemma 4.1 indicates that the control decisions Yi(t)

derived by the proposed energy control and trading algo-
rithm are a feasible set of P1. Lemma 4.2 further charac-
terizes the gap between the expected time-averaged energy
cost achieved by P3 and the optimal energy cost of P1,
which implies that this performance gap can be mini-
mized by setting the control parameter V as Vmax

i ,
ηdisi (Smaxi −Smini −η

ch
i R

ch
i −η

dis
i Rdisi )

pmax
.

V. NUMERICAL SIMULATION
A. SIMULATION SETUP
In order to evaluate the effectiveness of the proposed energy
trading system, a residential microgrid consisting of 10 inter-
connected prosumers with solar systems is considered. The
prosumers are classified into 3 types: Type I with low elec-
tricity consumption and PV generation capacity, Type II with
medium electricity consumption and PV generation capac-
ity, and Type III with high electricity consumption and PV
generation capacity. The prosumers in the same type produce
a similar amount of solar energy in each time slot and the
load demand profiles of different prosumers resulting from
the operation of various appliances vary temporally, as shown
in Fig.3. The time-varying energy consumption of household
appliances is simulated using the appliance demand profile
generator (ADPG) developed in [37] to synthesize the vari-
ability in the load demands among prosumers at different
times of day. For each prosumer, the total load demand gen-
erated by the ADPG in each time slot is used as the most
preferred load request Di(t), while the inelastic load Di(t)
is randomly set from [0.3Di(t), 0.9Di(t)]. The QoS related
parameters δi(t) and εi are randomly selected from [1.8, 3.8]
and [0.4, 0.9], respectively. The values of the parameters
δi(t) are chosen to ensure the weighted discomfort cost is
comparable to the energy cost in the objective function of
the optimization problem P1, so that both energy cost and
discomfort cost are active factors in the optimization problem.

FIGURE 3. An illustrative example of solar generation and demand
profiles of different types of prosumers.

We randomly generate 10 prosumers: 3 Type I prosumers
with 26.30kWh of average load demand and 8.51kWh of
average solar generation per day, 3 Type II prosumers with
31.97kWh of average load demand and 14.83kWh of average
solar generation per day, and 4 Type III prosumers with
39.11kWh of average load demand and 29.40kWh of average
solar generation per day. Note that there are just slight dif-
ferences in the load profiles of different types of prosumers,
while the solar generation profiles of different types of pro-
sumers differ considerably. For the sake of easy comparison,
the average monthly solar generations and load demands
of individual prosumers are listed in Table 1. In addition,
the corresponding average monthly costs without any DSM
mechanism are listed in Table 1 as lower benchmarks.

Each prosumer is equipped with a battery with Smaxi listed
in Table 1 and ηchi = 0.8 and ηdisi = 1.2, respectively.
For the sake of simplicity, we assume Smini = 0.1Smaxi and
Rchi = Rdisi = 0.15Smaxi , and set the initial battery energy
level as Smini . The per unit cost of stored solar energy of
each prosumer, cDERi , associated with its solar system and
battery are listed in Table 1. The simulation is performed for
a duration of 90 days with T = 2160 and the Time-of-Use
tariff of Johannesburg city power, in which the peak, stan-
dard and off-peak energy prices are R1.7268, R1.3660 and
R1.0746 per kWh, respectively, is used in the simulation.

B. SIMULATION RESULTS AND ANALYSIS
Fig.4 and Fig.5 illustrate how the trading price and the traded
energy are influenced by the energy supply condition of the
system and the utility grid prices. As can be observed, the
spikes in the trading prices coincide with a) the drops in the
stored energy; and b) the rise in the energy deficit. In other
words, the P2P trading price reflects the changes in the energy
supply condition of the system: the more energy available for
trading, the lower the trading price, which encourages local
energy trading and consumption, as shown in Fig.5. In con-
trast, when less energy is available for trading, the trading

VOLUME 10, 2022 42925



H. Zhu et al.: P2P Energy Trading in Smart Energy Communities: Lyapunov-Based Energy Control and Trading System

FIGURE 4. Real time P2P trading prices and energy supply conditions of
the system.

price rises, which in turn induces the prosumers to adjust
their energy consumption in response to the higher trading
price. Additionally, the trading prices, which are capped by
the utility grid prices, fluctuate based on the utility grid prices.

The traded energy can be classified into the following four
cases: 1. the sold PV generation is used to serve buyers’ loads
directly; 2. the sold PV generation is stored into buyers’ ESSs;
3. the sold energy from sellers’ ESSs is used to serve buyers’
loads; 4. the sold energy from sellers’ ESSs is stored into
buyers’ ESSs. It can be observed in Fig.5 that, while the
incidence of case 1 is much lower as net demand patterns
among prosumers are relatively similar, a large portion of
surplus energy production is traded in case 2 taking advantage
of the increased flexibility brought by the ESSs. Particularly,
more energy is traded in case 2 in response to the higher utility
grid prices. In the case of the stored energy, a large portion
of energy brought at relatively cheaper prices in energy trad-
ing is used for load-serving (case 3) to reduce energy costs
of buyers. Since charging and discharging can not happen
simultaneously, under the proposed energy control algorithm,
a prosumer could sell its stored energy only in the case of
energy deficit, where the energy available for discharging is
allocated for load-serving first. Hence, just a smaller portion
of the stored energy is sold in case 4 when the grid prices are
peaked, so that both sellers and buyers benefit from energy
trading.

To verify the effectiveness of the proposed energy trading
mechanism, comparisons are drawnwith the scenario without
energy sharing, where each prosumer operates independently
under a similar Lyapunov based energy control algorithm and
does not share energy with each other. Fig.6 compares the
real time energy storage scheduling and energy purchasing
actions with and without energy trading. As shown in Fig.6,
since stored energy in ESSs can be traded between prosumers,
the proposed energy trading mechanism allows more surplus
solar generation to be stored into the ESSs, which in turn
reduces the storage space available for the prosumers to
store energy purchased from the utility company. In addition,
under the proposed energy trading mechanism, in addition to
its stored energy, a prosumer with energy deficit is able to

FIGURE 5. Real time P2P trading energy and energy supply conditions of
the system.

FIGURE 6. Real-time energy storage scheduling and energy purchasing
from the utility company.

serve its load with energy bought via energy trading, thereby
purchasing less energy from the utility company, as shown
in Fig.5.

Although the role of each prosumer in energy trading
dynamically changes with its net-demand, it can be observed
in Fig.7(b) that, in energy trading, the Type I prosumers, with
low ratios of PV generation to demand, buy more energy
than what they sell, whereas the Type III prosumers, who
produce more solar energy, sell more energy. In addition, the
energy traded by a prosumer is dependent not only on its
energy generation and storage capacities but also on other
prosumers’ real-time net demands. Especially, prosumer 1,
with a larger storage capacity, buys more energy than other
Type I prosumers, while prosumer 7, with a lower ratio of PV
generation to demand, sells more energy than other Type III
prosumers.

Fig.7(c) further demonstrates that, the prosumers with
lower energy generation reduce energy purchases from the
utility company after buying more energy via energy trad-
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TABLE 1. Comparison of energy costs and solar generation curtailment rates of individual prosumers.

ing, while the prosumers selling more energy via energy
trading are able to keep enough storage space to store their
surplus solar energy with almost zero solar generation cur-
tailment as shown in Table 1, which in turn lowers their
reliance on the utility grid. As illustrated in Fig.7(c), thanks
to energy trading, the energy that individual prosumer pur-
chases from the utility grid is reduced by 2.03%-15.67%,
and the total energy purchased from the utility company is
reduced by 8.17%, compared to the scenario without energy
sharing. Accordingly, the monthly energy consumption cost
of each prosumer decreases by 4.80%-15.93%, as shown
in Fig.7(d).

To evaluate the fairness of the proposed energy trading
mechanism, a similar energy trading mechanism without an
energy selling control scheme is compared. As shown in
Fig.7, without a scheme to control energy selling in energy
trading, the Type III prosumers with more energy available
for trading sell energy as much as possible, so they have to
purchase 5.83%-9.41% more energy at higher prices from
the utility company to serve their loads, which leads to
0.77%-3.89% increase in their energy costs compared to the
proposed energy trading mechanism. In contrast, due to the
incorporation of constraint (19), the proposed energy control
and trading algorithm ensures the Type III prosumers, who
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FIGURE 7. Comparison of traded and purchased energy of individual prosumers with and without energy trading.

contribute more energy, benefit more (11.84%-15.93% cost
reduction compared to the scenario without energy sharing)
in energy trading compared to others, as can be observed
in Fig.7(d).

According to Table 1, compared with the lower benchmark
case, the independent energy control algorithm reduces the
monthly energy costs of the prosumers by 29.83%-54.47%
with 6.82%-9.62% load demands being shed and 0.05%-
17.46% solar production being curtailed. Under the proposed
energy trading framework, each prosumer achieves a further
2.03%-15.67% cost reduction with a slightly lower demand
shedding rate (6.53%-9.62%) and near-zero solar generation
curtailment (0-3.69%).

VI. CONCLUSION
This paper studies the real time energy trading problem in
smart energy communities and presents a double auction
based energy trading system that integrates energy consump-
tion management, energy storage control and energy trading,
aiming to minimize the long-term time-averaged costs of
individual prosumers while maintaining customer comfort.
Based on the Lyapunov theory, we propose an online energy
control and trading algorithm, under which each prosumer
optimizes its energy trading decision along with its energy
consumption management and storage charging/discharging
decisions in an independent manner without requiring any
statistical knowledge of the system. Since the double auction
mechanism enables all prosumers participating in energy

trading to contribute to the decisions of the trading prices,
under the proposed energy control and trading algorithm, the
energy management decisions of each prosumer depend not
only on its own energy supply condition, but also on the
energy supply conditions of others. Numerical evaluations
provide a more comprehensive insight into the interactions
among the self-interested prosumers with various energy
generation and storage capacities and diverse load demand
profiles. Simulation results show that, compared to the sce-
nario without energy sharing, energy exchange via energy
trading reduces the energy costs of individual prosumers
and improves the utilization efficiency of local renewable
generation, while ensuring the fair sharing of the benefits
reaped from energy trading. Since the proposed online energy
control and trading algorithm allows each prosumer to inde-
pendently control its DER and determine its bid on a per slot
basis, prosumers are able to freely join or leave the proposed
scalable energy trading system anytime without increasing
computational complexity.

APPENDIX A
Proof of Lemma 1:

According to the definition of Li(2i(t)),

Li(2i(t + 1))− Li(2i(t))

=
1
2
[Ei(t + 1)2 − Ei(t)2]+

1
2
[Qi(t + 1)2 − Qi(t)2].

(29)
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Based on the queue update rule in (15), we have

Ei(t + 1)2 − Ei(t)2

= 2Ei(t)[ηchi g
ch
i (t)+ ηchi g

s
i (t)− η

dis
i gdisi (t)]

+[ηchi g
ch
i (t)+ ηchi g

s
i (t)− η

dis
i gdisi (t)]2

≤ 2Ei(t)[ηchi g
ch
i (t)+ ηchi g

s
i (t)− η

dis
i gdisi (t)]

+(ηchi R
ch
i )2 + (ηdisi Rdisi )2. (30)

Similarly, based on the queue update rule of Qi(t) in (16),
Qi(t + 1)2 − Qi(t)2 is upper bounded by

Qi(t + 1)2 − Qi(t)2

≤ 2Qi(t)

[
Di(t)− Di(t)

Di(t)− Di(t)
− εi

]
+

[
Di(t)− Di(t)

Di(t)− Di(t)
+ εi

]2

≤ 2Qi(t)

[
Di(t)− Di(t)

Di(t)− Di(t)
− εi

]
+ (1+ εi)2. (31)

Applying inequalities (30) and (31) to (29), taking the condi-
tional expectation over Li(2i(t + 1))− Li(2i(t)) given 2i(t)
and adding the penalty termVi E{Ci(t)} yield the upper bound
in (17).

APPENDIX B
Proof of Lemma 2

We first rearrange the optimization problem P3 to

P4 : min
Y(t)

[Vip(t)+Ei(t)ηchi ]gchi (t)−[Vip(t)+ Ei(t)ηdisi ]gdisi (t)

+[Vip(t)− Vipesi ]g
es
i (t)− [Vip(t)− Vipebi ]gebi (t)

+[Vip(t)+ Ei(t)ηchi ]gsi (t)+ Vip(t)g
l
i(t)

+Viδi[Di(t)− Di(t)]2 + Qi(t)
Di(t)− Di(t)

Di(t)− Di(t)
,

= Ei(t)ηchi g
ch−R
i (t)− Ei(t)ηdisi gdis−Di (t)

+[Ei(t)ηchi + Vip
eb
i (t)]geb−Ei (t)

−[Ei(t)ηdisi + Vip
es
i (t)]g

es−E
i (t)

+[Vip(t)+ Ei(t)ηchi ]gsi (t)+ Vip(t)g
l
i(t)

+Vipebi (t)geb−Di (t)− Vipesi (t)g
es−R
i (t)

+Viδi[Di(t)− Di(t)]2+Qi(t)
Di(t)− Di(t)

Di(t)− Di(t)
s.t. (4) (5) (8) (15) (16). (32)

We consider the following two cases:
• Energy Deficit: when gRi (t) < Di(t), according to (4),
we have gli(t) = Di(t) − gRi (t) − gdis−Di (t) − geb−Di (t),
gch−Ri (t) = 0 and ges−Ri (t) = 0. Then, the optimization
problem P4 can be written as follows:

P5− a

min
Y(t)

Vi[pebi (t)− p(t)]geb−Di (t)

− [Ei(t)ηdisi + Vip(t)]g
dis−D
i (t)

+ [Ei(t)ηchi + Vip
eb
i (t)]geb−Ei (t)

− [Ei(t)ηdisi + Vip
es
i (t)]g

es−E
i (t)

+ Vip(t)[Di(t)− gRi (t)]+ [Vip(t)+ Ei(t)ηchi ]gsi (t)

+ Viδi[Di(t)− Di(t)]2 + Qi(t)
Di(t)− Di(t)

Di(t)− Di(t)
s.t. (8) (15) (16). (33)

As can been seen
– If pebi (t) − p(t) ≤ 0, i.e., pebi (t) ≤ p(t), prosumer i

tends to increase geb−Di (t). Otherwise, geb−Di
(t) = 0;

– If Ei(t)ηdisi +Vip(t) ≥ 0, i.e., p(t) ≥ −Ei(t)ηdisi /Vi,
prosumer i tends to increase gdis−Di (t). Otherwise,
gdis−Di (t) = 0;

– If Ei(t)ηchi + Vipebi (t) ≤ 0, i.e., pebi (t) ≤
−Ei(t)ηchi /Vi, prosumer i tends to increase
geb−Ei (t). Otherwise, geb−Ei (t) = 0;

– If Ei(t)ηdisi + Vipesi (t) ≥ 0, i.e., pesi (t) ≥
−Ei(t)ηdisi /Vi, prosumer i tends to increase
ges−Ei (t). Otherwise, ges−Ei (t) = 0.

Note that, the ask price is bounded by [cRi (t), p(t)], where
cRi (t) is the average per unit cost of prosumer i’s energy
available for trading. In case p(t) ≥ −Ei(t)ηdisi /Vi,
we have gdis−Di (t) > 0. Since energy charging and
discharging can not happen simultaneously, prosumer
i is not able to buy energy via energy trading to store
into its battery, i.e., geb−Ei (t) = 0. In case p(t) <

−Ei(t)ηdisi /Vi, we have gdis−Di (t) = 0. Prosumer i tends
to increase geb−Ei (t) by choosing the bid price pebi (t) =
min{−Ei(t)ηchi /Vi, p(t)}.

• Energy Surplus: when gRi (t) ≥ Di(t), we have
gli(t) = 0, gdis−Di (t) = 0, ges−Ei (t) = 0, and geb−Di
(t) = 0. Then, the optimization problem P4 can be
written as follows:

P5− b

min
Y(t)

Ei(t)ηchi g
ch−R
i (t)− Vipesi (t)g

es−R
i (t)

+ [Ei(t)ηchi + Vip
eb
i (t)]geb−Ei (t)

+ [Vip(t)+ Ei(t)ηchi ]gsi (t)

+ Viδi[Di(t)− Di(t)]2 + Qi(t)
Di(t)− Di(t)

Di(t)− Di(t)
s.t. (8) (15) (16). (34)

As can been seen
– If Ei(t) < 0, prosumer i tends to increase gch−Ri (t).

Otherwise, gch−Ri (t) = 0;
– If Ei(t)ηchi + Vipebi (t) < 0, i.e., pebi (t) <

−Ei(t)ηchi /Vi, prosumer i tends to increase
geb−Ei (t). Otherwise, geb−Ei (t) = 0;

– If pesi (t) ≥ 0, prosumer i tends to increase ges−Ri (t).
Otherwise, ges−Ri (t) = 0.

In case Ei(t) ≥ 0, we have gch−Ri (t) = 0, i.e., prosumer
i’s surplus renewable energy is not able to be stored
into its battery. Prosumer i tends to increase ges−Ri (t) by
choosing the lowest possible ask price, i.e., the average
per unit cost of prosumer i’s energy available for trading,
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cRi (t), to reduce its energy cost and avoid the waste of
renewable energy. On the other hand, in case Ei(t) < 0,
prosumer i tends to increase gch−Ri (t) and ges−Ri (t) with
any ask price paskes,i(t) ≥ cRi (t). To encourage energy
trading among prosumers to reduce conventional energy
purchase from the utility company, the ask price is set as
the lowest possible price: paskes,i(t) = cRi (t).

APPENDIX C
Proof of Lemma 3

Prosumers are assumed to be rational so that each prosumer
chooses a strategy that minimizes its energy cost. The proof
of strategy-proofness is the same as Vickrey’s argument.
In the proposed double-auction mechanism, in each time slot,
the ask/bid price submitted by prosumer i, paskes,i(t)/p

bid
eb,i(t),

is its reservation price that minimizes its energy cost, and the
trading price pET (t) determined by the double-auction mech-
anism is the actual energy trading price. Suppose prosumer i
submits ξpbideb,i(t) as its bid price. In case of p

bid
eb,i(t) > pET (t),

i.e., prosumer i is supposed to win the trade, overbidding, i.e.,
ξ > 1, results in the same benefit as if it bids pbideb,i(t). On the
other hand, underbidding, i.e., ξ < 1, may cause it to lose
the trade. Even it wins the trades with ξpbideb,i(t), it gets the

same benefit as if it bids pbideb,i(t). In case of p
bid
eb,i(t) < pET (t),

overbiddingmay lead to negative benefit if prosumer i’s bid is
included in the final trade, or zero benefit, which is the same
as if it bids pbideb,i(t), if it’s bid is not included. Conversely,
underbidding just leads to zero benefit, which is the same as
if it bids pbideb,i(t). For the same reasons, each prosumer who
intends to sell its energy will report its true reservation price.

APPENDIX
Proof of Lemma 4
Proof of Lemma 4.1:
The per-slot problem P3 includes all constraints of the

original problem P1 except for the energy state constraint.
Hence, to prove the solution derived from P3 are feasible to
P1 is to show the energy state of prosumer i, Si(t), is bounded
within [Smini , Smaxi ]. The proof proceeds by induction. First,
it is obvious that the lower and upper bounds hold for t = 0.
We now suppose that Smini ≤ Si(t) ≤ Smaxi holds for time
slot t , which in turn indicates Smini − θi ≤ Ei(t) ≤ S

max
i − θi.

Hence, to prove the boundary of Si(t) in (27) also holds for
time slot t + 1, we need to prove Smini − θi ≤ Ei(t + 1) ≤
Smaxi − θi holds.

Let geb−D
∗

i (t), geb−E
∗

i (t), ges−R
∗

i (t), ges−E
∗

i (t), gch−R
∗

i (t),
gdis−D

∗

i (t), gl
∗

i (t), g
s∗
i (t) and D∗i (t) be the optimal solution

to (33) and (34). It is noticed thatD∗i (t) does not directly affect
the virtual energy queue Ei(t). Hence, D∗i (t) can be treated as
a given load when determining how to schedule prosumer i’s
battery charge/discharge.We now study the energy deficit and
energy surplus cases separately.

• Energy Deficit: We prove the upper and lower bounds
considering the following cases:

– Case 1: Ei(t) ≥ −Vipesi (t)/η
dis
i , as pesi (t) < p(t),

we have gs
∗

i (t) = 0 and
0 < ges−E

∗

i (t)+ gdis−D
∗

i (t) ≤ Rdisi .
Based on the update equation (15), we have
Ei(t + 1) < Ei(t) ≤ Smaxi − θi;
In addition, as pesi (t) < p(t) < pmax , we have
Ei(t) > −Vipmax/ηdisi . Then, we get
Ei(t + 1) ≥ Ei(t) − ηdisi Rdisi > −Vipmaxηdisi −
ηdisi Rdisi = Smini − θi,
based on the definition of θi.

– Case 2: −Vipesi (t)/η
dis
i > Ei(t) ≥ −Vip(t)/ηdisi ,

we have gs
∗

i (t) = 0, ges−E
∗

i (t) = 0 and 0 <

gdis−D
∗

i (t) ≤ Rdisi . Similar to Case 1, we have
Ei(t + 1) < Ei(t) ≤ Smaxi − θi;
Similar to Case 1, as Ei(t) > −Vip(t)/ηdisi ≥

−Vipmax/ηdisi , we have
Ei(t + 1) = Ei(t)− ηdisi Rdisi ≥ S

min
i − θi,

based on the definition of θi.
– Case 3: −Vip(t)/ηdisi > Ei(t) ≥ −Vip(t)/ηchi ,

we have gs
∗

i (t) = 0, ges−E
∗

i (t) = 0 and gdis−D
∗

i (t) =
0. Thus,
Smini − θi ≤ Ei(t + 1) = Ei(t) ≤ Smaxi − θi.

– Case 4: Ei(t) < −Vip(t)/ηchi , we have 0 < gs
∗

i (t) ≤
Rchi , ges−E

∗

i (t) = 0 and gdis−D
∗

i (t) = 0. Thus,
we have
Ei(t + 1) > Ei(t) ≥ Smini − θi.
On the other hand, as Ei(t) < 0, we have
Ei(t + 1) < Ei(t)+ ηchi R

ch
i < ηchi R

ch
i ≤ S

max
i − θi,

where the last inequality holds based on the defini-
tion of θi.

• Energy Surplus:

– Case 1: Ei(t) ≥ 0, we have gs
∗

i (t) = 0, geb−E
∗

i (t) =
0 and gch−R

∗

i (t) = 0. Thus, we have
Smini − θi ≤ Ei(t + 1) = Ei(t) ≤ Smaxi − θi;

– Case 2: 0 > Ei(t) ≥ −Vipebi (t)/ηchi , as pebi (t) <
p(t), we have gs

∗

i (t) = 0, geb−E
∗

i (t) = 0 and 0 <
gch−R

∗

i (t) < Rchi . Based on the update equation (15),
we have
Ei(t + 1) > Ei(t) ≥ Smini − θi;
On the other hand, as Ei(t) < 0, we have
Ei(t + 1) < Ei(t)+ ηchi R

ch
i < ηchi R

ch
i ≤ S

max
i − θi,

where the last inequality holds based on the defini-
tion of θi.

– Case 3: −Vipebi (t)/ηchi > Ei(t) ≥ −Vip(t)/ηchi ,
we have gs

∗

i (t) = 0 and 0 < geb−E
∗

i (t)+gch−R
∗

i (t) ≤
Rchi . Thus, we have
Ei(t + 1) ≤ Ei(t)+ ηchi R

ch
i ≤ S

max
i − θi.

On the other hand, as Ei(t) < 0, similar to Case 2,
we have
Ei(t + 1) < ηchi R

ch
i ≤ S

max
i − θi.

– Case 4: Ei(t) < −Vip(t)/ηchi , we have 0 < gs
∗

i (t)+
geb−E

∗

i (t)+ gch−R
∗

i (t) ≤ Rchi . Thus, we have
Ei(t + 1) ≤ Ei(t)+ ηchi R

ch
i ≤ S

max
i − θi.
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On the other hand, as Ei(t) < 0, similar to Case 2,
we have
Ei(t + 1) < ηchi R

ch
i ≤ S

max
i − θi.

Proof of Lemma 4.2:
The proof of the performance boundary follows the perfor-

mance result derivation in the Lyapunov optimization frame-
work and is similar to that of our previous work. Interested
readers may refer to [37] for details.
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