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Abstract: Low-Power Wide-Area Network (LPWAN) is a wireless WAN technology that connects low-
powered and low-bandwidth devices with low bit rates atop Long Ranges (LoRa). It is characterized
by improved scalability, wide area coverage, and low power consumption, which are beneficial to
resource-constrained devices on the Internet of Things (IoT) for effective communication and security.
Security in Long-Range Wide-Area Networks (LoRaWAN) widely employs Advanced Encryption
Standard (AES) 128-bit symmetric encryption as the accepted security standard for a key generation
that secures communication and entities. However, designing an efficient key manifestation and
management model is still a challenge as different designs are based on different research objectives.
To date, there is no global and well-accepted LoRaWAN security model for all applications. Thus,
there is a need to continually improve the LoRaWAN security model. This paper, therefore, performed
an in-depth analysis of some existing LoRaWAN key security models to identify security challenges
affecting these security models and assess the strengths and weaknesses of the proposed solutions.
The goal is to improve some of the existing LoRaWAN security models by analysing and bringing
together several challenges that affect them. Several relevant studies were collected and analysed;
the analysis shows that though there are few research works in this area, several existing LoRaWAN
security models are not immune to attacks. Symmetry encryption is found to be the most used
approach to manage key security due to its less computational operations. Moreover, it is possible
to improve existing key security models in LPWAN with consideration of the resource constrained.
Again, trusted third parties for key management were also widely used to defend against possible
attacks and minimize operational complexities. We, therefore, recommend the design of lightweight
and less complex LPWAN security models to sustain the lifespan of LPWAN devices.

Keywords: IoT; LoRaWAN; LPWAN; key security; attacks

MSC: 94A60; 94A62

1. Introduction

The emergence of the Internet of Things (IoT) has brought about cross-platform
communication over the Internet between different powered devices ranging in energy
consumption from low to high [1–5]. A large amount of data is shared autonomously
between these devices within widespread application areas such as healthcare, military,
agriculture, industrial, and home applications [1,2,5]. To complement the flexibility of the
IoT paradigm, various cellular communication networks with low energy consumption
were introduced, such as Zigbee, Bluetooth, 2G, 3G, 4G, Z-Wave, etc. [2,6–12]. Although
these cellular networks have several characteristics such as short-range communication,
the full flexibility of IoT applications could not be fulfilled due to their wide-ranging area
communication [2]. However, to deal with the shortfalls of these conventional cellular
networks, Low-Power Wide-Area Network (LPWAN) was introduced [1,2,5,13]. LPWAN
is considered a low cost-deployment, improved-scalability, wide range of communication,
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and low power-consuming protocol [2]. Moreover, several communication protocols based
on their technical unique characteristics and properties have been introduced in the realm
of LPWAN, such as the Sigfox, Narrow Band-Internet of Things (NB-IoT), and Long Range
(LoRa), with LoRa as the commonly applied protocol [2,13].

As shown in Figure 1, these protocols have several benefits for the IoT platform while
Table 1 presents the characteristics of some of the LPWAN technologies. Accordingly, LoRa
is implemented as a physical layer protocol to permit long-range communication in a wide
coverage where less energy is consumed, while LoRaWAN is a medium access control
(MAC) layer protocol implemented to define the system operations and structure [2]. Thus,
to reduce the severity of high battery consumption and overheads due to synchronization,
LoRaWAN adopts asynchronous communication models [2]. In the past, energy efficiency
and communication in LPWAN have been a primary research area; however, security
issues have recently dominated [2]. Considering the real-life relation to IoT, security
and privacy issues are huge threats to the exponential increase of connected devices
implemented in the specific geo-location [2]. Since a large amount of data is transmitted
between these devices and the servers, there is a need for efficient security models to be
put in place. Recently security issues and solutions in IoT have gained research attention,
especially key management which ensures the safety and protects devices and data against
attacks [2]. Moreover, to implement secure key management models, cryptography has
been a favourable technique. Cryptographic techniques include encryption, authentication,
message integrity checking, or a hybrid of these forms [2]. However, these techniques
are prone to several security attacks due to the nature of the geo-location deployment
of the devices where they can be easily accessible to the attackers [2,14]. A possible
security breach can occur when communication is engaged between the servers and the
end devices [2]. With the specifications implemented in LoRaWAN, the key management
model must ensure that the communicating keys for security purposes are uniquely and
securely managed [2]. However, current LoRaWAN specifications provide limited security
by partially updating the generated keys [2]. Furthermore, in continuous communication,
such specification remains infeasible since some of the keys might remain unchanged, and
in the event of a key breach, all the information and communication in the network will
become prone to attackers’ interception [1,2]. To address this challenge, it is important
that existing LoRaWAN key models are improved to allow fully automated and periodic
key generation and updates [2]. In addition, communication layers such as application
and network layers should adopt independent key-level security as each layer operates
differently [2].

Figure 1. LPWAN protocols benefits in IoT [15].
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Table 1. Technical characteristics of LoRa, Sigfox, and NB-IoT [15].

Sigfox LoRaWAN NB-IoT

Modulation BPSK CSS QPSK

Frequency

Unlicensed ISM bands
(868 MHz in Europe, 915 MHz

in North America, and
433 MHz in Asia)

Unlicensed ISM bands
(868 MHz in Europe, 915 MHz

in North America, and
433 MHz in Asia)

Licensed LTE frequency bands

Bandwidth 100 Hz 250 kHz and 125 kHz 200 kHz
Maximum data rate 100 bps 50 kbps 200 kbps

Bidirectional Limited/Half-duplex Yes/Half-duplex Yes/Half-duplex
Maximum payload length 12 bytes (UL), 8 bytes (DL) 243 bytes 1600 bytes

Range 10 km (urban), 40 km (rural) 5 km (urban), 20 km (rural) 1 km (urban), 10 km (rural)
Interface immunity Very high Very high Low

Authentication & encryption Not supported Yes (AES 128b) Yes (LTE encryption)
Adaptive data rate No Yes No

Handover End devices do not join a
single base station

End devices do not join a
single base station

End devices join a single base
station

Localization Yes (RSSI) Yes (TDOA) No (under specification)
Allow private network No Yes No

Standardization

Sigfox company is
collaborating with ETSI on the

standardization of the
Sigfox-based network

LoRa-Alliance 3GPP

This paper surveyed the existing traditional LoRaWAN security models to compre-
hend and bring together the security analysis of LoRaWAN traditional security models.
The paper carried out a comprehensive analysis of LoRaWAN security under the existing
traditional security models, analysed different existing proposed solutions and approaches
to addressing several identified attacks that are affecting these security models, and identify
open-security challenges considered for future improvement. This analysis will yield a
proposal for an improved LoRaWAN security model that curbs the severity of the identified
challenges still affecting traditional LoRaWAN security models.

The rest of the paper is organized as follows: Section 2 provides LoRaWAN back-
ground, LoRaWAN security architecture, and possible security attacks, Section 3 discusses
related works, and Section 4 presents the comprehensive analysis of existing key secu-
rity models in LPWAN/LoRaWAN, and Section 5 presents a discussion of the analysis.
Section 6 discusses the possible research directions and lastly, Section 7 presents the article’s
conclusions.

2. Background Information
2.1. LoRaWAN

LoRaWAN is a popularly adopted LPWAN technology that is implemented based on
the following; low energy consumption, better scalability, wide-area coverage, and low
deployment cost [1]. In LoRaWAN architecture, several end devices are battery-powered
and communicate with one another through the servers to share information. A single-hop
communication is adopted between the end devices and the gateway which relays the
shared information across the network [1]. The LoRaWAN model is made up of several
entities as shown in Figure 2.
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Figure 2. LoRaWAN architecture [4].

As shown in Figure 2, the LoRa protocol is structured into two parts: the front end
which is composed of gateways and end devices where the gateway relays data between the
servers and the end devices, and the back end which is composed of network servers [16].
The end devices are the LoRa endpoints for communicating with other end devices using
shared communication keys. They are remotely located and controlled. The gateways
relay communication data between the end devices. Moreover, the network servers are
responsible for establishing communication keys that are shared between the application
servers and the end devices. It is responsible for managing the whole network by scheduling
the acknowledgements in communication, eliminating abnormal packets, and ensuring
relevant data rates. Application servers, conversely, are responsible for communication
with the end devices by offering the necessary applications to the end devices.

LoRaWAN functions by adopting LoRa capabilities such as its chirp spread spectrum
(CSS) modulation, which controls several aspects such as switching through spreading
factors (SFs) ranging between SF7 and SF12, modulation optimization for efficient com-
munication range, and shared data requirements [1]. As shown in Figure 3, LoRa is
implemented as a physical layer on top of the LoRaWAN, which is referred to as the MAC
layer protocol [17]. LoRa uses the SFs to control unwanted interference and multipath
fading [16]. Based on the transmission conditions and environment, the end devices are
enabled to adjust their transmission power and modulation; the higher the SF increase, the
more the signal-to-noise ratio (SNR) improves, the time spent in the air increases, and the
bit rate decreases, and vice versa when the SF decreases [16]. Based on the communication
specifications, LoRa can be implemented using three classes, A, B, and C as shown in
Figure 3; however, as proposed by the LoRa standard, all the modules implemented should
follow Class A specifications, whereas B and C are optional [16].

Figure 3. LoRaWAN node system architecture [16].
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Class A: This implements bidirectional communication. Three-time slots are used for
each transmission; when the Class A devices transmit (uplink) the data, Class A will upon
two receiving times for data reception (downlink) transmitted from the gateway. However,
the devices in this class can only receive the data once the data is being sent; this qualifies
the devices to attain the highest energy efficiency possible which is most suitable for devices
that consume less power [16].

Class B: Class B devices adopt bidirectional communication using extra time slots for
receiving (downlink) the transmitted (uplink) data. Unlike Class A which adopts random
slots for receiving the data, Class B uses a synchronized beacon from the gateway to activate
a series of receiving time slots; higher data rates in a downlink can be attained.

Class C: The devices in Class C communicate in a bidirectional manner and use an
extra communication time slot for receiving (downlink) unlimited data. However, the Class
C devices are restricted to sending the data only during the sending period, but have no
restrictions on data reception, which makes them suitable for communication with low
latency [4].

2.2. LoRaWAN Security

LoRaWAN offers several benefits to LPWAN; thus, protection against attacks and
breaches should be a priority. To effectively apply cryptographic security models in
LPWAN IoT-based applications, key manifestation and management are indispensable.
To this end, many cryptographic schemes can be implemented in LPWAN IoT-based
applications, such as symmetric key encryption for resource-constrained devices, and
asymmetric encryption. For symmetric encryption deployment, the participating devices
generate and share a symmetric key for communication; however, this is inept for a large
scalable network. Symmetric encryption schemes such as Advanced Encryption Standard
(AES) 128-bit have been implemented in LoRaWAN to guarantee end-to-end security in
the network. Participating entities are structured in star topology and a single or multiple
gateway(s) are responsible for replaying the data between the end devices and network
server. Generally, AES 128-bit security ensures integrity, authenticity, confidentiality, and
bi-directional communication in the network, ensuring that only authenticated end-devices
are allowed to communicate as shown in Figure 4. LoRaWAN communication uses a
128-bit Application key (AppKey) generated by the network server, and uses the same
AppKey to generate two more keys: the Network Session Key (NwkSKey) and Application
Session Key (AppSKey). The AppSKey is shared between the application servers and the
network server while the NwkSKey is shared between the network server and the end
devices through gateways. All AppKey, NwkSKey, and AppSKey are 128-bit hexadecimal
numbers.

Figure 4. LoRaWAN communication model [1].
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However, for the end devices to participate and be recognized in the LoRaWAN, the
end devices must be activated. This can be accomplished in two ways: Over The Air
Activation (OTAA) and Activation By Personalization (ABP). As presented in Figure 5,
with OTAA, the end devices are expected to be pre-personalized and a 64-bit hexadecimal
Device EUI (DevEUI) is used to identify the end device’s unique identity based on the
network the end device will join, while a 64-bit hexadecimal Application EUI (AppEUI)
is used for identifying applications and an AES-128 bit symmetric AppKey [1]. Once
pre-personalized, the network and the end device will engage in communication using
two messages. Join Request (JR) is sent by an end device and transmitted to the network
server. The JR message contains the DEvEUI, AppEUI and a 2-octet random number called
a Device Nonce (DevNonce). An AppKey is used to compute the message integrity code
(MIC) for the security of the JR message as the message is not encrypted. Upon the receipt
of the JR message at the network server, the server performs integrity checking to verify
if the requesting end device is allowed to join the specified network. If an end device is
verified, the network sends a “Join Accept (JA)” message to the end device. The JA message
is consist of a Network Identifier (NetID) which identifies the network assigned to the
end devices, a 32-bit hexadecimal Device Address (DevAddr) which identifies the unique
address of the end device in the network, and a 3-octet Application Nonce (AppNonce) [1].

Figure 5. Figure LoRaWAN Over The Air Activation [18].

On the other hand, for ABP, communication can be initiated between the servers and
the end devices after the end devices are pre-programmed with AppSKey, NwkSKey, and
DevAddr [1]. It uses the nonces as pseudo-random numbers for entity authentication
to ensure that previous communication messages cannot be used by the interceptors for
replay attacks [3]. For message integrity, the Message Integrity Code (MIC) is generated
by an AES-128 bit AppKey, which is appended to the message to be transmitted [3]. Once
the MIC is received at any communicating point, if the re-calculated MIC is different from
the received appended MIC, it indicates that the message has been tampered with or
transmitted by an unauthorized entity [1]. Otherwise, no tampering occurs, the end device
then computes a plain-text message and encrypts it with the AES-128 bit AppSKey and
the encrypted plain text is sent to the application server, where the encrypted plain text is
decrypted with the same AppSKey [1].

2.3. LoRaWAN Possible Attacks

There are several possible security attacks designed to compromise LoRWAN in terms
of data confidentiality, integrity, and availability. Thus, LoRaWAN key security models
must be regularly enhanced to withstand such adversaries in the network. This subsection
discusses some of the existing attacks:
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i. Denial of Service (DoS) attack: The attack is associated with denying services to the
entities connected to the network, such as denying the communication between
the end devices. Due to the static configuration of keys and nonces, during a JR,
an attacker can use the Application Key (AppKey) to re-calculate the MIC and the
DevNonce for every transmission [1].

ii. Replay attack: The attacker intercepts the transmitted data in the network by repeating
or delaying that data in which the attacker can act as one of the participants in the
network. In the case of ABP, the frame counters in the end-devices and the network
server are re-used with the same keys as static keys are pre-programmed in the
entities before joining request and join accept; hence, an attacker can re-use a previous
message for replay attacks [1].

iii. Known-key attack: The attacker exploits the AppSKey, and if the attacker discovers it,
then the decryption mechanism will be discovered by the attacker [3].

iv. Eavesdropping attack: Here, the attacker captures a large amount of transmitted infor-
mation and attempts to extract the important information from the captured message,
such as by capturing the AppSKey that is used for encryption and decryption [3].

v. Side-channel attack: In the OTAA phase, a single AppKey without being updated is
used throughout to compute the session keys; though the session keys can be re-
updated for different sessions, the AppKey remains unchanged. If the AppKey can
be intercepted during transmission, then the whole network and communication are
compromised [2].

vi. Physical attack: The attacker extracts the pre-shared key, such as an AppKey, from the
end devices to make it easier to hijack [18].

3. Related Works

This section discusses some of the related works that analyse the security of the existing
LoRaWAN security models. Eldefrawy et al. [19] argued that the advancement of LPWAN
protocol resulted in a wide deployment across several sectors which brought about several
known security vulnerabilities within the traditional LoRaWAN version 1.0 security model.
Accordingly, some researchers use security tools such as the Scyther to perform a formal
security analysis on the LoRaWAN version 1.0, where several vulnerabilities are not found
in version 1.1. The analysis helped in improving LoRaWAN security. Similarly, Butun
et al. [20] performed an analysis of security risks on the LoRaWAN 1.1 security model
which enhanced the version 1.0 security model. According to several researchers, the
analysis was the first to be conducted and discusses a detailed threat catalogue based on the
threat scale view, impact, and likelihood. Moreover, practical threats that require immense
attention from the organizations and the developers for LoRa network implementations
are also discussed. Furthermore, Tomasin et al. [21] carried out a security analysis on the
join procedures of LoRaWAN-IoT based on when the end device(s) wishes to initiate a join
procedure with the registered network server. The study also discussed the security impacts
of random numbers generated in the join procedure, and the abilities of the network server
in detecting and preventing replay attacks.

In a similar study, Butun et al.’s [22] analysis of LoRaWAN 1.0 uncovered several
security weaknesses that affect the data confidentiality, integrity and overall network
availability where LoRaWAN back-end system or/and end devices are likely to be ex-
ploited. They found that the severity of these security vulnerabilities was entirely from a
physical medium or access, but can be possible within the protocol. They also proposed
practical recommendations to curb the severity of these attacks while being compliant
with specifications and ensuring interoperability between old and improved equipment.
In Butun et al. [23] the authors presented an overview analysis of the security of the tradi-
tional LoRaWAN 1.0 with several threats leading to LoRaWAN 1.1. They further discussed
LoRaWAN 1.1′s implementations of LoRa-based applications and its limitations. In the
same vein, Eldefrawy et al. [19] conducted a formal and security analysis of the LoRaWAN
protocol. The formal analysis approach was used to uncover several security vulnerabilities
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identified in LoRaWAN 1.0′s key exchange mechanism, which also resulted in LoRaWAN
1.1. In a similar study, Noura et al. [24] performed a comprehensive review on LoRaWAN
architecture, security concerns, and applications, and presented several proposed solutions
to address the security shortfalls and counter several identified attacks in the existing
LoRaWAN. Finally, Yang [25] performed an analysis on LoRaWAN based on cryptography,
key management mechanisms, counter management aspects and message acknowledge-
ment. Several security vulnerabilities and attacks were identified, such as eavesdropping,
replay, ACK spoofing, and bit flipping attacks. Consequently, they proposed an improved
security and mitigation LoRaWAN models.

As discussed above, several authors [19,22,24] have carried out studies on several
key aspects of LoRaWAN such as security analysis, key management architecture, etc.
in LoRaWAN. However, these were not comprehensive enough as they do not focus on
a particular aspect. Therefore, this paper focus specifically on the key management of
traditional LoRaWAN security models to bring together the challenges.

4. Analysis of LoRaWAN Security Models

This section presents the analysis performed on each study considered in the paper
from the perspective of LoRaWAN security models. The findings are categorized into key
management, security attacks and proposed solutions.

4.1. Key Management

This subsection presents different solutions in each study in terms of the security
objectives and the techniques utilized in existing LPWAN and IoT models within LoRaWAN.
Tables 2 and 3 summarize the findings.

Table 2. Summary of Security Algorithms and Analysis in LoRaWAN.

Ref. Security
Algorithm

Key Gen.
Time

Key
Update
Time

Execution
Time

Memory Us-
age/Overheads

Energy
Consume Limitations

[2] AES-128-SE N/A N/A N/A High Low
Static key generation and
loading, memory flooding

due to storing nonces

[3] AES-128 bit
and D-Box N/A N/A N/A N/A Low

Unsecure communication
layers except for the

application layer. No periodic
updates for NwSKey in the

MAC layer

[26]

Stream
Cipher-
Based
KDF

High Long Less High N/A

Memory overheads in the end
devices due to pre-sharing
and distribution of the root

keys

[5]

Rabbit
Stream

Cipher Based-
KDF-SE

N/A N/A

Faster
encryption

and
velocity-time

High N/A

High memory usage by
generating additional 4-byte

data of the devices in
encryption and decryption.

[27] Blowfish-SE N/A N/A

Faster and
less

encryption
time

High N/A

Not be suitable for scalable
networks, and complex

operations due to limited
memory in FPGA

[4] AES-128 SE N/A High N/A N/A N/A Irregular key refreshment
periods

SE = Symmetric encryption, AE = Asymmetry encryption.
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Table 3. Summary of Security Algorithms and Analysis in LoRaWAN.

Ref. Security
Algorithm

Key Gen.
Time

Key
Update
Time

Execution
Time

Memory
Usage/Overheads

Energy
Consume Limitations

[28] AES-128 SE N/A N/A Less N/A Low Limited to validation of three
attacks only

[1] AES-128 SE N/A N/A Less Low Low

Unsecured random numbers
to compute session keys.
Static NwKey changed in

every session

[14]

ECC-Diffie
Hellman

algorithm
(AE)

Faster Faster Faster N/A High Limited validation and
restriction of analysed attacks

[29] AES-128 SE N/A N/A Less Low Low Evaluations of attacks are
limited

[30] AES-128 SE N/A N/A N/A Low N/A
Forward compatibility should

not be examined after
backward compatibility

[31] AES-128 SE N/A N/A N/A N/A N/A Asymmetric encryption is
heavy on resources

SE = Symmetric encryption, AE = Asymmetry encryption.

Kim and Song [2] designed a dual key-based activation scheme that allows automatic
key generation and updates where each LoRaWAN layer independently generates its keys.
This model uses pre-programming and pre-loading techniques to generate session keys
shared with the network and application servers for authentication and communication.
The phases involved are as follows: the end-node generates the NwkKey and AppKey
through pre-programming and preloading before initiating the joining procedure and sends
NwkKey to the network server and AppKey to the application server. A JR message is
transmitted by the end node containing MIC, AppEUI, DevEUI, and DevNonce to the
network server for node authentication and session key generation. Accordingly, if the
end-node is recognized by the network server, then the network server generates NwkSKey
from NwkKey and forwards its NetID and DevNonce to the application server. Once
forwarded, the application server generates the AppSKey from AppKey and transmits
an encrypted AppNonce with AppSKey to the network server where it forwards the JA
message to the end node. However, if the end node wishes to join the network again, it
computes a new NwkSKey and AppSKey with the old NwkSKey and AppSKey.

Tsai et al. [3] proposed an AES-128-based energy-efficient and highly secure commu-
nication scheme known as Secure Low-Power Communication (SeLPC) for balancing the
security level and the power consumption in the network. This is to ease end devices’ high
data-encryption power by reducing AES encryption cycles. The SeLPC has two stages: the
key generation and the data encryption process [4]. Key generation is applied to minimize
the complex operations via encryption keys called AppSKey and D-Box, which are dynami-
cally and automatically updated for every k-days, where k is only known by the network
manager. Moreover, data encryption is applied to ensure payloads’ security and the MAC
layer’s integrity using an AppSKey to encrypt the payload at the application layer and
the NwSKey generates the MIC. In addition, the AES-128 deployed at the end-devices
employs five encryption cycles to minimize the complex operations that are heavy on
power consumption. The cycles are repeated for k-days to update the encryption key and
D-Box, to restrict the attackers from exploiting the encryption system.

Han and Wang [26] suggested a LoRaWAN root key update mechanism to strengthen
traditional LoRaWAN 1.0 and 1.1 security models. The study implemented a Rabbit Stream
Cipher-Based KDF scheme to reduce key derivation time, frequent root key updates, and
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non-random key generation. The scheme applies a two-step Rabbit KDF structure with a
pseudo-random number generator [3]. The randomness extractor is applied to take a series
of non-uniform values of shared contexts c, and a root key Ka. Session keys generated
form part of the shared contexts c as these keys are re-generated immediately after the
root key has been updated. Moreover, in this phase, the value of c and Ka are generated as
pseudorandom values. While the key expander uses another root key and the output from
the randomness extractor as input, where a new different root key is the 128 bits output
in this phase which is a pseudorandom sequence number close to a uniform distribution.
The key management scheme was implemented as the primary core of the root key update
mechanism in LoRaWAN due to its ability to lower computing weight for deriving root
keys and zero crypto-analysis weaknesses that can be exploited with Rabbit Stream Cipher.

Choi and Kim [5] proposed an improved LEA block chain encryption scheme to
optimize processing in resource-constrained IoT systems. In this scheme, instead of using
masking by adding an arbitrary value to arithmetic operations for generating the output
from the plain text, the arbitrary value is added directly to the plain text to change the
value of the data format as a defence against side channels [6]. A 12-byte data format is
received as an input, and 16-byte encryption is performed on the data input which consists
of a 12-byte of the actual data and a 4-byte of the dummy data. In this case, a 12-byte is
used to store the sensitive information and the 4-byte is randomly selected to mutually
generate a sequence, where every information that is changed is stored in the 4-byte for
decryption. Once the encryption function is applied, the actual data input is restored
in a one-operation process by using the 4-byte dummy data to attain lesser decryption
processing time decryption as compared to the standard masking-LEA model.

Prasetyo et al. [27] suggested a blowfish symmetric encryption algorithm with min-
imized Feistel rounds in FPGA to achieve high throughput, improved security, average-
to-high avalanche effect, and lesser encryption time. The model involves two processes to
safeguard and efficiently encrypt the data. One is the key expansion where the function
key is changed by using 18 entries of p-array and 4 of 256 substitution boxes while 4 Feistel
rounds are used instead of 8 rounds. The other process is efficient data encryption in
resource-limited FPGA, where 16 iterations per round are used in a Feistel network by
minimizing the key bit size of the traditional blowfish from 128-bits to 64-bits, 256 bits to
192 bits, and 448 bits to 384 bits.

Ruotsalainen et al. [4] designed a revised LPWAN key manifestation mechanism
to deal with the challenge posed by channel probing, large latency, and static spectrum
conditions for LoRaWAN class A devices. To achieve this, the key manifestation protocol
is organized into seven steps: channel probing where the end devices and the gateway
participate in bidirectional communication, where the RSSI, packet counters, and SNR are
recorded in uplink and downlink communications; measurement preselection, where a
gateway ensures that the measurements collected are correctly selected and matched, which
guarantees continuous spectrum probing between the gateway and the end device and for
each uplink and downlink to reduce high packet collisions caused by congested ISM bands
due to the used CSS modulation; precorrection is where a Discrete Cosine Transform (DCT)
is used to correctly synchronize the measurements, a quantization where measurements
of the total packet dropped are communicated between the end devices and the gateway
for ensured synchronized quantized key bits; reconciliation is where BCH encoding as a
suitable low-resource-constrained algorithm is used for correcting up to 23 out of 127 key
bits that can be caused by imperfect measurements; privacy amplification is the final key
generation phase and is privacy amplified to restrict the attackers’ access to the information
that can be leaked during the reconciliation phase.

Roselin et al. [28] proposed a security solution for 6LoWPAN WSN known as
lightweight authentication protocol (LAUP) based on symmetric encryption without the
pre-shared keys. The scheme employed four flights for authentication establishment and
session keys sharing and establishment using existing information. For session requests,
flight one communication is used for securing communication between the sensor node
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and the edge router that transmits the payload contents to the edge router. The identity of
the sensor node nonce value is validated by the XOR function on the message encrypted
with a flight one key such that the encrypted identifier of the sensor node, the MAC one
value, and the request message are transmitted to the edge router as first-flight data. For
authentication, the initial authentication and second-level authentication are carried out
by the edge router employing the AES-128-bit ECB algorithm for decrypting the received
flight one data to validate the new data against the existing data from the flight one data.
For second-level authentication, the edge router compares the sensor nodes’ nonce value
from flight two with the session key from flight two; if a match is found, further generating
sessions will be initiated. Flight three key is generated by the XOR function between the
sensor node and the edge router upon successful retrieval of the flight two values. The
edge router terminates the process if the MAC three value calculated is different from the
received MAC three value calculated using the hash function on the encrypted received
values. Lastly, for key distribution, the edge router ensures that key distribution is success-
ful for the wireless sensor nodes by communicating all the four-flight data where a session
key encrypts recurring communication.

Naoui et al. [1] also proposed a new security model to improve the existing model(s)
considered highly susceptible to two attacks. The three phases involved are as follows:
(i). the system set-up where two session keys are computed by the trusted third party
using asymmetric encryption and shared with one for the network server and one for an
application server. These session keys ensure secured communication between the trusted
third party and the servers. (ii) The join procedure process is where the end device transmits
a JR message to the third party which is forwarded to the network server by the third
party. Once in the network server, the JA message is then sent to the third party and is then
forwarded to the end device for transmission. The third party will then generate and send
two keys for generating their session keys for communication: NwKey for the network
server and AppKey for the application server. Finally, (iii) the rekeying process takes
place, where the generated session keys are updated provided that a new join procedure is
initiated using the same steps. However, the AppKey is meant for a single join procedure;
thus, it is updated using a One Time Password (OTP) generator to derive new pre-shared
from the previously shared AppKey. This is to guard against replay attacks as this AppKey
can be used for generating session keys.

Tsai et al. [14] suggested the TTP-Based High-Efficiency Multi-Key Exchange Protocol
(THMEP) model enhances existing models in terms of user and message authentication
and securing the data and key exchanges. The overall security objectives of THMEP are
based on: (i) Reliability, which assures that the user, the data, and the system are to be
protected against several attacks such as forgery, impersonation, replay, and known key
attacks. Moreover, it guarantees full mutual authentication between the users and the
trusted third party. (ii) Efficiency ensures a high-security level using ECC even at the
same key sizes as the RSA algorithm as well as supporting parallel computation to shorten
processing times. Thus, TTP’s communication and computation costs and complexity are
reduced by replicating some of ECC operations with XOR operation and binary addition;
this also reduces the energy consumption, which makes it suitable for mobile devices.
Finally, (iii) high throughput is ensured by having the capability to generate 40 session keys
simultaneously, which allows having 40 channels for communication.

Gao et al. [29] suggested a secure packet transmission (SPT) scheme to strengthen
LoRaWAN 1.1 security during joining request processes against attacks if the root key is
compromised. Consequently, the JR packets are secured against eavesdropping attacks
and replay attacks. SPT employ three approaches to redefine and secure the request to
join packets. (i) A re-defined JR payload is used, where the old request is redefined to
join packet characteristics to a new request to join packet using a new dynamic coding
technique that ensures that the attacker cannot perform any correct coding even though
the new request to join the packet is intercepted. (ii) The new OTP approach is used for
effective and efficient encryption on the request to join messages. This secures the request
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to join messages. (iii) The Adaptive Data Rate (ADR) algorithm is applied to prolong the
battery life of the LoRa end devices. In this case, the operational complexities of the ADR
are performed by the network server, keeping the LoRa end devices as simple as possible.
Moreover, the asynchronous execution of ADR is performed between the end device and
the network server, where the end device adjusts its SF for a guaranteed delivery ratio. If
the SF is high, the ADR ensures that the energy consumption is kept at a minimum level.

Dönmez and Nigussie [30] performed an analysis to determine other possible attacks
such as DoS, replay, and eavesdropping attacks and their countermeasures targeting the
join procedure since the current LoRaWAN 1.1 model detects only one attack in backward
compatibility. The process involved is as follows: (i) The security session consists of the end
device and the network server that maintains the network session by maintaining device
addresses, frame counters, and network session keys. Moreover, the application session
is also maintained by the end device. (ii) The cryptographic process involving a 128-bit
AES algorithm is used with two modes of operation: the ECB, and cypher-based message
authentication code (CMAC) to provide authentication, confidentiality, and encryption.
(iii) Keys security and derivation where the root key generates the three-session keys
FNwkSIntKey, SNwKIntKey, and NwKSEncKey and the other two lifetime keys, JSIntKey
and JSEncKey. The root key also ensures message integrity and confidentiality of join
procedures. (iv). Counters and nonces are used to derive new network session keys and
recommend limiting the periodicity of the increments to avoid any overflow in the lifetime
of end devices.

Naoui et al. [18] suggested an enhanced key management model for LoRaWAN
architecture. The model is influenced by proxy nodes by minimizing the computation of
the constrained nodes. Moreover, the reputation system is implemented for selecting proxy
nodes in several phases as follows: (i) Protocol initial where the certification authority (CA)
generates the proxy nodes groups and two certification tables and trust tables. The public
key of each proxy is shared with the relevant group members to allow every proxy to have
the public keys of all other group members. The shared public keys secure the transmitted
messages between group members to which the proxy nodes are based to create their trust
tables. The trust tables are used by the members for communication with other members
and the proxy nodes. (ii) A joining node where a JR is broadcasted to the group members
when the gateway wishes to join the proxy node groups to discover the assigned CA. The
receiving proxy node will forward the received message composed of the CA identifier
and the public key. The CA verifies if the transmitting node possesses a trust value in
the trust table, and if not, it will generate it with a value equal to 1. A trust value will
then be encrypted with the private key of CA and with the public key of the node and
transmitted to the receiving node. The node will be active upon decrypting the received
message. (iii) A leaving node where if a node opts to leave, it sends a leaving message to
the CA composed of the node identifier. The CA will then remove the node’s information
within its certification table and decrement the trust by 1 so that it can be updated. The CA
will then send a response message to the node that the release process is successful as its
certificate has been removed. (iv). Selection of a new CA, where the existing CA updates
its trust table and detects a gateway with a better trust value. A new CA is then assumed
and is expected to enforce security by updating its group members’ certifications.

4.2. Attacks Addressed and Solution Approaches

This subsection presents some of the several solutions proposed in the studies con-
sidered in this paper to address the security attacks faced by LoRaWAN. Each of the
proposed solutions is employed differently to prevent or detect different attacks based on
the researchers’ objectives. Table 4 presents a summary of the findings.
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Table 4. Summary of Possible Security Attacks and Solutions.

Ref. DoS
Attack

Replay
Attack

Known-
Key

Attack

Eavesdropping
Attack

Side-
Channel
Attacks

Physical
Attack

Other
Attack(s) Solutions

[2] No Yes No No No No No Dual key based
activation system

[3] No Yes Yes Yes No No No
SeLPC with time key

Kct and lookup
D-Box

[26] No No No No Yes No Crypto
analysis

Rabbit Stream Cipher-Based
KDF

[5] No No No No Yes No No
Rabbit Stream Cipher-Based
KDF with 16-byte and 4-byte

dummy data

[27] No No No No No No No

Blowfish symmetric
encryption with

minimized feistel
rounds in FPGA

[4] No Yes N/A Yes No No

Key-
guessing,

brute-force,
quantum
computer

DCT, BCH encoding,
True Random

Number Generator

[28] No Yes No No No No
Impersonation,
main-in-the-

middle

Unique flight keys
and the AES-128 ECB

algorithm

[1] No Yes No No No No No
One-time password gen-

Eratot for AppKey re-
updates

[14] No Yes Yes Yes No No Forgery, im-
personation

Trusted Third party, and
ECC with 2D operation

binary adder, and
logocal XOR

[29] No Yes No Yes No No No Modified MIC format
And DevNoce. OTP

[30] Yes Yes No Yes No No
ACK

spoofing, bit
flipping

AES 128-bit counter

[31] No No No No No No Man-in-the-
middle

AES 128-bit symmetric
encryption and SSL

Kim and Song [2] attempted to eliminate the replay attacks in LoRaWAN by proposing
a dual Key-Based activation scheme that implements automatic key generation and updates
for LoRaWAN layer independence in generating keys. Tsai et al. [3] proposed SeLPC to
deal with replay attacks. The proposed SeLPC uses a time key Kct generated by the network
server’s time of time key Kct found in them with an encryption key (AppSKey) and lookup
D-Box used for updating procedures. This security feature is to differentiate the calculated
replay message from the transmitted message. Moreover, to eliminate known-key attacks,
the SeLPC uses the improved AES-128 with an encryption key (AppSKey) and lookup
D-Box to encrypt the application layer’s information, which is updated every k-days. This
security feature restricts the attackers from using and deriving the old AppSKey due to
not knowing the lookup D-Box table that is updated every k-days. Moreover, to deal with
eavesdropping attacks, the SeLPC encrypts the AppSKey and lookup D-Box table sent by
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the network using the time key Kct and previously generated AppSkey. This security is
then based on varying the time by Kct that restricts the eavesdroppers to extract the lookup
D-Box and AppSKey from the transmitted information.

Han and Wang’s [26] KDF scheme minimizes key deviation time, frequent root key
updates, and key ransom generation. It is made secure against crypto analysis attacks
by employing a Rabbit Stream Cipher-Based KDF implemented as the primary core of
updating the root key in LoRaWAN based on its ability to lower computing weight for
deriving root keys. In [5], the Rabbit Stream Cipher-Based KDF security model is designed
to prevent side-channel attacks and improve the standard masking LEA algorithm based on
performing 16-byte encryption on 12-byte data input. The model employs the 16-byte for
encrypting 12-byte actual data (sensitive information) and 4-byte dummy data (randomly
selected to mutually generate a sequence for decryption). Once the encryption function
is applied, the actual data input is restored in a one-operation process using the 4-byte
dummy data. In Prasetyo et al. [27] a model involving two processes is implemented on
FPGA to securely encrypt the data. One process facilitates the key expansion by changing
the function key using 18 entries of p-array and 4 of 256 substitution boxes while 4 Feistel
rounds are used instead of 8 rounds. The other process is for data encryption where
16 iterations per round are used in a Feistel network by minimizing the key bit size of the
traditional blowfish from 128-bits to 64-bits, 256 bits to 192 bits, and 448 bits to 384 bits.

Furthermore, Ruotsalainen et al. [4] mitigated attacks on LoRaWAN based on the use
of mechanisms such as DCT to correctly synchronize the measurements, a BCH encoding
for key bits that might be due to imperfect corrections and the True Random Number
Generator (TRNG) properties for quantized key materials to restrict the attacker’s access to
exploiting the keys.

In the same vein, in Roselin et al. [28], to ensure the physical security and identity of
the sensor node, every communicating node that is within the communication range of
the edge router is successfully registered to the edge router. In this case, the edge router
should have prior knowledge about the LoWPAN network PAN ID and ensure that all
the sensor nodes wishing to communicate are physically secured and connected to the
network. To maintain the individual protection of each flight, a unique flight session key is
generated and distributed using the common key derivation method. To generate a nonce
for each flight, the message generation time for each flight is treated as the nonce; this
ensures that unnecessary high memory usage and computational overheads are reduced
for resource-constrained sensor nodes. The messages transmitted are protected within
all four flights using MAC values for message integrity. All four flights individually and
independently have secured unique value(s) for their operations. This offers protection
against man-in-the-middle attacks across all four flights where the LAUP model ensures
that messages generated with nonces are well encrypted with unique flight keys and the
AES-128 ECB algorithm. A non-injective synchronization property is also maintained.
Moreover, it also offers protection against impersonation attacks where the LAUP model
ensures that the wireless sensor nodes’ identity is protected by registering the nodes in the
edge router.

The proposed model by Naoui et al. [1] was based on designing and developing an
improved model with key management for enhancing security in LoRaWAN and eliminat-
ing two attack types due to poor and insecure cryptographic key managing schemes. The
attacks include the DevNonce attack that re-uses the same nonce for every transmission,
where the old requests are used for launching replay attacks and the AppNonce attack,
where the end-devices do not store the AppNonces to validate the AppServers for subse-
quent transmission, in which a join message is exploited by an attacker and transmitted
to the end-devices. These stored nonces are memory consuming for resource-constrained
devices. The scheme ensures forward and backward secrecy, key independency, and low
computation overhead are maintained in the network. Moreover, to ensure that the AppKey
is secured, a one-time password generator is used to compute a new AppKey for each
session to restrict the attackers from exploiting the key with replay attacks.
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Similarly, the THMEP security model by Tsai et al. [14], as compared to the existing
models, does not use CAs that issue digital signatures to its users, but rather deploys a
trusted third party to enforce user and message authentication for the safe exchange of
important information such as parameters in the network. The trusted third-party system’s
clock is used to derive a dynamic parameter for encrypting important keys exchanged
for communication; this is to restrict eavesdroppers and replay attacks. However, most
importantly, the proposed model deploys a 2D operation with a binary adder and logical
XOR aimed at reducing the overall number of multiplication operations performed by ECC
for important parameter encryption. On the same note, to deal with replay attacks, an
SPT scheme by Gao et al. [29] was designed to change the MIC format and the DevNonce.
DevNonce is used to store all the important information about the joining time for each
end device. Again, an OTP is used for only one accessing and transmission process which
guarantees that all the previous data cannot be re-used by the attackers to intercept current
processes. Lastly, during OTAA, the SPT guarantees that though the root key may be leaked
from the resting devices, the attackers cannot use the leaked root key to copy and intercept
the transmitted requests.

The AES 128-bit counter was also suggested by Fonmez and Nigussie [30] to deal with
eavesdropping and replay attacks by not re-using the DevNonce and joinNonce_last values
to strengthen the security by making exploiting the replay attack insufficient. In addition,
to deal with fake sessions on the network server, the joining server does not re-use the
joinNonce value where the DevNonce_last value in the improved replay protection protocol
is not re-used for configuration. For bit flipping and ACK spoofing attacks, the new
message integrity check calculations in the proposed v1.1 are employed and use the frame
counters for frame acknowledging. In a similar study, Naoui et al. [31] designed security for
LoRaWAN to counter man-in-the-middle attacks. The schemes employed an AES 128-bit
symmetric encryption to secure communication between the end devices and the gateways.
An SSL protocol is used for authenticity and security in the communication between the
gateway and network server. Moreover, for a group of proxy nodes communicating using
public keys, the exchanged message is only decrypted by the relevant CA with the relevant
private key of the proxy node.

5. Discussions

In this paper, several research works on security models in LPWAN, IoT, and Lo-
RaWAN have been surveyed and presented. The paper brings together a comprehensive
analysis of existing key security models, the possible challenges of key security manage-
ment and their different attacks. For each study considered, we performed an analysis
in terms of the techniques for key security models, their correctness to verification and
validation, and the performance analysis and evaluations based on the security efficiency
and effectiveness. Moreover, possible research opportunities were identified and discussed
as well. The summary of the findings is presented in Tables 2–4.

As shown in Tables 2 and 3, several security metrics were used to analyse and assess
the security performance and effectiveness of the proposed key security models. We found
the urgent need to address the security issues faced in LoRaWAN key security models.
Existing less complex and lightweight security models already designed are still in their
infancy, hence there is the need to enhance these models or propose novel key security
models. Several studies considered focused on improving the existing LoRaWAN key
security models considering the LPWAN nature, whereas some researchers improved
the LoRaWAN AES-128-bit algorithm. For instance, Kim and Song [1] modified the AES-
128 algorithm by simplifying the key and D-Box dynamic update for the dynamic key
process. In the work, by Choi and Kim [7], the AES-128 algorithm was improved by
implementing AES-128-bit Electron Cipher Block using XOR with Hash function, while
others such as Gao et al. [8] and Prasetyo et al. [9] focused on alleviating complex operations
on the network servers by implementing a trusted third party to securely and efficiently
manage and distribute both the AppKey and session keys, namely AppSKey and NwkSKey.
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Moreover, Choi and Kim [7] focused on improving key distribution. In addition, for each
proposed solution, experiments were conducted to analyse and assess its performance and
effectiveness against several common attacks while preserving the nature of the resource-
constrained LPWAN devices.

Furthermore, we also found that several attacks affect the LoRaWAN key security
model. Among these attacks, replay attacks have been identified as the commonest attack
in the network that compromises the LoRaWAN security. These attacks mainly exploit
the AppKey as the main key in the network responsible for generating two session keys,
namely, AppSKey used for payload encryption and decryption between the end-device
and the application server, and the NwkSKey used for validating message integrity. In
some of the proposed security models, the severity of the replay attack on the AppKey
is discussed if the AppKey is not updated for every session as this leads to a replay
attack intercepting the AppKey to generate the old session keys to discover previously
communicated messages [1,3,21,29]. LoRaWAN as an LPWAN technology is prone to
security attacks due to the nature of connecting end devices and the base stations in a
star topology. As argued by other researchers Naoui et al. [1], and Kim and Song [2]
as implemented in some of the existing works, the AppKey should be regenerated and
re-updated for every session. This is important to enforce a defence mechanism against
any attacks where the previous communication cannot be discovered due to session keys
being regularly updated using a new AppKey for every session. However, updating
these keys should not be extremely regular as this could impact the energy efficiency
of resource-constrained devices. Thus, the resource-constrained nature of the devices
should be considered when designing these key models in LPWAN as heavy and complex
operations affect critical resources. Moreover, asymmetric encryption is not commonly
implemented in LPWAN due to its heavy and complex operations that are less compatible
with the nature of LPWAN. Most researchers implement the key security models based on
symmetric encryption as it is not complex and heavy on operations [28,31].

6. Possible Research Opportunities

As the LPWAN paradigm is gaining popularity, several studies have been proposed
to address several research gaps highlighted in the studies considered in this paper for
efficient security models. This section discusses some of the possible research opportunities.

• Kim and Song [2] recommend a dual server mechanism to ease the complexities
in layers. One server shall facilitate transmission processes and the other server
for facilitate reception processes. Moreover, we recommend an autonomous key
generation and update mechanism implemented on the key server; this is to overcome
key replay attacks if the old keys are breached by the attacker.

• Similarly, the proposed scheme by Tsai et al. [3] was only evaluated using the formal
method. However, the use of security verifying tools such as Scyther and ProVerif
should also be considered to check for other security vulnerabilities not proven by
mathematical proofs.

• In the same vein, Han and Wang’s [26] proposed scheme should further be investigated
by using a security verifying tool to analyse the proposed model for other attacks not
analysed in this work that are likely to severely affect the proposed model.

• In Choi et al. [5], we recommend further experiments using security verifying tools to
be carried out to analyse more attacks that are likely to compromise the network.

• In the scheme proposed in Prasetyo et al. [27], we suggested future work that con-
siders dynamic and autonomous key updates to avoid replay attacks and security
implementation at all entities as well as an entity that is scalable to memory to avoid
overheads in a resource-limited FPGA due to complex operations.

• In Ruotsalainen et al. [4], the authors suggested performing a system-level analysis
and evaluation for large coverage LPWAN with less energy consumption.
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• Similarly, Roselin et al. [28] have suggested minimizing strong interferences when
establishing communication in the network between the router and the wireless end
devices by synchronization amongst these wireless end devices in their study.

• Naoui et al. [1] recommend an energy harvesting model to sustain the lifespan of
LoRaWAN end devices to accommodate repetitive processes of accepting and re-
computing session keys.

• Likewise, in the work by Tsai e al. [14], we recommend the use of a security analyser
tool on their proposed model to verify other attacks not analysed. This is to identify
other attacks existent in the LPWAN invisible to the human eye.

• The proposed SPT model by Gao et al. [29] lacks in-depth evaluations and analyses of
the attacks. Thus, we recommend that the work can be extended by taking advantage
of the flexibility of tools such as Scyther to effectively analyse the proposed model
against all other possible LoRaWAN attacks.

• The security verifying tool is also recommended for the work by Donmez et al. [30].
Accordingly, Naoui et al. [31] have suggested the use of a Markov chain model in
evaluating the trust values of the proxy nodes following their behavioural history.
The chain Markov will be used to change each proxy node’s trust state based on the
joining, leaving, and packet relaying phases.

7. Conclusions

This paper presented a comprehensive analysis of existing key security models in
LPWAN using LoRaWAN as a case study. The study focused on the existing challenges, key
security model attacks and the proposed solution approaches implemented for LoRaWAN
key security. This paper performed an analysis on several security algorithms, key security
models, their correctness, verification, and validations, as well as performance. We found
that LoRaWAN is a promising key security protocol for implementation in LPWAN and is
affected by its resource-constrained nature. Moreover, the analysis reveals that symmetric
encryption dominates the modelling of key security in LoRaWAN based on the AES-128 bits
scheme while asymmetric encryption was considered inept due to the involved complex
operations and the LPWAN resource-constrained setting. Furthermore, the area is still in
its infancy stage and only a little research is available. Therefore, more research attention
should be focused on this aspect. When designing reliable, flexible, and efficient key
security models in the LPWAN ecosystems, an encryption system that is lightweight such
as symmetric encryption should be utilized. This is because as the AppKey is generated
and distributed to generate AppSKey and NwkSKey, it is important to design a secured
key model to secure the AppKey and update it regularly to avoid attacks such as replay
attacks. In addition, there is a need to design and develop a LoRaWAN security model
that is compatible with LPWAN. Network security tools such as Scyther, ProVerif, AVISPA,
etc. should be used to analyse and validate any proposed models against several attacks,
especially if such models are to be used in real-life applications.

For our future work, the intention is to design and implement a less complex and
lightweight key security model in LoRaWAN with a flexible and efficient key distribution
trusted key server that is compatible with LPWAN’s nature. This is positioned at improving
some of the existing model(s) discussed in this paper as the goal of this paper was to
identify and bring together several existing challenges that affect traditional LoRaWAN
security models. Furthermore, we recommend that other researchers on LoRaWAN security
consider aspects such as security, efficiency, and integrated capability as metrics to analyse
their proposed models for an improved analysis; this yields an in-depth analysis of their
proposed works based on those aspects rather than analysing the assumption that the
proposed existing models satisfy security, efficiency, and integrated capability as metrics.
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