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Abstract: The Internet of Things (IoT) is a promising technology that allows numerous devices to
be connected for ease of communication. The heterogeneity and ubiquity of the various connected
devices, openness to devices in the network, and, importantly, the increasing number of connected
smart objects (or devices) have exposed the IoT network to various security challenges and vulnera-
bilities which include manipulative data injection and cyberattacks such as a denial of service (DoS)
attack. Any form of intrusive data injection or attacks on the IoT networks can create devastating
consequences on the individual connected device or the entire network. Hence, there is a crucial
need to employ modern security measures that can protect the network from various forms of attacks
and other security challenges. Intrusion detection systems (IDS) and intrusion prevention systems
have been identified globally as viable security solutions. Several traditional machine learning
methods have been deployed as IoT IDS. However, the methods have been heavily criticized for
poor performances in handling voluminous datasets, as they rely on domain expertise for feature
extraction among other reasons. Thus, there is a need to devise better IDS models that can handle
the IoT voluminous datasets efficiently, cater to feature extraction, and perform reasonably well in
terms of overall performance. In this paper, an IDS based on redefined long short-term memory deep
learning approach is proposed for detecting DoS attacks in IoT networks. The model was tested on
benchmark datasets; CICIDS-2017 and NSL-KDS datasets. Three pre-processing procedures, which
include encoding, dimensionality reduction, and normalization were deployed for the datasets. Using
key classification metrics, experimental results obtained show that the proposed model can effectively
detect DoS attacks in IoT networks as it performs better compared to other methods including models
from related works.

Keywords: attacks; CICIDS-2017; deep learning; denial of service; intrusion detection system; internet
of things; long short-term memory; machine learning; multilayer perceptron; NSL-KDS; refined long
short-term memory

1. Introduction

In recent years, IoT has been adjudged as one of the most innovative technologies in
computing, as it has the potential of changing every sphere of human life [1]. According
to [2–6], by 2020 to 2025, it is expected that the number of smart devices connected to the
Internet will reach up to 50 billion and 75 billion, making it one of the fastest-growing
areas in the history of computing. IoT aims to connect devices and enables machine-to-
machine communication, thereby allowing devices to exchange information without human
involvement [7]. IoT covers a large variety of applications such as smart homes, smart cities,
smart metering, agriculture, smart grids, smart healthcare, etc. [8,9]. Due to the increasing
advancements in information and communication technology, and the global cybersecurity
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issues, security and privacy concerns have been generally identified as a major challenge
of IoT deployment. The extensive deployment of IoT devices in an open environment
has exposed the networks to various cyberattacks and security threats [10]. Numerous
cyberattacks such as replay, wormhole, Sybil, man-in-the-middle (MITM), denial of service
(DoS), side-channel, etc., have continued to be a menace [11–13]. Hence, it is important to
develop an effective security measure that can constantly and urgently learn and detect
attacks such as DoS attacks in IoT networks.

Signature-based and anomaly-based intrusion detection systems (IDS) have been
identified as security solutions for mitigating attacks and intrusions into IoT networks.
Numerous IDS techniques have been proposed in the literature, using varieties of methods
including mathematical formulations, data mining such as machine learning approaches,
etc. [14–16]. These statistical formulations and the traditional machine learning models
struggle in handling the high-dimensional IoT data, thus leading to poor performances.
Hence, better methodologies, such as deep learning approaches hold great importance.

Deep learning has been extensively proposed for IDS in recent years due to its strong
learning and feature extraction capabilities, especially in situations involving voluminous
datasets. Deep learning techniques use multiple layers to gradually extract significant
features from the raw input without domain expertise [17,18]. In this paper, we propose a
refined long short-term memory (RLSTM), an advanced recurrent neural network (RNN)
deep learning model for DoS attack detection in IoT. Due to the limited availability of
real-time IoT network traffic datasets, researchers make use of simulated datasets as well
as publicly available datasets which show real-life attributes of network traffic and recent
attack scenarios. Two publicly available datasets with network traffic similar to real-life IoT
network traffic; NSL-KDD and CICIDS-2017 datasets were used to test the effectiveness of
the developed RLSTM model. Three preprocessing steps were deployed on the datasets
and the results were compared to other methods including models from related works. The
main contributions of the paper are summarized below:

• We present an effective model based on an improved deep learning algorithm for
detecting and classifying intrusions in IoT.

• We proposed a refined long short-term memory (RLSTM) model which can detect
denial-of-service (DoS) intrusions with a high level of accuracy using two voluminous
traffic datasets, namely, NSL-KDD and CICIDS-2017 datasets to test the performance
of the proposed model.

• To boost the classification performance of the developed model, we performed encod-
ing, dimensionality reduction, and normalization preprocessing procedures on the
two datasets.

• We deployed the following performance evaluation metrics: precision, recall, F1-score,
and classification accuracy to assess the effectiveness of the proposed models.

• For evaluation, we compared the performance of the modeled RLSTM model with
other machine learning methods using both NSL-KDD and CICIDS-2017 datasets. The
experimental results illustrate that the modeled RLSTM model is very suitable for IoT
intrusion detection. The performance of the RLSTM model is superior to the other
considered classification methods on the two datasets.

The rest of the paper is structured as follows. Section 2 presents related works.
Section 3 presents the proposed IDS model. Section 4 presents the experimental evaluation.
Section 5 presents the results and discussions. Section 6 presents the threat to validity while
Section 7 presents the conclusions.

Overview of Denial-of-Service (DoS) Attack

A denial of service (DoS) attack can be described as an attempt by malicious attackers
to consume network resources or bandwidth by temporarily or indefinitely disrupting the
network services of a computer or any devices connected to a network [12]. They are the
most common and dangerous cyberattack against IoT devices which leads IoT systems to
total shut down [19]. According to Hussain et al., DoS and DDoS attacks are increasing
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in frequency and intensity, with an average of 28.7 K attacks per day [20]. Due to the low
computational power and battery power of IoT devices, DoS attack on an IoT network has
the potential to be more damaging [21]. Mahmoud et al. also explained that the network
layer of IoT is mostly susceptible to DoS attacks [22]. The heterogeneity of the various
connected devices and most importantly, the increasing number of connected smart devices
has exposed the IoT to various DoS attacks. These attacks are currently preventing IoT
from reaching its full potential. For instance, a massive DoS attack scenario within the IoT
networks was performed against the anti-spam organization Spamhaus in March 2013 [23].

DoS attacks can be categorized into two: those that crash services and those that flood
services. Distributed denial of service (DDoS) attacks are the most serious attacks [24]. The
DDoS attack has caused significant damage to the IoT ecosystem. As a result, IoT users paid
close attention to the threats. In 2016, the attacks continued to have an impact on IoT devices,
which had the highest record in terms of cyberattacks in 2016 [25]. According to Akamai
researchers, IoT devices account for roughly 21% of all DDoS attacks worldwide [26]. The
DDoS attack is a type of DoS attack whereby multiple systems or machines or devices
operate together to carry out an attack on a single target, which makes it difficult to
track and turn off the attack machines. DDoS attackers often use a botnet to disrupt
network services [27,28]. On 21 October 2016, the biggest DDoS attack was performed
using Mirai IoT malware. The consequences of this attack were hours-long outages and
service interruptions for some popular websites such as Amazon, Netflix, Twitter, and
others [29,30]. According to Balaban, in 2014, a DDoS attack estimated at 400 gigabits per
second slammed Cloudflare, a cybersecurity service and content delivery network [31].
Similarly, on 28 February 2018, GitHub, a software development platform, was subjected to
a DDoS attack that clocked in at 1.35 terabits per second [31]. Various attacks instigated
by DoS and DDoS attackers in the IoT environment include the Slowloris attack, UDP
flood attack, ping flood attack, HTTP flood attack, jamming attack, wormhole attack, smurf
attack, Mirai botnet, SYN flood attack, etc. Although different approaches to the mitigation
of DoS and DDoS attacks have been proposed, the main defense mechanisms can be divided
into three categories: prevention, detection, and mitigation.

2. Related Works

Intrusion detection systems (IDSs) are prominent security systems that are widely
used for detecting and mitigating intrusions in IoT and other similar networks. However,
the existing traditional IDSs that are based on statistical formulations are mostly inefficient
and insufficient for the rapid mitigation of IoT intrusions. The use of data mining tech-
niques such as machine learning and deep learning for intrusion detection in IoT is rapidly
growing as they offer effectiveness and are computationally inexpensive. Various data
mining models have been proposed in the literature for IoT network IDS in recent times.
Verma et al. proposed an anomaly-based IDS for DoS attacks detection in IoT networks.
The authors proposed different shallow machine learning algorithms including random
forest (RF), Adaboost (AB), GBM, ERT, CART, and multi-layer perceptron neural network
(MLP) for analyzing samples from CIDDS-001, UNSWNB15, and NSL-KDD datasets. From
the experimentation, the authors achieved the best results from RF with an accuracy of
94% [32]. Similarly, Mohammed et al. compared the results of Nave Bayes, Bayes Net,
and ZeroR machine learning algorithms for the detection and classification of attacks in
IoT devices. The UNSW-NB15 dataset samples were utilized to assess the models’ perfor-
mance [33]. Likewise, Chopra et al. presented a comparative analysis of several shallow
machine learning algorithms, which include Naïve Bayes, J48, RF, and ZeroR machine
learning classifiers to detect and classify DDos attacks in IoT. The BoT-IoT dataset was
used to evaluate the performance of the models [34]. An IDS using MLP for detecting DoS
attacks in IoT networks was proposed by Hodo et al. The proposed method effectively
detected various types of DDoS and DoS attacks with high accuracy [35]. Additionally,
Mohammed et al. proposed an IDS based on multiple machine learning algorithms which
include DT, k-NN, and NB for detecting DDoS attacks on IoT devices. The authors eval-
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uated their experiments on CICIDS-2019 dataset samples and achieved an accuracy of
100%, 98%, and 29% from the three algorithms, respectively. However, as shallow machine
learning algorithms often perform poorly especially with low accuracy when deployed on
a huge amount of training data, the various described models may not perform well when
deployed on voluminous IoT datasets [36]. Cvitić et al. proposed a DDoS traffic detection
model that uses a boosting method of logistic model trees for different IoT device classes.
From the experimentation, the authors achieved 99.92% to 99.99% accuracy for the four
device classes. Their work takes classes of IoT devices into consideration [37]. Roopak
et al. proposed an IDS based on a convolutional neural network (CNN), integrating long
short-term memory (LSTM) deep learning techniques for classifying DDoS attacks. The
experiment was evaluated on CISIDS-2017 datasets, which achieved an accuracy of 99.03%,
precision of 99.26%, recall of 99.35, and an F1-score of 99.36% [38].

As alternatives, Susilo et al. proposed an IDS for detecting DoS attacks using RF, MLP,
and convolutional neural networks (CNN). Using the BoT-IoT dataset for experimentation,
the authors acknowledged the deep learning algorithm: CNN as the best performer with
an accuracy of 91.27% compared to the 79.01% achieved by the MLP [39]. Ma et al. also
presented a CNN deep learning-based detection model for detecting DDoS attacks in IoT
using NSL-KDD datasets for evaluation. The authors were able to attain a 92.99% accuracy
rate [40]. IoT attack detection mechanisms based on CNN and LSTM to detect DDoS attacks
in IoT were proposed by Sahu et al. The authors evaluated the developed model using the
dataset from the Stratosphere lab published in 2020 and they achieved an accuracy of 96%
for the simulated attack detection [41]. In addition, Roy et al. proposed a bi-directional
LSTM deep learning technique for IDS in IoT. The paper focuses on the binary classification
of normal and attack patterns on the IoT network. The proposed model is trained using
samples from the UNSWNB15 dataset, and the experimental results achieve a 95% accuracy
rate in attack detection. However, the model is only trained using 5451 test samples from a
single dataset. Aside from that, it provides no comparison to other recent models [42].

We sought to improve the shortcomings in the above-mentioned literature, such as
scalability, efficiency, and effectiveness in the mitigation of intrusions involving voluminous
IoT datasets. In addition, we sought to provide a viable security mechanism to address one
of the most significant modern-day attacks with recently generated datasets that embod-
ies the qualitative and quantitative characteristics of modern-day IoT traffic. Therefore,
inspired by the broad acceptance of LSTM as a powerful recurrent neural network variant,
with the capability to learn order dependence in sequence classification problems, an at-
tempt has been made in this work to implement a refined LSTM intrusion detection model
for detecting DoS attacks in an IoT.

3. Proposed IDS Model

This section presents the description of the proposed method with a detailed step-by-
step process.

3.1. Refined Long Short-Term Memory (RLSTM)

RLSTM is a type of recurrent neural network (RNN) proposed by Sepp Hochreiter
and Jürgen Schmidhuber in 1997 [43]. RLSTMs are highly rated RNN variants as they have
the capability to tackle the problem of long-term dependencies of RNN [44]. In addition,
they provide long-term memory, and they have the capacity of addressing the problem of
vanishing gradients that might occur when training traditional RNNs [45,46]. They can
process an entire sequence of data and not just the single data points. RLSTM prevents
backpropagated errors from exploding. Instead, errors can flow backward via an infinite
number of virtual layers that have been unfolded in space. Unlike the typical RNN whereby,
their efficiency reduces as the gap length increases, RLSTM has an advantage of relative
insensitivity to gap length. RLSTM network components include a cell, an input gate, an
output gate and a forget gate. The cell is responsible for remembering the values at an exact
time and the three gates control how information enters and leaves the cell [44]. The three
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gates are briefly described: (1) Forget gate: this gate decides whether to keep information
from the previous hidden state and the current input or delete it. This information is passed
through the sigmoid function and the results are between 0 and 1. The value that is closer
to 0 indicates forget while the value that is closer to 1 indicates keep. (2) Input gate: the
input gate determines which information will be stored in the cell state. Information is
updated using a sigmoid and tanh function. The sigmoid and tanh function decides which
part of the information needs to be updated. Finally, the output value generated from these
functions is used to update the cell state. (3) Output Gate: this gate decides the final output
by employing a sigmoid function to select useful information from the current cell state as
the output while the tanh function obtains the final output. Mathematically, the RLSTM
gates can be expressed as [47,48]:

ft = σ(W f · [ht−1, xt] + b f ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

ct = tanh(Wc · [ht−1, xt] + bc) (3)

ot = σ(Wo · [ht−1, xt] + bo) (4)

ht = ot · tanh(ct) (5)

where ft is the forget gate, σ is the sigmoid function, W f is the weight between forget and
input gate, ht−1 is the previous hidden state, xt is the input at the current timestamp, it is
the input gate at time t, Wi is the weight of the respective gate, tanh is the tangent function,
Wc is the weight of tanh operator between cell state and network output and bc is the bias
wrt to Wc, ot denotes the output gate at time t, Wo is the weight of output gate, b f , bi, bo are
the bias, ht is the LSTM output, and ct is the cell state.

3.2. RLSTM Experimental Setup

The proposed model was conducted using MATLAB on an Intel Core i5 CPU with
8 GB RAM. The experimental setup comprises (1) pre-processing step, (2) the RLSTM
model training process, and (3) the testing and evaluation step, which is summarized in the
flowchart depicted in Figure 1. Data preprocessing was prioritized, (i.e., 1-to-N encoding,
normalization, dimensionality reduction); thus, we deployed these steps to prepare the
data before training the model. Afterward, each pre-processed dataset is partitioned into
training and testing sets, respectively. The pre-processed data are fed into the RLSTM
components individually which extract the accurate feature representation of the data,
respectively. We build an RLSTM model composed of an input layer with 25 and 65 features,
and a hidden layer with 100 and 120 neurons for the two datasets, respectively. To achieve
the best results, we employed a grid search approach to select the learning rate. The
learning rate used was 0.01 and 0.001 on 150 and 100 batch sizes, respectively. The training
reaches the minimum value of 50 and 13 epochs for the two datasets, respectively. The
adaptive moment estimation (Adam) optimizer is deployed to update the weight of the
RLSTM network. The SoftMax activation function was used to classify the learned features
and identifies the intrusion behaviors as normal or abnormal. To enhance efficiency, cross-
entropy is utilized as the loss function. Table 1 depicts the training parameters used in
the model implementation. These parameters were chosen because they resulted in the
optimal outcomes from several initial trials. The pseudocode of the RLSTM model is shown
in Algorithm 1.
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Algorithm 1: RLSTM Model

1 Load Datasets Datasets: NSL-KDD; CICIDS-2017 (training sets and testing sets);
2 for Data in Training and Test datasets do
3 Extract Features (x)
4 Extract Labels (y)

Input: Features Extracted from Datasets
Output: Classification results

5 for Features in x do
if datasets feature = non-numerical then
Encode using 1-to-N encoding

6 Normalize features Using Min-max normalization x′ = x−min(x)
max(x)−min(x)

7 Training Train RLSTM model using the NSL-KDD and CICIDS-2017 training set;
Add activation function = Softmax;
Then classify;

8 Testing RLSTM model testing
Testing sets are fed into the RLSTM to detect attacks;

9 Evaluation:
Compute (loss = ‘cross entropy’, optimizer = ‘adam’)
Compute classification results using {accuracy, precision, recall and
f1-score}

10 Output: Classification results
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Table 1. RLSTM parameters.

Parameter NSL-KDD Specification CICIDS-2017 Specification

Sequence input layer 1 1
Sequence input length 25 features 65 features
Number of hidden layers
neurons 100 120

Number of fully
connected layers 2 2

Activation function Softmax Softmax
Optimizer Adam Adam
Batch size 150 100
Epochs 50 13
Learning rate 0.01 0.001

4. Experimental Evaluation

The following sub-sections describe the dataset used in the study, the pre-processing
steps, and the evaluation step.

4.1. Used Datasets

The datasets employed in this experiment are the NSL-KDD and CICIDS-2017 datasets.
The NSL-KDD dataset was developed by Tavallaee et al. in 2009 [49] to improve

some of the shortcomings of the KDD99 dataset, which is the most deployed intrusion
detection dataset but contains a huge number of duplicate and redundant records [49]. The
NSL-KDD dataset is one of the currently available public datasets that provide labels for
both training and testing sets, which comprise 24 and 38 attack types, respectively. The
dataset contains simulated attacks made up of network traffic. For our experiment, we
utilize the NSL-KDD dataset because it does not contain a huge number of redundant
records. Additionally, the amount of repetitive data is minimized in the dataset. This
dataset consists of 125,973 network flow data, 41 features, and 1 class attribute, which is
marked as normal or attack. The NSL-KDD dataset comprises denial of service (DoS), user
to root (U2R), remote to local (R2L), and probing attacks. In this study, DoS attacks were
analyzed. Table 2 gives the summary of this dataset.

Table 2. Summary of NSL-KDD dataset.

Traffic Normal U2R Attack DoS Attack R2L Attack Probing Attack

Training 67,343 52 45,927 995 11,656
Testing 9711 200 7458 2887 2421

The CICIDS-2017 dataset is a recently generated open-source dataset provided by the
Canadian Institute of Cybersecurity for intrusion detection. The CICIDS-2017 dataset has
the attributes of practical real-life network traffic, and its labeling is based on the timestamp,
source and destination IPs, source and destination ports, protocols, and attacks [50]. This
dataset was captured over a duration of 5 days with 2,830,743 records, 80 network traffic
features, and 15 attack types. The dataset is the collection of real-world data which com-
prises eight traffic monitoring sessions in the form of a CSV file that contains normal and
intrusion traffic. The normal traffic is described as ‘benign’ while the latter is referred to as
‘attacks’. From the simulation, other than the normal traffic, seven attacks were generated
which include Brute Force, Heart Bleed, Botnet, DoS, DDoS, Web, and Infiltration Attack.
In this study, the DoS attack was also analyzed. The summary of the dataset is shown
in Table 3.
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Table 3. Summary of CICDS-2017 dataset.

Filename Attacks Number of Samples

Wednesday working
hours. pcap

Benign, 440,031
DoS Hulk 231,073
DoS GoldenEye 10,293
DoS Slowloris 5796
DoS Slowhttptest 5499
Heartbleed 11

4.2. Data Pre-Processing Steps

The importance of data pre-processing steps cannot be overemphasized since they
have a considerable impact on classification performance. We follow a few steps to prepare
the data before training the model.

We extract the data of DoS attacks (normal, back, land, neptune, smurf, pod, and
teardrop) and normal from the original NSL-KDD dataset to create a new dataset named
DoS-KDD which consists of 42 different attributes or columns. We also extract the data of
DoS attacks from CICIDS-2017. We consider the Wednesday working hour dataset which
contains several kinds of DoS labeled attacks. To develop the deep learning models, all
input and output variables are required to be numeric. Since our data are categorical, we
encode them to numbers before we fit and evaluate the model. Therefore, we converted
non-numerical data to numerical data using 1-to-N encoding such as the protocol TCP is
converted to 1, UDP is converted to 2, and ICMP is converted to 3. Subsequently, we remove
all constant-valued attributes in all records of DoS-KDD data. These attributes include
columns 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22. This result in dimensionality
reduction from 42 to 27 attributes. For DoS-CICIDS-2017, we remove all constant-valued
attributes. These attributes include columns 32, 33, 34, 50, 57, 58, 59, 60, 61 and 62. This
result in dimensionality reduction from 79 to 69 attributes. The attributes were removed
due to their zero value. Lastly, the features in the datasets were normalized to prevent
feature differences. The goal of normalization is to change the values of numeric attributes
or columns in the dataset into the ranges 0 and 1. We deployed a min-max normalization
approach. More information on the min-max normalization can be found in [51].

4.3. Performance Metrics

The performance of the proposed intrusion model was evaluated using the following
key metrics; accuracy, precision, recall, and F-score. We present a brief definition of the
classification metrics. Accuracy measures the percentage of correct classifications to the
total classification made. Precision estimates the probability that a positive prediction
is correct. High precision means a low false-positive rate. Recall measures the positive
instances that are correctly classified. F-score combines precision and recall. It can be
defined as the average value of precision and recall. Mathematically, these metrics can be
expressed as [52,53]:

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F− score = 2× (precision× recall)
(precision + recall)

(9)

where true positives (TP) can be defined as the correctly predicted event class or value.
False positives (FP) happen when the actual class contradicts the predicted one and false
negatives (FN) can be described as the incorrectly predicted no event values. It happens
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when the predicted class contradicts the actual one. True negative (TN) can be described as
correctly predicted no event values.

5. Results and Discussion

This section presents the results obtained from analyzing the proposed RLSTM model
for detecting DoS attacks on the employed IDS datasets.

5.1. Evaluation Results of the Two Datasets

Using the NSL-KDD dataset, Table 4 and Figure 2 presents the results of the proposed
model. The results achieved by our proposed model are greater than 0.95 (95%) across all
classification metrics. The proposed model accurately classified the attack with a result of
98.6% using the NSL-KDD dataset. With regards to classification error, the proposed model
presented a recall and F-score of 98.15% and 98.59%, respectively. The average accuracy,
precision, recall, and F-score of 98.60% were achieved from both classification of normal
and attack classes. The proposed model predicted 8874 correct classification samples and
126 misclassification samples from the testing data samples.

Table 4. Results of NSL-KDD.

Classifier Class Accuracy (%) Precision (%) Recall (%) F-Score (%)

Proposed RLSTM model DoS Attack 98.60 99.03 98.15 98.59
Normal 98.60 98.17 99.04 98.60
Average 98.60 98.60 98.60 98.60
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Figure 2. Comparison analysis of the developed RLSTM models using two datasets.

Using the CICIDS-2017 dataset, Table 5 and Figure 2 presents the results achieved from
the proposed model. The proposed model accurately classified the DoS attack with a result
of 99.22% using the CICIDS-2017 dataset. With regards to classification error, the proposed
model presented a recall and F-score of 99.62% and 99.22%, respectively. The average
accuracy, precision, recall, and F-score of 99.22% were achieved from both classification
of normal and attack classes. The proposed model predicted 19,250 correct classification
samples and 150 misclassification samples from the testing data samples. Overall, the
results obtained from the experiments conducted have shown that the proposed model is
good at detecting DoS attacks with high accuracy.
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Table 5. Results of CICIDS-2017.

Classifier Class Accuracy (%) Precision (%) Recall (%) F-Score (%)

Proposed RLSTM model Dos Attack 99.2 98.83 99.62 99.22
Benign 99.2 99.62 98.82 99.22
Average 99.2 99.23 99.22 99.22

5.2. Comparison with Machine Learning Algorithms

To prove the efficacy of the RLSTM model in terms of feature extraction and classifica-
tion of intrusions, we compare the model with the most used machine learning algorithm,
which is the multilayer perceptron neural network. We choose MLP because of its ability to
learn complex relationships, and its ability to easily generalize models and give efficient
predictions. The results of the MLPNN classification algorithm for classifying the NSL-
KDD and CICIDS-2017 dataset were evaluated and compared with the results achieved
from the RLSTM model. Tables 6 and 7 depict the result of the MLPNN model result. The
accuracy of the developed RLSTM and MLPNN in correctly classifying the DoS attack is
99.20% and 98.60%, respectively. It could also be observed that the proposed RLSTM model
outperformed the developed MLPNN in terms of accuracy and other metrics.

Table 6. Results of MLPNN (NSL-KDD).

Classifier Class Accuracy (%) Precision (%) Recall (%) F-Score (%)

Proposed MLP model DoS Attack 98.39 98.51 98.27 98.39
Normal 99.39 99.27 99.51 99.89
Average 98.89 98.89 98.89 99.14

Table 7. Results of MLPNN (CICIDS-2017).

Classifier Class Accuracy (%) Precision (%) Recall (%) F-Score (%)

Proposed MLP model Dos Attack 98.22 99.87 96.57 98.19
Benign 98.22 96.68 99.87 98.25
Average 98.22 98.28 98.22 98.22

5.3. Performance Comparison with Previous Studies

The proposed model was compared with methods proposed in previous studies.
Table 8 presents the comparative analysis of the proposed model results with the results
from related works in the literature. Verma et al. [32] proposed and compared different
shallow machine learning algorithms including RF, AB, GBM, ERT, CART, and MLP for
analyzing samples from CIDDS-001, UNSWNB15, and NSL-KDD datasets and achieved
the best results from RF with an accuracy of 94%. Further, Hodo et al. [35] proposed the
MLP model which achieved an accuracy of 92.84%. Furthermore, Mohammed et al. [36],
proposed and compared DT, k-NN, and NB algorithms. They evaluated their experiments
on the CICIDS-2019 dataset and achieved an accuracy of 100%, 98%, and 29%, respectively.
Similarly, Susilo et al. [39], proposed RF, MLP, and CNN. Using the BoT-IoT dataset for
experimentation, the authors reported CNN as the best model with an accuracy of 91.27%.
Ma et al. [40], also presented a CNN model using the NSL-KDD datasets for evaluation. The
authors were able to attain a 92.99% accuracy rate. CNN and LSTM model was proposed by
Sahu et al. [41]. The authors used the dataset from the Stratosphere lab published in 2020
to evaluate the model and they achieve an accuracy of 96%. When compared to previously
proposed methods in the literature, the proposed model performed better in terms of accu-
racy, precision, recall, and F-score. However, as some of the previously proposed models in
the literature used shallow machine learning algorithms, the choice of training parameters
and the selected classifiers deployed may have led to different results. Nonetheless, the
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proposed model outperforms the models proposed in the literature as they have better
feature extraction capabilities, and they perform better with a voluminous dataset.

Table 8. Performance comparison with previous studies.

Classifier Accuracy (%) Precision (%) Recall (%) F-Score (%)

RF [32] 94 / / /
MLP [35] 92.84 / / /
DT, k-NN, NB [36] 100, 98, 29 100, 96, 27 100, 97, 100 100, 97, 42
RF, MLP, CNN [39] 91.27 and 79.01 / / /
CNN [40] 92.99 / / /
CNN and LSTM [41] 91.20 90.81 92.70 91.75
Proposed model 99.22 99.23 99.22 99.22

6. Threat to Validity

This section investigates the validity of the outcomes obtained in this study.

• Construct validity: refers to the relationship between the experiment carried out and
the results obtained. This threat is mostly related to the algorithms employed in
the experiment. As a result, we were certain that the algorithm’s descriptions and
pseudocodes employed in this study were correct. The results obtained from the
performance metrics in terms of accuracy and other metrics were satisfactory, showing
that the proposed model is consistent.

• Internal validity: Internal threats are relatively linked to the experimental setup.
Because different parameters must be defined and selected for the algorithm, we
employed a grid-search approach to mitigate this threat. The performance metrics
employed, and the used dataset are all well-known. As a result, there have been no
changes that could have resulted in inaccurate evaluation results.

• External validity: external threats refer to the ability to apply our findings and con-
clusions to different situations. In this study, the experiments were carried out with
two voluminous and popular IDS datasets; NSL-KDD and CICIDS-2017 datasets. Due
to the limited availability of real-time IoT network traffic datasets, it should be noted
that the two datasets deployed are not generated from typical IoT devices. However,
the deployed datasets show similar traits, attributes, and trends of IoT network traffic
and recent attack scenarios. In addition, the findings from the work were consistent
with what has been found in the literature irrespective of the datasets. In the future,
when we model another intrusion detection system, we plan to validate the model
using the Bot-IoT dataset which is an IDS dataset designed specifically for IoT.

7. Conclusions

The heterogeneity and ubiquity of the various connected devices, openness to devices
in the network, and, importantly, the increasing number of connected smart objects (or
devices) have exposed the IoT network to various security challenges and vulnerabilities
which include manipulative data injection and cyberattacks such as denial of service (DoS)
attack. Any form of intrusive data injection or attacks on the IoT networks can create
devastating consequences on an individual connected device or the entire network. In
this paper, an intrusion detection system based on RLSTM deep learning technique was
proposed for detecting DoS attacks in IoT. The NSL-KDD and CICIDS-2017 datasets were
used in the experiments to evaluate the proposed RLSTM model. To improve classification
results, the deployed datasets were initially pre-processed before they were used to train
the developed RLSTM model. The effectiveness of the proposed model was determined
using accuracy, precision, recall, and f-score performance metrics. The proposed RLSTM
model achieved 99.22% accuracy for detecting DoS attacks on the CICIDS-2017 dataset.
Furthermore, it attained a 99.23% precision rate, 99.22% recall rate, and 99.22% f-score rate
for detecting DoS attacks on the CICIDS-2017 dataset. Using the NSL-KDD dataset, the
model achieved 98.60% across all the performance metrics. Based on the experimentation
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results, it is evident that the RLSTM model proposed has a better intrusion detection effect.
The experimental results also demonstrated that the proposed model outperformed the
models proposed in the literature. Hence, the proposed RLSTM model can be employed
as an intrusion detection system to secure IoT networks from DoS attacks. In future
work, we will investigate the possibility of other deep learning algorithms to improve the
performance of IDS using the BoT-IoT dataset for IoT security. Furthermore, we plan to
investigate other types of attacks against IoT.
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9. Cvitić, I.; Peraković, D.; Periša, M.; Gupta, B. Ensemble machine learning approach for classification of IoT devices in smart home.

Int. J. Mach. Learn. Cybern. 2021, 12, 3179–3202. [CrossRef]
10. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.; Du, X.; Guizani, M. A survey of machine and deep learning methods for Internet of

Things (IoT) security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [CrossRef]
11. Yaqoob, I.; Hashem, I.A.T.; Ahmed, A.; Kazmi, S.A.; Hong, C.S. Internet of things forensics: Recent advances, taxonomy,

requirements, and open challenges. Future Gener. Comput. Syst. 2019, 92, 265–275. [CrossRef]
12. Adefemi Alimi, K.O.; Ouahada, K.; Abu-Mahfouz, A.M.; Rimer, S. A survey on the security of low power wide area networks:

Threats, challenges, and potential solutions. Sensors 2020, 20, 5800. [CrossRef] [PubMed]
13. Sambangi, S.; Gondi, L. A Machine Learning Approach for DDoS (Distributed Denial of Service) Attack Detection Using Multiple

Linear Regression. In Proceedings of the 14th International Conference on Interdisciplinarity in Engineering, Târgu Mures, ,
Romania, 8–9 October 2020; Volume 63, p. 51.

14. Liu, Z.; Thapa, N.; Shaver, A.; Roy, K.; Yuan, X.; Khorsandroo, S. Anomaly detection on iot network intrusion using machine learn-
ing. In Proceedings of the 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication
Systems (icABCD), Durban, South Africa, 6–7 August 2020; pp. 1–5.

15. Verma, A.; Ranga, V. ELNIDS: Ensemble learning based network intrusion detection system for RPL based Internet of Things. In
Proceedings of the 4th International conference on Internet of Things: Smart innovation and usages (IoT-SIU), Ghaziabad, India,
18 April 2019; pp. 1–6.

16. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. A novel ensemble of hybrid intrusion detection system for
detecting internet of things attacks. Electronics 2019, 8, 1210. [CrossRef]

17. Tang, C.; Luktarhan, N.; Zhao, Y. SAAE-DNN: Deep Learning Method on Intrusion Detection. Symmetry 2020, 12, 1695. [CrossRef]
18. Thapa, N.; Liu, Z.; Kc, D.B.; Gokaraju, B.; Roy, K. Comparison of Machine Learning and Deep Learning Models for Network

Intrusion Detection Systems. Future Internet 2020, 12, 167. [CrossRef]
19. Jazzar, M.; Hamad, M. An Analysis Study of IoT and DoS Attack Perspective. In Proceedings of International Conference on Intelligent

Cyber-Physical Systems; Springer: Singapore, 2022; pp. 127–142.
20. Hussain, F.; Abbas, S.G.; Husnain, M.; Fayyaz, U.U.; Shahzad, F.; Shah, G.A. IoT DoS and DDoS attack detection using ResNet. In

Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020;
pp. 1–6.

21. Arnaboldi, L.; Morisset, C. Generating synthetic data for real world detection of DoS attacks in the IoT. In Federation of International
Conferences on Software Technologies: Applications and Foundations; Springer: Cham, Switzerland, 2018; pp. 130–145.

22. Mahmoud, R.; Yousuf, T.; Aloul, F.; Zualkernan, I. Internet of things (IoT) security: Current status, challenges and prospective
measures. In Proceedings of the 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST),
London, UK, 14–16 December 2015; pp. 336–341.

23. Leyden, J. Biggest DDoS Attack in History Hammers Spamhaus. The Register, 27 March 2013. Available online: https://www.
theregister.co.uk/2013/03/27/spamhaus_ddos_megaflood/ (accessed on 11 September 2021).

24. Zargar, S.T.; Joshi, J.; Tipper, D. A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks.
IEEE Commun. Surv. Tutor. 2013, 15, 2046–2069. [CrossRef]

25. Aminu Ghali, A.; Ahmad, R.; Alhussian, H.S.A. Comparative analysis of DoS and DDoS attacks in Internet of Things environment.
In Computer Science On-Line Conference; Springer: Cham, Switzerland, 2020; pp. 183–194.

26. Kumar, P.; Bagga, H.; Netam, B.S.; Uduthalapally, V. SAD-IoT: Security Analysis of DDoS Attacks in IoT Networks. Wirel. Pers.
Commun. 2022, 122, 87–108. [CrossRef]

27. Almaraz-Rivera, J.G.; Perez-Diaz, J.A.; Cantoral-Ceballos, J.A. Transport and Application Layer DDoS Attacks Detection to IoT
Devices by Using Machine Learning and Deep Learning Models. Sensors 2022, 22, 3367. [CrossRef]

http://doi.org/10.3390/s19091977
http://doi.org/10.1109/MDAT.2016.2526612
http://doi.org/10.1109/JSAC.2016.2525418
http://doi.org/10.1109/COMST.2015.2444095
http://doi.org/10.4018/JOEUC.20211101.oa12
http://doi.org/10.1109/ACCESS.2017.2779844
http://doi.org/10.1109/ACCESS.2019.2924045
http://doi.org/10.1007/s13042-020-01241-0
http://doi.org/10.1109/COMST.2020.2988293
http://doi.org/10.1016/j.future.2018.09.058
http://doi.org/10.3390/s20205800
http://www.ncbi.nlm.nih.gov/pubmed/33066336
http://doi.org/10.3390/electronics8111210
http://doi.org/10.3390/sym12101695
http://doi.org/10.3390/fi12100167
https://www.theregister.co.uk/2013/03/27/spamhaus_ddos_megaflood/
https://www.theregister.co.uk/2013/03/27/spamhaus_ddos_megaflood/
http://doi.org/10.1109/SURV.2013.031413.00127
http://doi.org/10.1007/s11277-021-08890-6
http://doi.org/10.3390/s22093367


J. Sens. Actuator Netw. 2022, 11, 32 14 of 14

28. Bures, M.; Klima, M.; Rechtberger, V.; Ahmed, B.S.; Hindy, H.; Bellekens, X. Review of Specific Features and Challenges in the
Current Internet of Things Systems Impacting Their Security and Reliability. In World Conference on Information Systems and
Technologies; Springer: Cham, Switzerland, 2021; pp. 546–556.

29. Shah, Z.; Ullah, I.; Li, H.; Levula, A.; Khurshid, K. Blockchain Based Solutions to Mitigate Distributed Denial of Service (DDoS)
Attacks in the Internet of Things (IoT): A Survey. Sensors 2022, 22, 1094. [CrossRef]

30. McMillen, D. Internet of Threats: IoT Botnets Drive Surge in Network Attacks. 2021. Available online: https://securityintelligence.
com/posts/internet-of-threats-iot-botnets-network-attacks/ (accessed on 17 December 2021).

31. Balaban, I. Denial-of-Service Attack. Int. J. Inf. Secur. Cybercrime (IJISC) 2021, 10, 59–64. [CrossRef]
32. Verma, A.; Ranga, V. Machine learning based intrusion detection systems for IoT applications. Wirel. Pers. Commun. 2020, 111,

2287–2310. [CrossRef]
33. Mohammed, M.M.; Alheeti, K.M. Evaluating Machine Learning Algorithms to Detect and Classify Attacks in IoT. In Proceedings

of the International Conference on Communication & Information Technology (ICICT), Basrah, Iraq, 5–6 June 2021; pp. 180–184.
34. Chopra, A.; Behal, S.; Sharma, V. Evaluating machine learning algorithms to detect and classify DDoS attacks in IoT. In Proceedings

of the 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,
17–19 March 2021; pp. 517–521.

35. Hodo, E.; Bellekens, X.; Hamilton, A.; Dubouilh, P.L.; Iorkyase, E.; Tachtatzis, C.; Atkinson, R. Threat analysis of IoT networks
using artificial neural network intrusion detection system. In Proceedings of the International Symposium on Networks,
Computers and Communications (ISNCC), Hammamet, Tunisia, 11 May 2016; pp. 1–6.

36. Mohammed, S. A Machine Learning-Based Intrusion Detection of DDoS Attack on IoT Devices. Int. J. 2021, 10, 2278–3091.
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