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Abstract. Deep learning has gained traction due its supremacy in terms of 

accuracy and ability to automatically learn features from input data. 

However, deep learning algorithms can sometimes be flawed due to many 

factors such as training dataset, parameters, and choice of algorithms. Few 

studies have evaluated the robustness of deep learning distracted driver 

detection algorithms. The studies evaluate the algorithms on a single dataset 

and do not consider cross-dataset performance. A problem arises because 

cross-dataset performance often implies model generalisation ability. 

Deploying a model in the real world without knowing its cross-dataset 

performance could lead to catastrophic events. The paper investigates the 

cross-dataset performance of deep learning distracted driver detection 

algorithms. Experimental results found reveal that deep learning distracted 

driver detection algorithms do not generalise well on unknown datasets for 

CNN models that use the whole image for prediction. The cross-dataset 

performance evaluations shed light on future research in developing robust 

deep learning distracted driver detection algorithms.  

1 Introduction  

The success of deep learning in other real-world applications such as number plate 

recognition for vehicle access control, has inspired the development of deep learning-based 

approaches to remedy the problem of distracted driver detection [1]. This move is done to 

reduce the number of distracted driver-related road accidents. The approaches proposed in 

the literature use many different techniques such as ensemble of convolutional neural 

networks (CNNs), combining CNN features and HOG features, and a hybrid of CNNs and 

recurrent neural networks (RNNs) [1]. In addition, different datasets are used for training and 

testing these approaches.  

With continuing advancements in deep learning, it is imperative to evaluate the 

performance of proposed distracted driver detection algorithms. Such evaluations not only 

do they help in generating reference work that can be used for the selection of distracted 

driver detection algorithms but may provide important insights on the usage of distracted 

driver detection techniques, evaluation metrics and datasets used for distracted driver 

detection. Such lower-level type of insights might not be obtained from the original 

publications of the algorithms.  

 
* Corresponding author: fzandamela@csir.co.za 



Currently, in the literature, there is a lack of a comprehensive study that evaluates the 

cross-dataset performance of distracted driver detection algorithms [2, 3]. Most approaches 

are published with comparative performance results. Such evaluations are not only 

incomprehensive but also do not consider cross-dataset performance. Cross-dataset 

performance is important since it generally indicates the robustness and generalising ability 

of a learning model. The generalising ability of a model gives a good indication of the 

model’s likelihood to fail when deployed in a real-world system. This study seeks to answer 

one critical question: to what extent can deep learning distracted driver detection algorithms 

generalise on image datasets they were not trained on? This is addressed by evaluating the 

performance of state-of-the-art deep learning-based distracted driver detection algorithms on 

widely used benchmark datasets. Most importantly, an in-depth evaluation and analysis of 

the cross-dataset performance of the algorithms is carried out. 

The primary contributions of this work can be summarised as follows:  

i. First comprehensive study that evaluates the cross-dataset performance of deep 

learning-based distracted driver detection algorithms.  

ii. Experimental results on widely used distracted driver detection image datasets are 

provided. By so doing, the issue of dataset bias is addressed, and the cross-dataset 

performance of the algorithms is analysed. Class activation maps are used to further 

analyse any performance differences.  

iii. The work may serve as reference work that can be used to guide the selection of 

distracted driver detection algorithms for different applications. Additionally, the 

article can generate research leads that can be pursued by other researchers.  

2 Related work 

Datasets. Datasets play a vital role in the successful application of deep learning on real 

world problems. This is because deep learning algorithms establish patterns based on features 

learned from the training dataset. Such is also the case in the task of distracted driver 

detection. The first dataset in the area of driving behaviour analysis and distracted driving 

was introduced by Zhao et al. [4, 5]. The dataset has side view images of the driver 

performing four driver activities: (i) grasping the steering wheel; (ii) operating the shift lever; 

(iii) eating a cake; and (iv) talking on a cellular phone. However, the dataset is not publicly 

available and all the papers ([6–8]) that benchmarked using the dataset are affiliated with 

either Southeast University, Xi’an Jiaotong-Liverpool University, or Liverpool University, 

and they have at least one shared author [9]. A total of 20 participants, 10 male and ten female, 

were involved in the development of the dataset.  Later, the State Farm Insurance Company 

released a dataset in a quest to find out if computer vision can spot distracted drivers. The 

insurance company held a competition named State Farm Distracted Driver Detection [10] 

on Kaggle. The State Farm dataset consists of 2D dashboard camera images, showing 10 

different driving postures. 

Despite the State Farm dataset being public, the State Farm dataset was only limited to 

the purpose of the State Farm Distracted Driver Detection competition. Due to the lack of a 

quality dataset, Billah et al. [11] created a four-class distracted driver dataset called EEE 

BUET Distracted Driving [12]. The dataset was created using a Sony Cyber Shot 14.1 mega 

pixels camera that was affixed on the front windscreen facing the driver inside the vehicles. 

The four distracted driving activities in the dataset include talking on cell phone, texting on 

cell phone, eating, and operating cabinet equipment. A total of 13 participants took part in 

the development of the dataset.  

Inspired by the State Farm dataset, Eraqi et al. created a similar dataset called AUC 

Distracted Driver Dataset [9, 13]. The dataset was made public subject to signing an 



agreement form. A two-phase data collection method was followed – in the first phase, the 

ASUS ZenFone smartphone (Model ZD551KL) rear camera was used, and the DS325 Sony 

DepthSense camera was used in the second phase. In the project, 44 drivers from 7 different 

counties were involved, of which 29 were males and 15 were females. However, it has been 

reported that the AUC dataset is not balanced, for example, the reaching behind class is only 

represents 7% of the complete data points [14]. In contrast, the normal driving class 

represents 21% of the complete dataset. In addition, not all drivers participated in all 

distraction activities. To remedy the shortcomings of the AUC dataset, Ezzouhri et al. [14] 

introduced a more balanced distracted driver detection dataset with 9 participants.  

 

Evaluation methods. Most distracted driver detection algorithms are published with 

comparative evaluations. For example, Yan et al. [8] proposed a CNN-based approach that 

recognises driving posture based on the position of the hand and evaluated the proposed 

approach on three datasets. While other authors ([1], [15–17]) compare the performance of 

the proposed method to other approaches. However, the focus of these papers is on the 

proposed algorithms and the evaluations are not comprehensive. Recently, Ezzouhri et al. 

[14] evaluated their proposed driver body parts segmentation-based distracted driver 

detection algorithm on their custom dataset and a widely used benchmark dataset (AUC 

Distracted Driver Dataset [9, 13]). The main contribution of the authors was on the proposed 

algorithm and the created dataset. The cross-dataset performance evaluations were based on 

the AUC dataset only and a few CNN-based algorithms.  

Recently, Kashevnik et al. [18] presented an extensive literature survey on distracted 

driver detection and outlined the entire chain of distracted driver detection from sensor data 

acquisition to data pre-processing, behaviour inference, and distraction type inference. 

Similarly, Huang et al. [19] provided an extensive literature survey on vision-based distracted 

driver detection algorithms. Despite these studies being compressive and providing current 

state of the knowledge on distracted driver detection, none of them evaluate and analyse the 

performance of distracted driver detection algorithms. In another study, the authors [2] 

presented a literature review on distracted driver detection algorithms and then proceeded to 

evaluate the performance of ten deep learning-based algorithms using a dataset called AUC 

Distracted Driver Dataset [9, 13].  

3   Experimental setup  

3.1 Algorithms 

In this study, a total of six state-of-the-art algorithms with publicly available code or where 

authors provided code upon request were evaluated. In the event where code is not available, 

the authors implemented similar algorithms based on the original publications. State-of-the-

art representative algorithms were selected based on performance results reported by other 

researchers [2, 3]. In addition, representative commonly used and recent algorithms were 

selected. The selected deep learning distracted driver detection algorithms can be broadly 

grouped into the following approaches: transfer learning, CNNs combined with other features 

or pre-processing stage, hybrid of CNNs with sequence models, and human pose estimation-

based algorithms. Table 1 shows the complete list of algorithms that were evaluated with the 

corresponding approach used.  

 

 

 

 



Table 1. List of algorithms evaluated. 

Algorithm  Approach  

ResNet50 [20] Transfer learning  

EfficientNetB0 [21] Transfer learning 

Leekha_GrabCut [22] Background removal + CNN 

ConvLSTM [23] Convolutional LSTM layers 

CNN LSTM [1] Combination of Convolutional 

and LSTM layers in 

CNN-Pose estimation [24] Combines a CNN predictions 

and predictions of a random 

forest algorithm trained on 

detected human key points  

 

3.2 Datasets 

The primary objective of this study is to evaluate the cross-dataset performance of deep 

learning distracted driver detection algorithms. To achieve this objective, three distracted 

driver detection image datasets will be used. The datasets include AUC2 dataset, driver 

distraction dataset introduced by Ezzouhri et al. [14] (EZZ2021), and the State Farm dataset. 

The AUC2 and State Farm datasets were selected based on their wide usage in benchmarking 

distracted driver detection algorithms. The datasets are relatively large and considers 9 

distracted activities. The EZZ2021 dataset was recently introduced and is similar to the 

AUC2 and State Farm datasets with 9 distracted driver classes and a save driving class. Fig.  

1 shows sample images from the EZZ2021 dataset. The different classes and driver postures 

in the three datasets are shown in Table 2.   

 
Table 2. Classes in the EZZ2021, AUC2, STF datasets. 

Class Driver action  

C0 Safe driving  

C1 Text right 

C2 Talk right 

C3 Text left 

C4 Talk left  

C5 Adjust radio 

C6 Drinking  

C7 Reach behind  

C8 Make-up  

C9 Talking to passenger  

 

 

 

 
Fig.  1: Images randomly sampled from the EZZ2021 dataset. 



Table 3 shows the distracted driver detection image datasets that will be used in the study 

with corresponding environment were the datasets were created (real or synthetic), type of 

distractions, number of drivers, and size of the datasets. 

 
Table 3. Image datasets used. *=not mentioned. 

Image Dataset Environment  Type of distractions Participants Image samples 

AUC2 Real 1 save driving, 9 

distracted activities  

44 32.7k 

EZZ2021  Real 1 save driving, 9 

distracted activities 

9 29.2k 

State Farm (STF) Real 1 save driving, 9 

distracted activities 

* 22.4k 

 

3.3 Evaluation metrics 

To evaluate the performance of an algorithm in detecting a distracted driver, the performance 

of an algorithm will be determined by comparing the classification accuracy. Accuracy is the 

simplest and commonly used indication of the performance of a machine algorithm. 

Accuracy gives the number of correct predications a model has made over the total number 

of observations in the test set. In addition, to compare the performance of the algorithms per 

class, the weighted harmonic mean of the precision and recall performance metrics, i.e., the 

F-measure (F1-score), will be used. For further analysis, class activation maps (CAMs) will 

be used. CAMs help in understanding what a CNN “see” and how it arrived at the final 

prediction. Specifically, an approach called Grad-CAM [25] will be used. Grad-CAM works 

by finding the final convolutional layer in the network and then examining the gradient 

information flowing into that layer. The output of Grad-CAM is a heatmap visualization for 

a given class label (either the top, predicted label or an arbitrary label we select for 

debugging). We can use this heatmap to visually verify where in the image the CNN is 

looking.  

4 Evaluation and analysis   

4.1 Training and evaluation 

4.1.1 Evaluation procedure 

Each distracted driver detection image dataset was split into three sets, i.e., training, 

validation, and testing. Training sets were used for training and validation sets were used for 

hyperparameter tuning. While the test set was used for cross-dataset performance evaluation. 

Each algorithm was trained separately on each dataset and tested against all three datasets.  

4.1.2 Training procedure  

Transfer learning approaches. ResNet50 and EfficientNetB0 architectures pre-trained on 

ImageNet were fine-tuned to each of the three datasets using transfer learning framework. 

The top layers (head) were replaced by a GlobalAveragePooling2D layer, followed a by a 

https://heshameraqi.github.io/distraction_detection
https://github.com/AmalEzzouhri/Driver-Distraction-Dataset
https://www.kaggle.com/competitions/state-farm-distracted-driver-detection/data


Dropout layer and a fully connected layer with 10 neurons. Table 4 shows that 

hyperparameters used for training.  

 Leekha_GrabCut. For the Leekha_GrabCut algorithm, an EfficientNetB0 model pre-

trained on ImageNet was fine-tuned to the three image datasets. However, the GrabCut 

background removal algorithm was incorporated as a pre-processing stage to the data pipeline 

used for training the Leekha_GrabCut algorithm. 

 convLSTM. A convLSTM model with 4 ConvLSTM2D recurrent layers was used. Each 

ConvLSTM2D recurrent layer was followed by a Maxpooling3D layer and a Dropout layer. 

The Maxpooling3D layer reduces dimensions of the frames and avoid unnecessary 

computations. Dropout layers help prevent overfitting the model on the data.  

 CNN LSTM. The CNN LSTM model was built using the AlexNet architecture and an 

LSTM layer with 50 units. A fully connected layer with 10 neurons and a softmax activation 

function was used for class prediction. For both convLSTM and CNN LSTM models, the 

datasets were prepared to be sequence data with five images.  

 CNN-Pose. The CNN-Pose algorithm consists of a fine-tuned EfficientNetB0 

architecture using transfer learning and a Random Forest machine learning model trained on 

detected human key points obtained through pose estimation. The final prediction was a 

combination of predictions from the CNN and Random Forest models multiplied by two 

different coefficients that add up to one. For this study, the coefficients were obtained using 

a grid search for each dataset. Table 5 shows the coefficients that were obtained for the CNN-

Pose algorithm in the three datasets.  

The models were implemented using Python 3.6, scikit-learn, NumPy, OpenCV-Python, 

PyTorch, and TensorFlow. The training and validation information of all algorithms is shown 

in Table 6.  

 
Table 4. Hyperparameters used for training the algorithms. 

Algorithm Learning rate  Optimizer Dropout Filters 

ResNet50 Head: 0.001, 15 epochs 

Fine-tuning: 1e-5 

Adam 

Adam 

0.2 

- 

- 

- 

EfficientNetB0 Head: 0.001, 15 epochs 

Fine-tuning: 1e-5 

Adam 

Adam 

0.2 

- 

- 

- 

Leekha_GrabCut Head: 0.001, 15 epochs 

Fine-tuning: 1e-5 

Adam 

Adam 

0.2 

- 

- 

- 

ConvLSTM 0.001 Adam 0.2 4-8-14-16 

CNN LSTM 0.001 Adam 0.25 CNN: 96-256-384-384-256 

LSTM: 50  

CNN-Pose 

estimation 

CNN: 0.001 Adam 0.2 - 

 
Table 5. Coefficients obtained for the CNN-Pose estimation algorithm 

Dataset Coefficients (cnn, pose) 

EZZ2021 (0.3, 0.7) 

AUC2 (0.4, 0.6) 

STF (0.3, 0.7) 

 

 

 

 

 



Table 6. Training and development (validation) information. 

 

Algorithm 

EZZ2021 AUC2 STF 

Train 

acc 

Dev 

acc 

Train 

acc 

Dev 

acc 

Train 

acc 

Dev 

acc 

ResNet50 100 90 99.42 97.30 99.75 99.70 

EfficientNetB0 99.99 99.80 99.64 97.8 99.91 99.80 

convLSTM 100 100 97.52 92 99.08 99 

CNN LSTM 91.90 92.50 80.06 70 92.65 93 

Leekha_GrabCut 99.90 99.27 97.78 44.92 96.47 90.10 

CNN-Pose estimation - 95.83 - 94 - 93.64 

 

4.2 Cross-dataset performance evaluation and analysis  

Fig.  2 through Fig.  4 show bar graphs comparing the classification accuracy of the 6 

evaluated algorithms on the 3 distracted driver test datasets. Based on the bar graphs, the 

following observations can be made:  

• All algorithms trained on the EZZ2021 training dataset perform very well on the 

EZZ2021 test set except for convLSTM and CNN LSTM algorithms which have 

average accuracies. 

• Algorithms trained on the EZZ2021 training set did not perform well on both the 

AUC2 and STF test sets.  

• The CNN-Pose algorithm trained on the EZZ2021 training dataset has a better 

performance (AUC2: 52.45%, STF: 78.75%) compared to the other five algorithms 

evaluated.  

• Algorithms trained on the AUC2 training dataset did not perform well on the AUC2 

test dataset. The algorithms also have low accuracies on both EZZ2021 and STF test 

sets.  

• Algorithms trained on the STF training dataset perform very well on the STF test 

set, except for the CNN-Pose algorithm with a 73.91% classification accuracy on 

the STF test set.  

• Algorithms trained on the STF training set did not perform well on both the AUC2 

and EZZ2021 test sets.  

• Compared to all other 5 algorithms evaluated, the CNN-Pose algorithm has a better 

performance across all thee test image datasets irrespective of the training dataset 

used. The Leekha_GrabCut algorithm has the second-best performance across the 

three datasets. 

 

 



 
Fig.  2: Cross-dataset performance for algorithms trained on the EZZ2021 dataset. 

 

 
Fig.  3: Cross-dataset performance of the algorithms trained on the AUC2 dataset. 

 

EZZ2021 test AUC2 test STF test

ResNet50 - EZZ2021 96.18 27.93 31.15

EfficientNetB0 - EZZ2021 87.98 13.87 17.98

convLSTM -EZZ2021 65.03 55.52 8.76

CNN LSTM - EZZ2021 58.19 50.43 8.09

Leekha_GrabCut - EZZ2021 97.74 33.79 30.45

CNN-Pose - EZZ2021 85.97 52.45 78.75
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Cross-dataset performance: EZZ2021 

EZZ2021 test AUC2 test STF test

ResNet50-AUC2 16.27 40.97 44.06

EfficientNetB0-AUC2 26.62 34.64 43.12

convLSTM-AUC2 20.35 19.94 20.22

CNN LSTM-AUC2 18.75 22.02 22.92

Leekha_GrabCut-AUC2 40.03 44.92 43.84

CNN-Pose-AUC2 48.28 53.79 56.21
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Cross-dataset Performance: AUC2



 
Fig.  4: Cross-dataset performance of algorithms trained on the STF dataset. 

For further analysis, the F1-score was used to compare the performance of the algorithms on 

the safe driving class.  Table 7 through Table 12 show the results of the algorithms when 

trained and tested on each of the three datasets. It can be observed that all algorithms perform 

well in detecting a driver in a safe driving posture when tested on a testing dataset that comes 

from the same dataset as the training dataset used. In contrast, the algorithms do not do well 

in detecting a driver in a safe driving posture when tested on a testing dataset that does not 

come from the same dataset as the training dataset.  These observations correspond to the 

observations made above based on the classification accuracy of the models. This was 

expected since training and testing datasets from same dataset generally have the same 

characteristics such as same camera viewpoint, drivers used, and cars used. The results also 

reveal that algorithms trained on the AUC2 dataset do perform well on all perform across the 

three testing datasets. In addition, all algorithms perform well when tested on the EZZ2021 

and STF test datasets compared to when tested on the AUC2 test dataset.  

 Based on Table 7 through Table 12, it can be observed that the CNN-Pose algorithm has 

the best overall performance across all three test datasets.  The Leekha_GrabCut algorithm 

has the second-best performance. While the convLSTM and CNN LSTM algorithms have 

the worst performance on the three testing datasets.  

 The detailed per-class and overall performance of all algorithms can be found in 

Appendix A of this paper. 

 
Table 7. Performance of the ResNet50 model on the safe driving class. 

Safe driving class  

ResNet50  Test dataset 

  EZZ2021 ACU2 STF Average 

F1-score 

T
ra

in
ed

 EZZ2021 0.85 0.52 0.31 0.56 

AUC2 0.19 0.61 0.39 0.40 

STF 0.00 0.50 0.95 0.48 

 Average 

F1-score 

0.34 0.54 0.48  

EZZ2021 test AUC2 test STF test

ResNet50-STF 16.81 36.28 99.64

EfficientNetB0-STF 25.19 27.37 99.47

convLSTM-STF 7.85 18.48 99.1

CNN LSTM-STF 10.42 29.86 93.71

Leekha_GrabCut-STF 44.05 33.4 88.3

CNN-Pose-STF 79.92 43.8 73.91
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Table 8. Performance of the EfficientNetB0 model on the safe driving class. 

Safe driving class  

EfficientNetB0  Test dataset 

  EZZ2021 ACU2 STF Average 

F1-score 

T
ra

in
ed

 EZZ2021 0.85 0.27 0.19 0.44 

AUC2 0.54 0.35 0.39 0.43 

STF 0.44 0.24 0.88 0.52 

 Average 

F1-score 

0.61 0.29 0.49  

 
Table 9. Performance of the convLSTM model on the safe driving class. 

Safe driving class  

convLSTM  Test dataset 

  EZZ2021 ACU2 STF Average 

F1-score 

T
ra

in
ed

 EZZ2021 0.97 0.00 0.00 0.32 

AUC2 0.45 0.04 0.11 0.2 

STF 0.00 0.23 0.97 0.4 

 Average 

F1-score 

0.47 0.09 0.36  

 
Table 10. Performance of the CNN LSTM model on the safe driving class. 

Safe driving class  

CNN LSTM  Test dataset 

  EZZ2021 ACU2 STF Average 

F1-score 

T
ra

in
ed

 EZZ2021 0.62 0.04 0.00 0.22 

AUC2 0.13 0.39 0.22 0.25 

STF 0.15 0.09 0.87 0.37 

 Average 

F1-score 

0.30 0.17 0.36  

 

 
Table 11. Performance of the Leekha_GrabCut model on the safe driving class. 

Safe driving class  

Leekha_GrabCut  Test dataset 

  EZZ2021 ACU2 STF Average 

F1-score 

T
ra

in
ed

 EZZ2021 0.94 0.46 0.27 0.56 

AUC2 0.39 0.58 0.43 0.47 

STF 0.29 0.27 0.88 0.48 

 Average 

F1-score 

0.54 0.44 0.53  

 



Table 12.  Performance of the CNN-Pose model on the safe driving class. 

Safe driving class  

CNN-Pose  Test dataset 

  EZZ2021 ACU2 STF Average 

F1-score 

T
ra

in
ed

 EZZ2021 0.99 0.69 0.53 0.74 

AUC2 0.78 0.60 0.56 0.65 

STF 0.98 0.60 0.96 0.85 

 Average 

F1-score 

0.92 0.63 0.68  

 

To understand what features are used by the CNN models when making predictions, Grad-

CAM was used. Fig.  5 shows a sample output of Grad-CAM when applied on the ResNet50 

models. Due to space limitations, Grad-CAM outputs of all the algorithms were not included 

in the paper. However, based on the Grad-CAM analysis, the following observations were 

made:  

• The models seem to be looking for the right features or regions of the image when 

making a prediction. This is especially true for test datasets which are from the same 

dataset as the training dataset. 

• Although the models learn important features, they also learn features that are not 

important. This especially the case when the whole image is used for training. For 

example, for the make-up class, the models look for hands on the head, face or an 

opened front mirror. This causes model confusion on images where the car has the 

front mirror opened since the models take shortcuts.  

• The models look for the position of two hands (specifically, the forearms) in relation 

to the steering wheel when predicting the safe driving driver posture. The models 

get confused when they only see one forearm. Some images were taken too close to 

the driver and as a result the two arms are not clearly visible. As a result, models 

seem to be struggling when the driver is closer to the camera.  

• The presence of a cell phone around the driver confuses the model to predict classes 

that involve the presence of a cell phone.  

 



 

 
Fig.  5: Sample output of Grad-CAM when applied on the ResNet50 model. 

The results and analysis above suggest that:  

• The CNN-Pose model has better generalising ability compared to the other 

algorithms due to a better cross-dataset performance. This can be attributed to the 

fact the model takes advantage of both rich features learnt by the CNN and human 

key points which are less variable.  

• The second-best model is the Leekha_GrabCut. The GrabCut algorithm removes 

background noise, forcing a model to focus on the body posture of the driver during 

training. This could explain why the Leekha_GrabCut algorithm can obtain 

reasonable cross-dataset performance, compared to the other algorithms, since it 

reduces dataset-to-dataset variability by removing objects that are not important in 

detecting a distracted driver.  

• The characteristics of the AUC2 dataset negatively affect the performance of 

algorithms trained on it. Based on the initial splits provided with the datasets, the 

major difference between the three datasets is that in the AUC2 dataset, drivers in 

the training set are not in the testing set. In contrast, in the EZZ2021 and STF 

datasets, drivers in the training datasets are also in the testing datasets. In the AUC2 

dataset, drivers do not participate in all driver posture activities. These differences 

could explain why models trained on the AUC2 training dataset do not perform well 

on the AUC2 test dataset. This could also explain why models trained EZZ2021 and 



STF training datasets perform well on their respective testing datasets. The authors 

also attribute the poor performance of algorithms trained on the AUC2 dataset to 

the fact that the dataset is relatively large but not diverse. Each driver in the dataset 

performs the same driver activity for more than 20 times with very little differences 

between the image frames. This creates an opportunity for shortcut learning which 

can easily arise due to a systematic relationship between the driver and background 

or context [26].  

• CNN models that use the whole image without background noise removal or without 

considering other features that are less variable, do not generalise well on new data. 

This can be attributed to fact that the three datasets are large but not diverse. 

• In general, all distracted driver detection algorithms do not perform exceptionally 

well when tested on image datasets that they were not trained on. This is especially 

the case for CNN models that use the whole image without background noise 

removal or using features that are less variable. The authors attribute this overall 

poor cross-dataset performance to the datasets used for training. The datasets are 

relatively large but not diverse, i.e., lack of high data variance. As a result, deep 

learning distracted driver detection algorithms resort to shortcut learning which 

significantly reduces their ability to generalise to new data.  

5 Conclusions and future work 

This work sought to find the extent to which deep learning distracted driver detection 

algorithms can generalise to new data that was not used for training. A cross-dataset 

performance evaluation study was carried out. Based on the analysis in section 4, it was found 

that, in general, deep learning distracted driver detection algorithms do not perform very well 

on testing datasets that do not come from the same dataset as the training dataset. Based on 

the findings of the study, the authors suggest that future work should:  

• Create large and diverse distracted driver detection image datasets. To reduce, the 

effort required, synthetic image data generation using AI (for example, generative 

adversarial networks (GANs)) and CGI can be explored.  

• Work towards creating features that are less variable from dataset-to-dataset. In the 

CNN-Pose model, the pose estimation model was given more weight than the CNN. 

This may suggest that using features derived from detected human key points (pose 

estimation) can result to a model with better cross-dataset performance.  
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Appendix A 

Per-class performance results of the algorithms 
 

Table 13. The results of the ResNet50 model on the three datasets. 

 

Class 

ResNet50-EZZ2021 ResNet50-AUC2 ResNet50-STF 

EZZ2021 

test – F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

Safe driving 0.85 0.52 0.31 0.19 0.61 0.39 0.00 0.50 0.95 

Text right 0.99 0.07 0.43 0.00 0.39 0.35 0.04 0.34 0.96 

Talk right 0.98 0.51 0.48 0.01 0.23 0.42 0.00 0.00 0.92 

Text left 1.00 0.00 0.26 0.00 0.32 0.54 0.28 0.00 0.99 

Talk left 0.92 0.00 0.29 0.05 0.53 0.56 0.01 0.58 0.97 

Adjust radio 0.93 0.00 0.19 0.05 0.68 0.64 0.00 0.86 0.94 

Drinking 0.99 0.00 0.00 0.01 0.23 0.06 0.22 0.00 0.93 

Reach 

behind 

1.00 0.19 0.32 0.33 0.31 0.57 0.25 0.42 0.98 

Make-up 0.99 0.10 0.11 0.16 0.40 0.33 0.15 0.22 0.88 

Talking to 

passenger 

0.97 0.44 0.39 0.00 0.07 0.45 0.01 0.32 0.79 

Overall 

accuracy 

96.18 27.93 31.15 16.27 40.97 44.06 16.81 36.28 99.64 

 
Table 14. The results of the EfficientNetB0 model on the three datasets. 

 

Class 

EfficientNetB0-EZZ2021 EfficientNetB0-AUC2 EfficientNetB0-STF 

EZZ2021 

test – F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

Safe driving 0.85 0.27 0.19 0.54 0.35 0.39 0.44 0.24 0.88 

Text right 0.87 0.00 0.16 0.15 0.06 0.35 0.03 0.09 0.94 

Talk right 0.86 0.00 0.31 0.04 0.55 0.42 0.00 0.00 0.87 

Text left 0.93 0.00 0.08 0.26 0.15 0.54 0.30 0.29 0.95 

Talk left 0.84 0.00 0.15 0.02 0.67 0.56 0.20 0.54 0.91 

Adjust radio 0.76 0.04 0.17 0.04 0.52 0.64 0.00 0.06 0.96 

Drinking 0.95 0.24 0.06 0.43 0.38 0.06 0.22 0.10 0.91 

Reach 

behind 

0.96 0.21 0.16 0.35 0.62 0.57 0.12 0.40 0.91 

Make-up 0.81 0.09 0.03 0.24 0.17 0.33 0.11 0.09 0.83 

Talking to 

passenger 

0.95 0.10 0.33 0.38 0.00 0.45 0.32 0.08 0.87 

Overall 

accuracy 

87.98 13.87 17.98 26.62 34.64 43.12 18.12 15.27 90.39 

 

 

 

 

 

 

 

 

 



Table 15. The results of the convLSTM model on the three datasets. 

 

Class 

convLSTM-EZZ2021 convLSTM-AUC2 convLSTM-STF 

EZZ2021 

test – F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

Safe driving 0.97 0.00 0.00 0.45 0.04 0.11 0.00 0.23 0.97 

Text right 0.99 0.00 0.09 0.18 0.10 0.04 0.16 0.21 1.00 

Talk right 0.97 0.05 0.13 0.00 0.08 0.00 0.00 0.25 1.00 

Text left 0.98 0.00 0.17 0.00 0.09 0.00 0.00 0.00 0.99 

Talk left 0.99 0.00 0.03 0.00 0.44 0.20 0.00 0.00 1.00 

Adjust radio 1.00 0.00 0.03 0.42 0.11 0.17 0.02 0.11 1.00 

Drinking 0.99 0.00 0.09 0.18 0.14 0.10 0.05 0.00 0.99 

Reach 

behind 

1.00 0.02 0.08 0.19 0.39 0.32 0.08 0.28 1.00 

Make-up 0.99 0.00 0.09 0.11 0.14 0.17 0.00 0.00 0.99 

Talking to 

passenger 

1.00 0.03 0.05 0.21 0.10 0.35 0.00 0.20 0.98 

Overall 

accuracy 

98.91 1.90 8.76 20.43 17.61 20.22 7.85 18.57 99.10 

 

 
Table 16. The results of the CNN-LSTM model on the three datasets. 

 

Class 

CNN-LSTM-EZZ2021 CNN-LSTM-AUC2 CNN-LSTM-STF 

EZZ2021 

test – F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

Safe driving 0.62 0.04 0.00 0.13 0.39 0.22 0.15 0.09 0.87 

Text right 0.89 0.00 0.00 0.02 0.00 0.00 0.03 0.10 0.99 

Talk right 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.95 

Text left 0.88 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.85 

Talk left 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 

Adjust radio 0.97 0.00 0.00 0.00 0.00 0.00 0.24 0.82 0.99 

Drinking 0.94 0.00 0.00 0.00 0.00 0.32 0.00 0.07 0.98 

Reach 

behind 

0.94 0.13 0.15 0.00 0.00 0.28 0.11 0.00 0.94 

Make-up 0.90 0.13 0.04 0.03 0.00 0.00 0.03 0.25 0.93 

Talking to 

passenger 

0.95 0.00 0.00 0.16 0.24 0.18 0.04 0.25 0.93 

Overall 

accuracy 

88.23 7.14 8.76 8.34 23.81 13.26 10.42 30.00 94.00 

 

 

 

 

 

 

 

 

 

 

 



Table 17. The results of the Leekha_GrabCut model on the three datasets. 

 

Class 

Leekha_GrabCut-EZZ2021 Leekha_GrabCut-AUC2 Leekha_GrabCut-STF 

EZZ2021 

test – F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

Safe driving 0.94 0.46 0.27 0.39 0.58 0.43 0.29 0.27 0.88 

Text right 1.00 0.38 0.34 0.26 0.08 0.37 0.55 0.11 0.94 

Talk right 0.95 0.38 0.35 0.35 0.12 0.39 0.30 0.07 0.87 

Text left 0.98 0.50 0.31 0.54 0.70 0.62 0.52 0.48 0.95 

Talk left 0.96 0.30 0.40 0.42 0.64 0.57 0.48 0.76 0.91 

Adjust radio 0.99 0.28 0.24 0.56 0.50 0.39 0.38 0.35 0.96 

Drinking 1.00 0.42 0.21 0.21 0.58 0.46 0.46 0.30 0.91 

Reach 

behind 

0.99 0.20 0.35 0.49 0.40 0.53 0.30 0.34 0.91 

Make-up 0.98 0.09 0.15 0.19 0.25 0.30 0.18 0.20 0.83 

Talking to 

passenger 

0.98 0.25 0.32 0.61 0.28 0.42 0.61 0.38 0.87 

Overall 

accuracy 

97.71 32.31 30.53 40.06 44.23 43.88 42.03 33.43 88.30 

 

 
Table 18. The results of the CNN-Pose model on the three datasets. 

 

Class 

CNN-Pose-EZZ2021 CNN-Pose-AUC2 CNN-Pose–STF 

EZZ2021 

test – F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

EZZ2021 

test-F1 

AUC2 

test-F1 

STF 

test-F1 

Safe driving 0.99 0.69 0.53 0.78 0.60 0.56 0.98 0.60 0.96 

Text right 1.00 0.48 0.62 0.68 0.34 0.56 1.00 0.59 0.98 

Talk right 0.99 0.15 0.58 0.55 0.69 0.58 0.98 0.05 0.98 

Text left 0.99 0.62 0.48 0.64 0.61 0.45 0.97 0.82 1.00 

Talk left 1.00 0.99 0.89 0.68 0.69 0.79 0.99 0.89 0.99 

Adjust radio 1.00 0.43 0.39 0.56 0.66 0.63 0.99 0.52 0.99 

Drinking 1.00 0.63 0.19 0.52 0.50 0.27 0.97 0.18 0.98 

Reach 

behind 

0.99 0.39 0.50 0.61 0.56 0.77 0.97 0.63 1.00 

Make-up 0.99 0.30 0.38 0.36 0.23 0.36 0.96 0.22 0.95 

Talking to 

passenger 

0.99 0.53 0.56 0.77 0.48 0.68 0.96 0.64 0.94 

Overall 

accuracy 

99.35 52.45 53.52 58.59 51.49 56.48 97.53 50.82 97.76 
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