Journal of
Sensor and

Actuator Networks

Article

A Trusted Security Key Management Server in LoORaWAN:
Modelling and Analysis

Koketso Ntshabele 1, Bassey Isong »*, Naison Gasela ! and Adnan M. Abu-Mahfouz 2

Citation: Ntshabele, K.; Isong, B.;
Gasela, N.; Abu-Mahfouz, AM. A
Trusted Security Key Management
Server in LoRaWAN: Modelling and
Analysis.]. Sens. Actuator Netw.
2022, 11, 52. https://doi.org/
10.3390/jsan11030052

Academic Editors:
Mohamed Benbouzid,
Leandros Maglaras

and Mohamed Amine Ferrag

Received: 11 August 2022
Accepted: 25 August 2022
Published: 5 September 2022

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

1 Computer Science Department, North-West University, Mafikeng 2745, South Africa
2 Council of Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
* Correspondence: bassey.isong@nwu.ac.za

Abstract: The traditional Long-Range Wide-Area Network (LoRaWAN) uses an Advanced Encryp-
tion Standard (AES) 128 bit symmetric key to secure entities and data against several attacks. How-
ever, due to the existence of heterogeneous applications, designing a globally accepted and resilient
LoRaWAN security model is challenging. Although several security models to maximize the secu-
rity efficiency in LoRaWAN exist using the trusted key server to securely manage the keys, design-
ing an optimum LoRaWAN security model is yet to be fully realized. Therefore, in this paper, we
proposed two LoRaWAN security algorithms, A and B, for a trusted key management server
(TKMS) to securely manage and distribute the keys amongst the entities. Algorithm B is an en-
hanced version of Algorithm A, which utilizes the security shortcomings of Algorithm A. We em-
ployed two formal analysis methods in the modelling, results analysis, and verification. The Scyther
security verification tool was used for algorithm modelling and analysis against all possible attacks,
while BAN logic was used to prove the logical correctness of the proposed algorithms. The results
indicate that BAN logic feasibly proves the model logic correctness and the security claims em-
ployed in Scyther are reliable metrics for assessing the algorithms’ security efficiency. The security
claims proved that the security algorithm is more secure and reliable as no attacks were detected
across all entities in the enhanced-Algorithm B, unlike in Algorithm A. Moreover, the application
of hashing minimizes computation cost and time for authentication and message integrity as com-
pared to symmetric and asymmetric encryption. However, the proposed algorithm is yet to be ver-
ified as completely lightweight.

Keywords: IoT; LoRa; LoORaWAN; attacks; key security; security model; symmetric encryption

1. Introduction

The Internet of Things (IoT) is a promising wireless communication platform that
allows several devices to autonomously share data and communicate over the Internet.
This technology is widely applied in several areas such as in the production industries,
agriculture, healthcare, transportation, and homes. However, IoT devices are resource
constrained, which limits their applicability. Thus, to improve and extend IoT’s flexibility,
the Long-Range Wide-Area Network (LoRaWAN) was introduced for IoT-based applica-
tions. LoRaWAN is a popular Medium Access Control (MAC) protocol that has several
benefits such as wide-area coverage, long-range communication, low deployment cost,
and low energy consumption [1-12]. LoRaWAN is deployed on top of the Long-Range
(LoRa) protocol, which is a physical layer protocol. Interoperability and cross-cooperation
can be experienced by the communicating entities in IoT-based LoRaWAN applications
with less complex implementations; however, this implementation raises a lot of security
and privacy concerns as part of the transmitted data can be sensitive information [1-12].

Security model design in LoRaWAN is dominated by cryptographic techniques such
as Advanced Encryption Standard (AES) 128 bit symmetric encryption, which is used to

J. Sens. Actuator Netw. 2022, 11, 52. https://doi.org/10.3390/jsan11030052

www.mdpi.com/journal/jsan

J. Sens. Actuator Netw. 2022, 11, 52

2 of 23

ii.

iii.

generate encryption keys to secure the transmitted data between the entities. This is im-
portant to increase the strength of the security models being deployed in IoT-based Lo-
RaWAN to ensure the whole network is not vulnerable to several attacks and intrusions
[1-12]. Due to the resource-constrained LoRaWAN devices, heavy and complex crypto-
graphic models are not practical solutions to improve the security level of the existing
LoRaWAN [1-12]. Therefore, the LoRaWAN security model is fully implemented using
the AES 128 bit symmetric encryption with different modes of security such as the Cipher-
based Message Authentication Codes (CMAC) mode for data integrity, and the Counter
(CTR) mode for data encryption and decryption [6]. Moreover, each security key is de-
rived for its rightful purpose such as the Application Key (AppKey), which is pre-shared
and only known between the end device and the Network Server (NwkS) when the device
is manufactured. The AppKey is used to generate two session keys: AES 128 bit Applica-
tion Session Key (AppSKey) and Network Session Key (NwkSKey). The AppSKey is
shared between the end device and the Application Server for the encryption and decryp-
tion of the payload, while NwkSKey is shared between the end device and the network
server for initiating the communication. NwkSKey is also used for message integrity using
Message Integrity Check (MIC) [6]. Moreover, LoRaWAN devices are activated for com-
munication using either Activation By Personalization (ABP) or Over The Air Activation
(OTAA) [7]. In OTAA, the activation is initiated from the end devices side by sending a
join request (JR) message to the NwkS, where the message is composed of the 64 bit hex-
adecimal Device EUI (DevEUI) device universal identifier, and the 64 bit hexadecimal Ap-
plication EUI (AppEUI), AppS universal identifier and a 2 octets random number as De-
vice Nonce (DevNonce) used for integrity [7]. The AES 128 bit AppKey is pre-pro-
grammed and pre-shared between the NwkS and the end devices, in place of the encryp-
tion of the JR message; the AppKey is responsible for computing the MIC of the transmit-
ted message [6]. If the]JR is approved, the NwkS responds with the join accept (JA) mes-
sage composed of the 32 bit hexadecimal Device Address (DevAddr), Network Identifier
(NetID), and the 3 octets Application Nonce (AppNonce). In ABP, the NwkS and the end-
device share transmit the JR and JA the message as in OTAA, the only difference is the
pre-programmed and pre-shared of the AppSKey, the NwkSKey, and the device address
(DevAddr) between the servers and the end devices before communication to ensure that
the entities are ready communication and equipped with relevant keys [6,7,9,11,12].

Currently, several LoRaWAN's security key models have been proposed and imple-
mented [2,4,5,7] in the literature to strengthen the defense against attacks and intrusions.
However, these proposed models are not effective against unknown attacks and intru-
sions. Therefore, this paper designed and implemented two Trusted Key Management
Server (TKMS) Algorithms A and B, which deployed a trusted key server to securely gen-
erates and manages the encryption keys in the network while being distributed across the
end device of the network server. Algorithm B is the improved Algorithm A based on its
security shortfalls and produces a novel model based on several contributions to
knowledge in this paper as follows:

We provided a comprehensive analysis of the existing LoRaWAN’s security key
models to analyze their strengths and weaknesses.

We designed and implemented two Trusted Key Management Server (TKMS) Algo-
rithms A and B, where B is an enhanced A.

We applied the formal analysis methods to prove logic correctness and to verify the
proposed models against all possible LoRaWAN attacks by improving the security
level of the trusted key server. The model proposed in [7] though achieved confiden-
tiality, integrity, authentication, and security against replay and DoS attacks; how-
ever, based on the results of the security claims verification in terms of secrecy, alive,
weakagree, nisynch, niagree, it was discovered that the entities were only secured
within the bounds. The network should be secured within bounds for any possible
internal attacks, and outside bounds for possible external attacks, and if the model is

J. Sens. Actuator Netw. 2022, 11, 52

3 of 23

ii.

iii.

iv.

only secured within bounds, external attacks are likely to exploit the network as no
security is put in place for eliminating them.

We enhanced the security of the model proposed in [7] by applying the following:

Trusted key server and AppKey independency: A trusted key server is implemented
to reduce the possibilities of DoS and server attacks. As discussed in the analysis of
existing security models, the AppKey is pre-distributed between the end-device(s)
and the network server or the trusted third party; however, this could lead to a replay
attack, denial of service (DoS) attack, or server attack if the AppKey is exploited be-
fore initiating the communication. In this paper, the implemented trusted the third
party generates the AppSKey and the NwkSKey after receiving the AppKey from the
entity that transmitted the request to join messages; this ensures a unique AppKey is
activated for every request to join a session. Moreover, for every request to join ses-
sions, AppKey generates the NwkSKey and AppSKey using uniquely generated
prime numbers.

Replay attack countermeasure: A timestamp is generated for every transmitting en-
tity in the request to join sessions and stored in the receiving entities for validation
during accepting to join sessions. This ensures that every transmitted message is
freshly generated. If the received timestamp is not the same as the previous
timestamp of the very same transmitting entity, then there is a possibility of a replay
attack.

Authentication and message integrity: The existing models employ symmetric en-
cryption, asymmetric encryption or even both for authentication and validation of
message integrity; however, these algorithms are heavy on operations. In this paper,
we implemented hashing algorithm for performing authentication and validating
message integrity as they have low processing and computation times.

Logic correctness: The design of LoRaWAN security models is different based on
different researchers’ objectives. However, the LoRaWAN security models are com-
mon in validating and proving the authenticity of the entities. With most of the ex-
isting works in LoRaWAN security using security verifying tools only for security
claims analysis, authenticity is discussed without proof based on the security claims.
In this paper, the Scyther tool is used for security claim analysis, and BAN logic for-
mal analysis is used to prove the logical correctness of our proposed model including
the validation of entity authenticity. This is to guarantee the receiving entity that the
received message is from the trusted and authenticated entity.

Prime numbers: Prime numbers as they are easy to compute but difficult to break,
maximize the security level of the entities in two operations and they are uniquely
generated for each operation. First, they are used for entity authentication instead of
nonces as these nonces are unsecured pseudo-random numbers, second, they are
used for generating NwkSKey and AppSKey; this counter various key attacks as the
prime number are resource constraining to be guessed before exploiting all the pa-
rameters used to generate the key.

The rest of this paper is organized as follows: Section 2 presents the background on
symmetric encryption and hashing, Section 3 presents the related works and their security
shortfalls, Section 4 is the methodology, Section 5 is the detailed discussion of the pro-
posed solutions, and Section 6 presents the security analysis, while Section 7 presents this
paper’s discussions. Section 8 is this paper’s conclusion.

2. Symmetric Encryption and Hashing

This section presents the background on security algorithms applied in this paper:
symmetric encryption and the hashing technique, which are categorized under cryptog-
raphy, where the strength of any transaction is measured based on its key. A longer key
guarantees strong security and is important the keys are always secured as their secrecy
guarantees the security of the system.

J. Sens. Actuator Netw. 2022, 11, 52

4 of 23

ii.

iii.

iv.

2.1. Symmetric Encryption

Symmetric encryption algorithms are referred to as the secret key encryption algo-
rithms due to using a single key kept securely within the system, where this key is also
used during the encryption process and the decryption process [13,14]. As compared to
its counterpart asymmetric encryption, which uses two keys for encryption and decryp-
tion processes, symmetric encryption in most cases is considered to be more secured and
very fast in computations and transmissions [13-15]. Symmetric encryption is often more
suitable than asymmetric encryption when securing a large amount of data. Moreover, for
a transaction to be initiated when using the symmetric scheme, the keys are distributed
across the participating systems. It can be a daunting task to manually employ a single
key that is shared over a network; however, copying this key from a centralized key entity
is a possible solution, where an administrator needs to ensure that the scripting and policy
of copying these keys are fully functional always [13,14]. Symmetric encryption can be a
stream cipher or a block cipher. A stream cipher uses a stream of a symmetric key for
encryption and has a faster computation than block ciphers as they use a simple mathe-
matical computation [13]. A block cipher encrypts blocks of data one at a time [14,16,17].
The encrypted block is usually of the same length as unencrypted data [14,16,17].

Different symmetric encryption algorithms are being employed in cryptography
such as the following to name a few:

Advanced Encryption Standard (AES): The AES algorithm can be implemented with
three different schemes, AES 128, AES 192, and AES 256, where 128, 192, and 256 are
the key lengths in bits. AES gained popularity for implementation as it is very se-
cured and very fast [14-18].

Data Encryption Standard (DES): The DES algorithm’s original standard uses a 56 bit
key with the combination of 0s and 1s. Some years back, it was difficult to break DES
due to the computers that were used; however, in modern society, powerful comput-
ers have been developed which can take a lesser time for breaking the DES algorithm.
Based on this, DES has been discontinued in most implementations [14-18].

Triple Data Encryption Standard (3DES): The 3DES is an advanced and improved
version of the DES algorithm, where it applies the DES operations and functions three
times. The strength of 3DES lies in a longer key than DES by generating a 56 bit key
three times. The key is to be fully specified for all three encryption iterations. How-
ever, there is an option of using the key same for all three iterations which will be a
56 bit key or the same key for two iterations and the iteration with a different key
which will be a 112 bit key, or all three iterations use different keys summing up to a
168 bit key is used [14-18].

International Data Encryption Algorithm (IDEA): The IDEA is a 128 bit key algorithm
that was developed aiming to replace the DES algorithm. The shortfall in implement-
ing IDE was based on two reasons, it is prone to produce a range of weak symmetric
keys, and many symmetric algorithms are faster than IDE but have the same security
level as IDEA [14-18].

2.2. Hashing Function

In cryptography, hashing functions or algorithms are based on scrambling the data
using the hash table index [19-21]. The hash function takes accepts arbitrary data as the
input and applies a mathematical function to compute a hashed value of a fixed length
[15-17]. Moreover, hashing has several key principles; first, hashing is a one-way function,
where the hashed value cannot be reversed to generate arbitrary data, second, hashing
should be collision free, where a hashed value should not be produced from different sets
of arbitrary data, and third, the generated data cannot be changed without having to
change the hashed value [18-20]. Popularly deployed hashing algorithms are:

J. Sens. Actuator Netw. 2022, 11, 52

5 of 23

ii.

iii.

Secure Hash Algorithm-version 1 (SHA-1): The SHA-1 hashing algorithm produces
a 160 bit of hashed value. The SHA-1 gained popularity as an alternative to MD5 by
eliminating most of the weaknesses that surfaced from MD5 [19-21].

Secure Hash Algorithm-version 2 (SHA-2): The SHA-2 is a suite of several hashing
algorithms of SHA-224, SHA-256, SHA-256, SHA-384 and SHA-512, where the num-
bers represent the output length in bits [19-21].

Message Digest-version 5 (MD5): MD5 is a hashing algorithm that produces a di-
gested value of 128 bits; however, it has shortfalls in terms of more collisions surfac-
ing [19-21].

3. Related Works

This section presents the analysis and limitations of some of the existing works on
security models in LoORaWAN to improve the security level of these models. Due to the
resource-constrained nature of the IoT platform such as the limited battery capacity and
memory, implementing a heavy security model is not feasible for IoT-based applications.
The authors in [1] argue that an existing Lightweight Encryption Algorithm (LEA) stand-
ardized for IoT devices was prone to side-channel attacks that exploit the consumed en-
ergy. However, the authors proposed an improved LEA algorithm by employing an arbi-
trary value instead of the masking technique to eliminate differential side-channel attacks
which minimizes the processing time. In a similar study, to address the high energy con-
sumption of AES in LoRaWAN, Tsai et al. [11] proposed a Low Power and Highly Secure
Communication Scheme named (SeLPC) that minimizes the overall energy consumption
by at least 26% due to the reduction in high data encryption power and the AES encryp-
tion cycles. Moreover, the proposed model is secured against known key attacks, eaves-
dropping attacks, and replay attacks. Routsalainen et al. [9] investigated a wireless key
generation for LPWAN-based applications and discovered feasibility in long-distance
communications, deep in buildings, and session keys that have high randomness. The
study was geared towards addressing challenges such as limited channel occupation,
lengthy payloads, duty-cycled transmissions and receptions.

In the same vein, Kim et al. [4] also suggested a Dual Key-based generation and up-
date model in the essence of improving the key privacy and security of the existing model
due to cryptoanalysis key attacks. The model is based on AppKey and NwkKey which are
independently and separately generated to produce AppSKey shared between the end
device and the application server, and the NwkSKey shared between the end device and
the network server, respectively. The proposed model also improves key security and pri-
vacy based on its independent and automated session keys generation for each commu-
nication layer. Similarly, Roselin et al. [8] proposed a Lightweight Authentication Protocol
(LAUP), which employs symmetric encryption without using pre-shared keys. It uses sev-
eral techniques: a session keys sharing establishment using information history, and a
four-flight authentication establishment approach [8]. It was designed to enhance
LPWAN's security against other asymmetric encryption-based models considered re-
source constrained with the session keys’ pre-sharing vulnerable to attacks.

Several researchers argued that adding a trusted third party to the LoRaWAN secu-
rity model could strengthen its security in terms of key generation and management and
minimize complex operations. Accordingly, Naoui et al. [7] proposed an improved Lo-
RaWAN security model based on a trusted third party to manage keys in the network
between the entities. Several countermeasures to address all possible attacks against Lo-
RaWAN were implemented such as a trusted third party to generate and manage session
keys in the network without being exposed to the public, avoiding DoS attacks, and use
of a timestamp to avoid exhausting the memory of LoRaWAN entities. Moreover, the
trusted third party computes the NwkSKey and AppSKey random numbers instead of the
network server generating the session keys and renewing the AppKey every session to
avoid replay attacks. In a similar work, Tsai et al. [10] argued that a trusted third-party
key exchange protocol could raise several security concerns related to the inflexible,

J. Sens. Actuator Netw. 2022, 11, 52

6 of 23

inefficient and unreliable protocol. The authors proposed a highly efficient multi-key ex-
change protocol based on current time encryption, a 2D operation, and elliptic curve cryp-
tography [10]. It was designed for efficient session keys exchange, improved data encryp-
tion of sensitive data, mutual authentication, and a shorter processing time of approxi-
mately 3.78-fold faster than the existing models, and improved number of session keys
generation by approximately 40 keys in a single process [10]. The model is also secured
against forgery, impersonation, eavesdropping, and replay attacks. Han et al. [2] also sug-
gested an enhanced security model using root key management, a lightweight security
model deploying a Lightweight Rabbit Stream Cipher Based-Key Derivation Function
(KDF) approach to reduce key processing times in terms of reduced key ransom genera-
tion, deviation time, and frequent root key updates. The model enhances the basic security
of LoRaWAN 1.1 specifications but is prone to a cryptoanalysis of security key attacks.
proposed model is a.

However, the security shortfalls of the model discussed above are as follows: In [1],
limited memory as one of the key issues in IoT was not considered as generating addi-
tional 4 byte data can affect the memory usage of the devices since the data are stored for
encryption and decryption. In our proposed algorithms, we consider memory usage by
implementing hashing algorithm for message integrity and authentication as it has a
shorter computational time and lower memory usage than symmetric encryption. Addi-
tionally, the authors of [11] only studied application data security and the NwSKey used
by SeLPC in the MAC layer to generate the MIC with no periodic updates. However, in
our proposed algorithm, there is key independence for message integrity calculations and
authentication using AppSKey and NwkSKey for end device and application server com-
munication and end device and the network server communication, respectively. Again
in [9], refreshment periods occur after a while, which could affect the whole network if
old keys are being exploited before being refreshed. In our proposed models, the keys are
refreshed for every new request to join a session and when the entity time stamp expires.

In the model proposed by Kim et al. [4], the pre-programming and pre-loading of
NwKey and AppKey lacks impracticable security and the whole network can be breached
if the end nodes are exploited. Using nonces in end-nodes, applications and network serv-
ers affect the memory usage and occupation as these nonces are stored. Flooding attacks
lead to DoS on the end nodes to extract the session key due to the pre-programming and
pre-loading of these session keys. A new session key should be generated for every join
request to avoid using old session keys to generate new session keys as attackers can use
brute force attacks to exploit these old session keys. However, in our proposed algorithms,
only the AppKey is pre-programmed into the end device and shared with the key server
as a parameter during request to join procedures. Similarly, Roselin et al. [8] proposed a
model that is limited for validation against three attacks only, though it might be based
on the objectives of the proposed work, other existing security attacks should be analyzed
and validated. To overcome this limitation, in our work, we evaluated the proposed algo-
rithms against all possible LoRaWAN attacks; this was to be familiar and aware of the
attacks that might affect our proposed model in future. Additionally, Naoui et al. [7]
model used unsecured random numbers that are generated to compute two different ses-
sion keys and the NwKey is not changed in every session as the AppKey. However, this
paper proposed the use of prime numbers instead of nonces as they are randomly gener-
ated and not secured, whereas prime numbers are easy to compute but difficult to reserve.
This brings about a daunting challenge for the intruders if they tend to intrude the net-
work, they will need to know the combination of the prime numbers used to generate the
actual prime numbers. Moreover, for authentication and re-calculations of the message
integrity after transmission, we implemented hashing instead of symmetric or asymmetric
encryption; hashing has low computational cost and time. Again, Tsai et al. [10] lack min-
imizing the power consumption of mobile devices, which is key to developing THMEP
for heterogeneous systems as some of the operations performed are too complex for re-
source-constrained sensor nodes. However, in our proposed model, a hash is

J. Sens. Actuator Netw. 2022, 11, 52

7 of 23

implemented for authentication and calculations of message integrity as it has a lower
computational time and lower memory usage than symmetric encryption. Lastly, in Han
et al. [2] model, pre-sharing and distribution of the root keys between the end devices and
the join server could lead to memory overheads in the end devices as they have limited
memory. This could in turn, lead to flooding attacks that could exploit the end devices for
stealing the root keys. This is addressed in our model by pre-programming only the Ap-
pKey into the end device, where it is transmitted to the key server during the request to
join procedures to use it for generating session keys.

4. Methodology

To analyze and verify the security efficiency of a security algorithm, we applied for-
mal analysis methods using security protocol verifying tools, logic proofs and rules for
model correctness. The tools are based on formal analysis methods under the assumptions
of perfect cryptography, where all the implemented cryptographic functions are assumed
to be perfect, and the logic proofs are based on proving model correctness. This is based
on the concept that the intruders do not know the transmitted data unless the encryption
key is exposed. Researchers adopt the use of these tools to find all possible security attacks
within the proposed models while being developed. Though many sceptics may arise
from this tool analysis, in many cryptographic practices, Scyther can prove many security
protocols to be correct or possible attacks can be found. After successful modelling of the
security algorithms, this security tool accepts a high-level input description or language
of the proposed security algorithms and performs a security verification using several se-
curity properties or claims. This tool is designed to find the best or all possible attack paths
that can be used by intruders to exploit the network and the participating entities. More-
over, BAN logic is applied for reasoning with the proposed algorithms cryptographically
based on logic correctness.

Moreover, to model security algorithms in Scyther, the algorithm is designed using
communicating entity roles, where each entity adheres to certain transmission and recep-
tion events for communication. Furthermore, several security key algorithms such as sym-
metric and asymmetric encryption, and hashing can be employed to securely distribute
security keys and encrypt the data between the communicating entities [22-25]. The
Scyther verifying tool is based on a series of security claims for verifying the security level
of the proposed algorithm.

(1) Secrecy claim: All the transmission parameters between the participating entities in
the network are to be secured at all times [22-25].

(2) SKR claim: The SKR claim resembles that of the Secrecy claim if not being revoked;
however, the SKR claim is used to mark employed session keys[22-25].

(3) Empty claim: The empty claim is used by Scyther to identify that a certain will be
ignored for verification. The applicability of this claim extends to employing Scyther
as a back-end verification tool for other verification means [22-25].

(4) Reachable claim: This claim is used to verify that the specific claim is reachable; it is
indicated by at least one trace pattern if it exists. This claim is also used to verify if
there are existing errors within the specification of the modelled protocol[22-25].

(5) Alive and weakagree: For this claim, all the entities are implemented with the same
scheme; alive claims ensure that all the transmitted messages between the entities are
encrypted with the same scheme, and weakagree ensure that all the participating
entities are running on the scheme [22-25].

(6) Non-injective agreement (niagree) claim: All the participating entities in the same
network should adhere to and agree on the same parameters to use for their
transmission [22-25].

(7) Commit, running claim: This claim is another form of niagree, where a niagree for
defining a specific role within a set of data by adding relevant signal claims. The
Commit claim is invoked to identify the effective claim of the protocol, and the

J. Sens. Actuator Netw. 2022, 11, 52

8 of 23

ii.

Running claim ensures that the effective claim invoked by Commit attains
correctness of the existing Running signal within the found trace [22-25].

(8) Non-injective synchronization (nisynch) claim: All the transmission processes and
sessions to take in the network between the entities are to adhere to all the security
specifications of the proposed protocol and all the participating entities shall adhere
to being synchronized in their current state [22-25].

Based on these properties, we employed the formal analysis and validation method
to design, develop and evaluate the proposed improved TKMS Algorithm B in Lo-
RaWAN. A high-level flowchart in Figure 2 is used to illustrate the depth of enhanced
TKMS Algorithm A and its security analysis against all possible LoRaWAN attacks.

5. Proposed LoRaWAN Security Model
5.1. Overview

In practice, LoORaWAN'’s security model proffers only a minimum-security level for
the network as it deploys encryption keys to secure the communicating entities, shared
data, and even the protection of the encryption keys as well against intruders. However,
the network could be vulnerable to key and data attacks that can adversely affect it. Alt-
hough several proposed models for improving the LoRaWAN key management security
models exist such as in [2,4,6,7,10,11], it is important to consider the characteristics and
the attack’ nature when designing and developing an improved LoRaWAN key security
model. With several parameters involved when generating and securing both the com-
municating keys and the parameters, all are considered data and should be secured with
encryption keys that are securely managed. With an intruder having sufficient knowledge
about possible weaknesses and shortfalls of the LoRaWAN security model, several attacks
can be launched to compromise the network. For instance, attacks such as replay attacks
[7,10] and the man in the middle attack [25]. Moreover, the intruder may perform the bit-
flipping attacks [26] by altering the bits of the transmitted causing the receiving entities
not to decrypt the encrypted transmitted data. This paper addresses such security chal-
lenges in the LoRaWAN by designing and implementing two security models using the
Scyther security verifying tool. The aim is to enhance the key server to efficiently generate
and manage keys securely. However, the proposed models do not accommodate the com-
munication between the end devices, but rather demonstrate the efficiency of key gener-
ation and distribution in the LoRaWAN network by securing the entities and the network
before any communication may occur between the end devices. Moreover, the application
server is excluded since it is only active during communication. However, if the end de-
vices are to communicate, the AppKey shall be shared between the end devices and the
application server.

The key distribution of the proposed model between the entities is presented in Fig-
ure 1. The two TKMS algorithms are Algorithms A and B, where Algorithm B is an en-
hanced Algorithm A. The end device in both models is activated via OTAA rather than
ABP due to security issues with pre-programmed keys. As shown in Figure 1, the three
main entities and three keys being generated and distributed across the entities by the
trusted key server in the proposed key distribution architecture are as follows:

End-device: A LoRaWAN device that is being deployed in the network after manu-
facturing. This end device is pre-programmed with several parameters such as the
AppKey, the device universal identifier used to identify itself in the network, and the
AppKey that will be shared with the trusted key server during the request to join
process.

Trusted key server: The trusted key server is employed as a trusted party to generate
and manage the keys securely and efficiently in the network. It is used in our model
to ease some of the complex operations that were performed by the network server
alone such as key generation and update. This server upon receiving AppKey for the
end device, generates two session keys, the AppSKey used for securing the

J. Sens. Actuator Netw. 2022, 11, 52

9 of 23

iii.

communication between the end device and the application server, and the
NwkSKey used for securing between the end device and the network server.
Network server: This is responsible for generating and distributing network param-
eters with the end device so that during transmission the end device is knowledgea-
ble of the network to transmit on, and the unoccupied channels that can be used for
the transmission.

ﬁAppKey

Trusted Key Server
o "o AppSKey
P T
NwkSKe ’
of S

End-device
End-device
manufacturer

Network Server

A

Figure 1. Key distribution architecture.

5.2. TKMS Algorithm Design

Using the Scyther security verifying tool, the TKMS Algorithm A has been designed,

developed, and evaluated against all possible security attacks that are likely to affect the
LoRaWAN. Moreover, the Scyther tool has been used to perform security evaluations and
validations against all possible existing attacks in LoRaWAN. As depicted in Figure 2 and
discussed in Section 4 of the proposed solution, it is shown that two models have been
designed and developed, the TKMS Algorithms A and B. Scyther is used for security val-
idation as follows:

(a)

(b)

In verifying the protocol there were no end-device attacks detected on the TKMS Al-
gorithm A, and as for the network server and the key server, there were no attacks
within the bounds. However, to fully secure the network, security should be enforced
against external attacks outside bounds and for internal attacks within bounds.

In verifying all security automatic claims for each entity, we realized that though the
model has a certain level of security, the end device remains secure against all possi-
ble attacks in LoRaWAN, but the network server and the key server are still secure
against attacks within bounds only.

After a series of evaluations and validations performed approximately seven times

with the Scyther tool, TKMS Algorithm A was modified to Algorithm B conforms to the
desired security of the Scyther tool and is secured against all possible attacks in Lo-
RaWAN both within bounds and outside bounds.

J. Sens. Actuator Netw. 2022, 11, 52

10 of 23

START

TKMS Algorithm A

|

Scyther

Entities H Security faults ‘- No b(a)tlt;gl;sov;:;hin

Unreachable detected

Improve

Entities A Model Improved |- No aftacks at
Reachable j L all

TKMS Algorithm B
Produced

l

Figure 2. Key generation and distribution process in TKMS.

The mathematical formulas of notations in Table 1 are as follows:

o NwkSKey = AES,,5(AppKey, 0x1|KeySvrPrN1|KeySvrT|JoinEUl|pad,e), JoinEUI
are composed of the transmission parameters for a specific transmission;

o AppSKey = AES;,3(AppKey, 0x2|KeySvrPrN2|KeySvrT|JoinEUl|pad,s), JoinEUI
are composed of the transmission parameters for a specific transmission;

e Primenumbers= a; * a,,Vaca, Va, . ais prime IFF 3 a: a <n, thena # prime
if a =n;

e CFList = {CFListy, ..., } represent free channels;

e H(e)=H(h)=a=H(b), cannot predict b from a hashed value a such thata=H
(Xpits @Ypirs), choosing a value or data of X, on a scale of 1to 10%* bits to pro-
duce a hashed value g, it is difficult to predict the data of Yj;;

e NwkID = {NwkIDy), ..., NwkIDy;; } represent the identity of the network;

e Timestamp (T;) = T; € {T, — T,,> 6 T} is accepted as a valid timestamp otherwise a
replay attack is detected;

J. Sens. Actuator Netw. 2022, 11, 52

11 of 23

e Message (M) encryption = AES,,5(Ex (Ey, Ey)|PrimeN,|T,|T,|pad,s), where E,, E,
are the entities EUl's, PrimeN, are the prime numbers of the entities, T, is the
timestamp of the entity and T,, are the transmission parameters.

Table 1. Notation and definitions.

Notations Definitions

KeySvr Key Server (or TKMS) Universal Identity
EDs End Device Universal Identity

NwkS Network Server Universal Identity

k(EDs, KeySvr)
k(KeySvr, NwkS)

k(NwkS, EDs)
H
€

Encryption session key between EDs and KeySvr
Encryption session key between KeySvr and NwkS
Encryption session key between NwkS and EDs

Hash function

Encryption between the entities (EDs, KeySvr, and NwkS)

AppKey Application Key

AppSKey Application Session Key

NwkSKey Network Session Key

EDsT End Device Timestamp

KeySvrT Key Server Timestamp

NwkST Network Server Timestamp

EDsPrN End Device Prime Number

NwkPrN Network Server Prime Number

KeySvrPrN Key Server Prime Number between NwkS and KeySvr

KeySvrPrN1 Key Server Prime Number between EDs and KeySvr for generating NwkSKey
KeySvrPrN2 Key Server Prime Number between EDs and KeySvr for generating AppSKey
CFList Channel List

RxDelay Transmission Delay

NwkID Network Identity

DevAddr Device Address

Moreover, in both algorithms, the NwkSKey reinforces the message integrity of the
transmission parameters between the EDs and the NwkS, whereas the AppSKey rein-
forces the message integrity of the transmission parameters between the EDs and the
AppS. In this paper, the communication between the EDs is not within the scope, where
for the EDs to communicate, the AppSKey should be firstly distributed and validated be-
tween the AppS and the transmitting end device for message integrity. Moreover, the
combination of prime numbers (PrN) is used for authentication and message integrity
instead of the nonces as they are randomly generated without any being secured. Based
on cryptography, the computation of prime numbers is easy but difficult to reverse. In
both algorithms from Step 1 to Step 3, encryption session keys are used to initiate the join
request sessions between the entities, and from Step 4 to Step 11 hashing is used for entity
authentication, message integrity, and faster computation as they have fewer computation
times than symmetric and asymmetric encryption during authentication and message in-
tegrity calculations. Furthermore, each entity generates its timestamp for every new re-
quest to join sessions to guarantee freshly generated messages without a replay attack
possible. The entities may alternate the stored parameters for authentication and message
integrity calculations, this is to avoid intruders guessing the parameters for the next trans-
mission.

5.2.1. TKMS Algorithm A

This subsection presents the Algorithms 1 and 2: TKMS Algorithm A to demonstrate
the efficiency of key generation and distribution amongst the entities. The TKMS use the
received AppKey to generate two session keys; the AppSKey is used for securing the com-
munication between the application server and the end device should the end devices

J. Sens. Actuator Netw. 2022, 11, 52

12 of 23

wish to communicate, and the NwkSKey is used to secure the communication between
the network server and the end devices. Symmetric encryption is used to initiate commu-
nication between the entities and ensure the transmission parameters are well secured
during the request to join procedure initiated by the end device, whereas hashing is used
for authentication and calculations of message integrity.

Initialization Phase: Initially, as presented in Figure 2, the EDs are pre-programmed
with the AppKey, KeySvr identity and NwkS identity from the manufactures side when
they are being designed. All other keys (AppSKey, and NwkSKey) are generated and dis-
tributed by the trusted KeySvr upon receiving the JR message from the end device, where
both the AppSKey and the NwkSKey are shared with the end device for message integ-
rity, and the NwkSKey is also distributed to the AppS.

Algorithm 1: TKMS Algorithm A
Input = ({M}|{m}y) //Request To Join Message: Encrypted and Hashed message
Output = ({m}y) I[Accept To Join Message: Hashed message Steps:
WHILE (Request to Join Initiated) {
IF [({M}:|{m}y)] is transmitted between entities) {
THEN
1st: EDs = KeySvr { [{M}:[{m}y)]}
2nd: KeySvr = NwkS { [{M}.[{m};)] }
3rd: NwkS = EDs {[({M}c[{m}n)] } }
IF ({m}y) is transmitted between entities) {
4thand 5th: EDs < KeySvr { ({m}y) |}
6th and 7th: EDs < NwkS { ({m}y) }
8th: EDs = KeySvr { ({m}y) }
9th and 10th: KeySvr < NwkS { ({m}y) }
11th: KeySvr = EDs
{ (mh)))
IF [{M}c{m}y) OR ({m}y)] is approved by receiving entity until the 11th step) {
//Authentication & MIC approved

Request To Join Ap-

proved }
ELSE |

“Terminate Request To Join = “Unauthorized user found and Message Falsified” '}

}

Join and Key Distribution Phase: The steps involved are discussed as follows:

e Step 1: The EDs initiate the system by sending the request to join message (EDsPrN
Il EDs || NwkS || EDsT || AppKey) to the KeySvr. The message is composed of
the uniquely and freshly generated parameters of; EDsPrN, EDs, EDsT and the Ap-
pKey; these parameters are encrypted with the encryption session key (k(EDs,
KeySvr) of the EDs and the KeySvr. Moreover, the same unique parameters are
signed with a H function as [(H(EDsPrN || EDs || NwkS || EDsT || AppKey)].

e Step 2: Upon receiving the request to join the message from the EDs, the KeySvr per-
forms decryption on the message using k(EDs, KeySvr), authentication and re-calcu-
lating message integrity as [(H(EDsPrN || EDs || NwkS || EDsT || AppKey)]. If
valid, the KeySvr stores the received parameters of EDsPrN, EDs, EDsT and the Ap-
pKey, then forwards the request to join message to the NwkS (EDsPrN | | KeySvrPrN
Il EDs || KeySvr || KeySvrT) encrypted with k(KeySvr, NwkS) by generating a
unique KeySvrPrN, and KeySvrT, and also hash the message as H (EDs | | NwkPrN
|| DevAddr || RxDelay || CFList | | NwkID | | NwkST)].

J. Sens. Actuator Netw. 2022, 11, 52

13 of 23

Step 3: If the NwkS successfully receives the message, the NwkS performs decryption
on the received encrypted message using k(KeySvr, NwkS), authentication and re-
calculates the message integrity as [H(KeySvrPrN || EDs | | KeySvr | | KeySvrT)]. If
valid, the NwkS stores all the received parameters in the message, then directly send
the accept to join message to the EDs as [(EDsPrN || NwkPrN || DevAddr ||
RxDelay | | CFList | | NwkID || NwkS || NwkST || KeySvr | | KeySvrT)] encrypted
with (NwkS, EDs) with uniquely generated DevAddr, CFList, RxDelay, NwkID, and
NwkPrN, and also hash the message as [H(EDs | | NwWkPrN || DevAddr | | RxDelay
I'l CFList || NwkID || NwkST)]; Accept to join message is directly transmitted to
the EDs using a unique NwkID that will ensure that requesting and accepting chan-
nels are isolated in the network. This is to avoid any channel attacks. DevAddr is
assigned to the specific EDs that initiated the request.

Step 4: If the EDs successfully receives the message, the EDs performs decryption on
the received encrypted message using k(NwkS, EDs), authentication and re-calcu-
lates message integrity as [H(EDs | | NwWkPrN | | DevAddr || RxDelay || CFList | |
NwKID | | NwkST)]. If valid, the EDs store the uniquely generated parameters in the
message, and send a hashed message [H(DevAddr || NwkS || NwkID || KeySvrT
I'l EDsPrN)] to the KeySvr. DevAddr uniquely identifies the specific end device to
receive the AppSKey, NwkSKey, and other important parameters such as unique
NwkKID for transmission, and the prime numbers used to generate and hash the
AppSKey and NwkSKey.

Step 5: The KeySvr will only perform authentication and re-calculates message integ-
rity as [H(DevAddr | | NwkS || NwkID || KeySvrT || EDsPrN)] if the hashed mes-
sage is successfully received. If successfully received from the EDs, the KeySvr stores
the DevAddr and NwkID, then send a hash message to the EDs as [H(DevAddr ||
KeySvrT || NwkSKey || KeySvrPrN1 || NwkID) || H (DevAddr || KeySvrT ||
AppSKey || KeySvrPrN2 || NwkID)]. The AppSKey and NwkSKey are uniquely
generated from AppKey with unique KeySvrPrN1 and KeySvrPrN2 and will be used
by the EDs should they wish to communicate with other EDs.

Step 6: Upon a successful reception, the EDs will then authenticate and re-calculate
the message integrity with [H(DevAddr | | KeySvrT | | NwkSKey || KeySvrPrN1 | |
NwkID) || H (DevAddr || KeySvrT || AppSKey || KeySvrPrN2 || NwkID)] and
stores KeySvrPrN1, KeySvrPrN2, NwkSKey, and AppSKey, then send the hashed
request to acknowledge message to the NwkS as [H(KeySvr | | EDsPrN | | NwkPrN)]
to notify the NwkS that the session keys and prime numbers are successfully received
from the KeySvr and request the NwkID to be verified before starting any communi-
cation with other end devices. The EDsPrN and NwkPrN are used by EDs for au-
thentication, and the KeySvrPrN1 and KeySvrPrN2 are used by the EDs to generate
its AppSKey and NwkSKey from the AppKey and check if they are the same as the
ones received from the KeySvr, if different, the ED terminates the request.

Step 7: If the NwkS successfully receives the hashed acknowledgement request from
the EDs, the message integrity is re-calculated as [H(KeySvr | | EDsPrN | | NwkPrN)]
and if successful, an acceptance to acknowledge hashed message is generated and
transmitted as [H(DevAddr || NwkST || NwkID)], with the Nwkld to identify the
network to use for future communication within the same request to join.

Step 8: If the hashed message is received by the ED, the ED will authenticate and re-
calculate the message integrity as [H(DevAddr | | NwkST | | NwkID)], if successful,
then the ED will generate and forward an accept to acknowledge hashed message as
[HNwWKS || NwkID | | KeySvrT)] to the KeySvr to notify the KeySvr that request has
been acknowledged, the NwkID is verified and the NwkSKey can be transmitted to
the NwkS.

Step 9: The KeySvr receives the hashed message, authenticates and re-calculates the
message integrity as [HINwkS || NwkID || KeySvrT)] and if successful, then

J. Sens. Actuator Netw. 2022, 11, 52

14 of 23

generates a unique NwkSKey, and transmits a hashed message to the NwkS with the
NwkSKey as [H(KeySvrT || NwkSKey)].

e Step 10: The NwkS receives the hashed message in Step 9, authenticates and re-cal-
culates the message integrity from the received hashed message as [H(KeySvrT ||
NwkSKey)], if successful, NwkSKey is stored and a hash message of [H(KeySvrT | |
KeySvrPrN)] is generated for notifying the KeySvr that the NwkSKey is successfully
received.

e Step 11: The KeySvr receives the hashed message in Step 10, authenticates and re-
calculates the message integrity from the received hashed message as [H(KeySvrT | |
NwkSKey)], if successful, the KeySvr generate a hashed message of [H(KeySvrT | |
NwkID || EDsT)] for notifying the EDs that the join procedure is successful.

Algorithm 2: Enhanced-TKMS Algorithm
Input= ({M}[{m}y) //Request To Join Message: Encrypted and Hashed message
Output = ({m}y) /lAccept To Join Message: Hashed message
Steps:
WHILE (Request to Join Initiated) {
IF [({M}:|{m}y)] is transmitted between entities) {
THEN
1st: EDs = KeySvr { [{M}.|[{m})]}
2nd: KeySvr = NwkS { [({M}[{m};)] }
3rd: NwkS = EDs
(MYl fm})]))
IF (({m}y) is transmitted between entities){
4thand 5th: EDs < KeySvr { ({m}y) }
6th and 7th: EDs < NwkS { ({m}y) } /Enhanced Steps for authentication
and message integrity
8th: EDs = KeySvr { ({m}y) }
9th and 10th: KeySvr < NwkS { ({m}y) }
11th: KeySvr = EDs
{ ()))
IF [{M}c{m}y) OR ({m}y)] is approved by receiving entity until the 11% step) {
//Authentication & MIC approved

Request To Join Ap-

proved }
ELSE{
“Terminate Request To Join = “Unauthorized user found and Message Falsified” '}
} EDs receive a message in Step 11 and performs authen-

tication and message integrity check, if approved, then Join Procedure com-
plete }
//Request to Join Procedure Complete

5.2.2. TKMS Algorithm B

To improve the security of Algorithm A, the following steps have been modified to
produce an enhanced TKMS algorithm, Algorithm B. The enhancement starts from Steps
3 to 9 of Algorithm A as follows:

Step 3: The hash message transmitted to the ED by the NwkS is being modified. The
EDs and NwkPrN parameters have been replaced with the EDsPrN; this is to avoid at-
tacks such as bit flipping, where if the whole message is intercepted, then parameters of
the encrypted message can be used to reverse the hash message as the same parameters
are used in both messages. Moreover, the EDsPrN can be used by the ED upon receiving
the message for ensuring that its authenticity has not been altered.

J. Sens. Actuator Netw. 2022, 11, 52

15 of 23

Step 6: The NwkPrN is replaced with the EDsT for ensuring the NwkS that the re-
quest to acknowledge message is freshly generated and a NwkID transmitted in Step 7 is
safe to be transmitted to allow any future communication likely to occur in the request to
join can take place for the ED which generated the EDsPrN.

Step 7: Replace NwkST with NwkPrN to add more security to NwkS authentication
using prime numbers.

Steps 9 and 10: A NwkID is being added to the hash function to ensure that the
KeySvr and NwkS shared the same NwkSKey on the same network and the message is
freshly generated using KeySvrT.

5.2.3. BAN Logic

In this section, we discuss proving the security efficiency and reliability of our pro-
posed Algorithm B, which is an improvement of Algorithm A by applying BAN logic for
logic correctness under four rules; Rule 1 is the message semantics rule, Rule 2 is the ver-
ification rule, Rule 3 is the jurisdiction rule, and Rule 4 is the decomposition rule. We use
the following general initial assumptions and Rules under BAN logic:

A. General initial assumptions
A
e P|=P =5 Q: P believes P and Q share the same main key Ap,
E
e P|=P = Q: P believes P and Q share the same encryption key Ep,

e P|=P SLQ> Q: P believes P and Q share the same session key Spq

e P| = M: P believes M

e P|~M: P once said M

e P < M: P sees (receives) message M

e P | =M: P hasjurisdiction over M

e #(M): The formula (M) is fresh

e {M},: The formula {M}y isencrypted under encryption key K

o {m}y: The formula {m}y ishashed under the hash function H
B. Rules

1. Message semantics Rule (Rule 1)

_,2PQ
PIEe — PP UM (M), 1 p pelieves that P and Q communicate on the shared main
P|=Q |[~({M}k| {m}n)

key (P g Q), then P sees the message ({M},|{m}y) is encrypted under key K or hash
function H or both of them and needs to perform decryption on it, then P believes that Q
once said ({M},| {m}y). By this rule, we ensure that P did not send itself the message un-
der the initial assumption that the message ({M},|{m}y) is generated by Q and A and P
are not equal.

2. Verification Rule (Rule 2)

P'E#(M)"’I')ngz(g}k' 1. By Rule 2, if P believes that Q said ({M}] {m},), then P has

once believed that Q has once said ({M},| {m}y). By this rule, applying the belief and
freshness assertion of saying P believes that the message ({M};|{m}y)is freshly gener-
ated, then P is expected to believe that Q believes ({M};| {m}y). Note that ({M},| {m}y)

can either be encrypted, hashed or both to ensure P of the integrity of ({M};| {m}y).
3. Jurisdiction Rule (Rule 3)

P =ltmm PIEQUM tni). By Ryle 3, if P believes that Q has jurisdiction over
P|=({M}k| {m}n)

({M3}| {m}y), where it is true or not, then if P trusts Q on the truth of ({M},| {m}y)), then
P must believe ({M};| {m}y).

J. Sens. Actuator Netw. 2022, 11, 52

16 of 23

4. Decomposition Rule (Rule 4)
P<(M,N) P|=#(M) P|=#(M), P|=#(M),N)
@) P<(M) () P|E#(M,N)’(C) Pl=(M)

In Rule 4, the several rules for the transmitted message can be decomposed and used
transmitted message for freshness evaluations or judging. In (a), P can see all the parts of
the message M, N if can see all message M; in (b), the rule states that for any combination
of the transmitted message M if discovered to be fresh, then the rule operates under the
assumption that also one the transmitted message part is fresh; and (c) states that if any
combination of several messages is believed, then they can be believed individually. To
further illustrate the proposed algorithm’s logic correctness using BAN logic, we have
reconstructed the general initial assumptions and rules following the transmissions of our
proposed algorithms based on their notations and steps.

(1) ByRulel:
_ AappKey
EDs| = EDs — KeySvr, EDs < ({M}(EDS,KeySvr)l {m}n)
EDs| = KeySvr |~({M}| {m}y)

(2) By Rule2:

EDs| = #(M), EDs| = KeySvr|~({M};| {m}y)
EDs| = KeySvr| =M

(3) By Rule3:
EDs|= KeSvr =({M},|{m}y), EDs| = KeySvr({M},| {m}y)
EDs| = ({M}y| {m}y)

(4) Applying Rule 4 (c):

A e
EDs 222X, KeySvr, then:

(5) Re-applying Rule 1:

E(NwkS,EDs)

EDs| = EDs —— NwkS, EDs < ({M}(ywks,eps)| {m}n)
EDs| = NwkS |~({M}nwks,gps)| {m}n)

(6) By Rule 2:

EDs| = #(M), EDs| = NwkS|~({M}wwks,eps)| {m}n)
EDs| = NwkS| =M

(7) By Rule3:

EDS|E NwkS :>({M}(kaS,EDS)|{m}H)' EDSl = NwWkS({M} nwks,eps)| {m}n)
EDs| = ({M }(kaS,EDs)l {m}n)

(8) Re-applying Rule 4 (c):

A(NwKS EDs)

EDs | = EDs —— > NwkS, then:
(9) Re-applying Rule 1:

E(KeySvr,kaS)

NwkS| = NwkS ——— KeySvr, NwkS < ({M}keysvrnwks)| {m}n)
NwkS| = KeySvr |~({M}(Key5vr,kaS)| {m}H)
(10) Re-applying Rule 2:
NwkS| = #(M), NwkS| = KeySvr|~({M}«keysvrnwks)| {M}n)
NwkS| = KeySvr| = M

(11) Re-applying Rule 3:

NWkS|E keySvr :({M}(kaS,EDs) |{m}H)’ NWk5| = KeySVT({M}(KeySvr,ka5)| {m}n)
NWkSl = ({M}(KeySvr,kaS)l {m}H)

J. Sens. Actuator Netw. 2022, 11, 52

17 of 23

NwkS| = EDs

(12) Re-applying Rule 4 (c):
E W S
NWkS | = EDs ——E0%) Nk, then:
(13) By re-applying Rule 1:

E(NwkS,EDs) E(NwkS EDs)
— NwkS, NwkS < ({M}(KeySvr,kaS),EDs — NwkS| {m}H) (1)

NwkS| = # (EDs

E(NwkS,EDs)
— 5

E(Nwks,EDs)

NwkS| = EDs |~EDs —— NwkS
(14) By re-applying Rule 2:

E(Nwks,EDs)

NwkS), NwkS| = EDs| = EDs|~({M}keysor,zps) EDS ———" NwkS| {m}

E w) S
NwkS| = EDs | = EDs ——*29 NwksS
E(NwksS,EDs)

(15) Finally, the following are derived: NwkS | = EDs| = EDs ———— NwkS and

E(NwkS,EDs)

EDs | = NwkS | = EDs ———— NwkS to prove that EDs and NwkS can authenti-
cate one another through a trusted third party (KeySvr). In line with the Scyther to
prove the security efficiency of our proposed algorithms, BAN logic is applied as the
foundation of proving the logical correctness of our proposed algorithm. The discus-
sion results generated by Scyther are discussed as follows.

6. Security Evaluation

This section discusses the security evaluations of the proposed Algorithms A and B.
The evaluations are based on security claims and the improved security of trusted key
servers. Following the rules of the Scyther tool, Algorithm A was considered secured
against all possible LoRaWAN attacks for the Eds, as shown in Table 2, whereas, as shown
in Table 3, the NwkS and the KeySvr, are secured against all possible LoRaWAN attacks
but only within the bounds. However, a lot of skepticism regarding security level arises
as some of the attacks might exist outside the bounds of the whole network which intrud-
ers can exploit. Moreover, as depicted in Table 4, Algorithm B was proposed to improve
Algorithm A by eliminating the security level sceptics by verifying all security automatic
claims for NwkS and KeySvr. Furthermore, our proposed Algorithms A and B were com-
pared to similar models based on the security claims namely secrecy, aliveness, weak-
agree, nisynch, and niagree. Security claims of Algorithms A and B are discussed as fol-
lows.

Table 2. EDs security claims.

Entity Claims
Algorith T issi . . .
gorithin EDs ransimission Alive Weakagree Nisynch Niagree Security Status
Parameters Secrecy
A No attacks No attacks No attacks No attacks No attacks No attacks Verified
B (improved) No attacks No attacks No attacks No attacks No attacks No attacks Verified
Table 3. KeySvr and NwkS security claims.
Claims
Entiti T ission P t
niHes ransmmssion tarameters Alive Weakagree Nisynch Niagree Security Status
Secrecy
-y No E_itt?Cks No attacks within No attacks within No attacks within .
KeySvr No attacks within bounds within Verified
bounds bounds bounds
bounds
No attacks s L o
NwkS No attacks within bounds within No attacks within No attacks within No attacks within Verified

bounds bounds bounds
bounds

J. Sens. Actuator Netw. 2022, 11, 52

18 of 23

Table 4. KeySvr and NwkS security claims.

Transmission Overall

Entities Parameters Alive Weakagree Nisynch Niagree Security
Secrecy Status

KeySvr Noattacks No attacks No attacks No attacks No attacks Verified

NwkS Noattacks No attacks No attacks No attacks No attacks Verified

6.1. Secrecy Claim

As shown in Table 3 for the EDs in Algorithms A and B, all the transmission param-
eters were kept secret throughout the transmission and reception to and from the EDs.
With symmetric encryption and hashing being implemented for dynamic session keys
generation and distribution, the proposed Algorithms A and B can dynamically adapt to
the generation and distribution of the session keys while preserving the secrecy of all the
transmission parameters in the end device. The hashing technique is being implemented
for authentication and message integrity when the transmitted messages are received at
the receiving entity. The secrecy claim at the Eds site was verified with “no attacks” within
and out of bounds transmissions. This ensures that both Algorithms are secured against
all possible LoRaWAN attacks on the Eds side. However, as shown in Table 5, Algorithm
A has a verified security status; however, the NwkS and the KeySvr are only secured
against all possible LoRaWAN attacks only within bounds; this may raise a lot of security
sceptics regarding the transmission parameters as they should be always secured against
internal attacks within bounds and external attacks outside bounds. These sceptics
brought about an improved security level for NwkS and KeySvr by proposing Algorithm
B.

Table 5. Comparison of security claims with similar algorithms.

Entities Algorithms Transmission Parane- Alive Weakagree Nisynch Niagree O.vemll
ters Secrecy Security Status
A No attacks No attacks No attacks No attacks No attacks Verified
Eds B No attacks No attacks No attacks No attacks No attacks Verified
7] No attacks within No attacks No attacks No attacks No attacks Verified
bounds within bounds within bounds within bounds within bounds
A No attacks within No attacks No attacks No attacks No attacks Verified
bounds within bounds within bounds within bounds within bounds
KeySvr B No attacks No attacks No attacks No attacks No attacks Verified
7] No attacks within No attacks No attacks No attacks No attacks Verified
bounds within bounds within bounds within bounds within bounds
A No attacks within No attacks No attacks No attacks No attacks Verified
bounds within bounds within bounds within bounds within bounds
NwkS B No attacks No attacks No attacks No attacks No attacks Verified
7] No attacks within No attacks No attacks No attacks No attacks Verified
bounds within bounds within bounds within bounds within bounds

6.2. Alive and Weakagree Claim

The alive and weakagree of Algorithms A have been verified, as shown in Tables 2
and 3. For Eds weakagree and alive claim in Algorithms A and B, the Eds are secured
against all attacks; this guarantees that the entities encrypt the data transmitted to and
from the Eds using the same proposed encryption scheme, and the same encryption
scheme is employed by all the entities. Additionally, the weakagree and alive claim for
Algorithm A, as shown in Table 3, was verified but the NwkS and KeySvr have security
only within the bounds again. This brings about some skepticism regarding the transmis-
sion scheme and parameters as they might be exploited using a bit-flipping attack to
change the data bits or by a DoS attack to deny the entities the transmission This may

J. Sens. Actuator Netw. 2022, 11, 52

19 of 23

influence affecting the security claim of niagree and nisynch. However, proposing an im-
proved Algorithm B, using Scyther, we verified that the weakagree claim guarantees and
ensures that the same encryption scheme has been implemented for NwkS and KeySvr,
and the alive claim ensures that all the messages transmitted between the NwkS and
KeySvr are encrypted with the same encryption scheme and the same hashing function
for authentication and calculations of message integrity.

6.3. Niagree

Based on the nature of the traditional LoRaWAN and our proposed Algorithms A
and B, the AppKey is pre-programmed into the Eds, but not pre-shared with the KeySvr
or the NwkS as in our proposed algorithms comparing it to the traditional LoRaWAN,
where the AppKey is shared prior communication. The AppKey is a very important key
as it is used to generate the session keys; however, in our proposed Algorithms A and B,
the AppKey is received as a parameter at the KeySvr. This is to ensure that both the Eds
and the KeySvr agree on the same AppKey within the transmitted Eds timestamp and
only the requesting Eds can transmit the AppKey to the designated KeySvr, and no inter-
nal attacks can be experienced before communication by exploiting the KeySvr. However,
it is not the case in Algorithm A for KeySvr and NwkS, as shown in Table 3, as only secu-
rity is experienced within bounds. The NwkS and KeySvr need to agree on the same trans-
mission parameters as per niagree claim; however, the parameters are prone to exploita-
tion outside the bounds during transmission if security is only enforced within bounds.
This leads to proposing Algorithm B, as shown in Table 4. By implementing the improved
steps as discussed in the improved TKMS algorithm, the Scyther tool verified that Algo-
rithm B is secured against all possible attacks in LoRaWAN.

6.4. Nisynch

As shown in Table 4, we aimed at ensuring that all the participating entities guaran-
tee the current time for entities” synchronization of session keys generation and transmis-
sion by using a unique timestamp for each entity, and unique prime numbers which en-
force security defenses against replay attacks. Moreover, Algorithm B ensures ineffective
de-synchronization attacks on entities as the prime numbers are used instead of the
nonces, where these nonces are randomly generated without being secured, whereas the
computation of prime numbers is easy but difficult to reverse

7. Discussions
7.1. Comparison of Proposed Algorithms Security Claims with Similar Algorithms

As shown in Algorithm 1 of the proposed Algorithm A, the algorithm was secured
against several possible LoORaWAN key attacks; however, it had limited security on the
NwkS and the KeySvr as Scyther detected that the algorithm is only secured against the
attacks only within the bounds. However, to overcome this security inefficiency experi-
enced by Algorithm A, we modified and improved several steps to produce Algorithm B
as illustrated in Algorithm 2. The essence of improving Algorithm A to Algorithm B was
to maintain an efficient security level with efficient message integrity and entity authen-
tication. Several security efficiencies are attained by Algorithm B in terms of efficient and
secure key generation and distribution, message integrity and entity authentication are
discussed as follows:

Timestamps: The use of the timestamp guarantees the receiving entity that the re-
ceived message is freshly generated from the transmitting entity, and no form of replay
attack has been identified.

Prime numbers: Commonly in LoRaWAN, nonces are used to prevent replay attacks;
however, these nonces are unsecured pseudorandom numbers. In this paper, we em-
ployed the use of the prime numbers instead of the nonces, but they still resemble the
same functionalities of nonces; this is for a fact that in cryptography, prime numbers are

J. Sens. Actuator Netw. 2022, 11, 52

20 of 23

easy to compute but difficult to reverse. Based on this, the prime numbers are secured in
terms of should the intruders manage to exploit the network or the transmitted message,
they will find it difficult to perform replay attacks as they must know the combination of
numbers that generated the prime numbers.

Hashing: The hashing technique is employed for calculations of message integrity to
avoid bit-flipping attacks, where attackers may alter the bits of the transmitted data. More-
over, hashing ensures entity authentication and session keys are only transmitted via
hashing to avoid exposing them in the transmission, where symmetric encryption is used.
Lastly, the hashing technique has a shorter computation time for message integrity and
authentication as compared to symmetric and asymmetric encryption, where symmetric
encryption is only used for transmitting the parameters through a request to join and ac-
cept join messages. Moreover, hashing performs encryption through functions, where the
inverse of the hashed data is unknown to the public.

AppKey distribution: With the traditional LoRaWAN security models, the AppKey is
pre-programmed into the EDs and the NwkS or the KeySvr before communication. Ap-
pKey is an important key in LoRaWAN wherein most existing models, it is used to gen-
erate AppSKey for securing communication between EDs and AppS, and the NwkSKey
for securing communication between EDs and NwkS. The AppKey was also used for se-
curing communication between EDs and NwkS and used to encrypt the initial request to
join messages. However, this is not a feasible practical security measure as any of these
entities can be exploited to attain AppKey before any communication; should the AppKey
be exploited, then the whole transmission is breached. In our proposed algorithms, the
AppKey was only pre-programmed into the EDs before communication and distributed
to the KeySvr as a parameter secured through symmetric encryption with a timestamp
used for freshness. However, the symmetric encryption keys used are created between
the communicating entities only, and not overlapped to other entities if the transmitted
message is forwarded. The AppKey will be newly generated for every transmission,
where the old AppKey cannot be used for current transmissions and is also used to gen-
erate NwkSKey and AppSKey from two distinct prime numbers for key independency.

Improved TKMS: The employed improved TKMS ensures secure generation and dis-
tribution of the session keys and the parameters used to create them. Moreover, the TKMS
facilitates most transmissions in the network to the desired receiving entity; this eases up
operational complexities from the NwkS as in most LoRaWAN security models the NwkS
performs most of the operations.

7.2. Comparison of Proposed Algorithms with Similar Algorithms

In this section, we discuss the comparison of our proposed algorithms and the similar
algorithm in [7] considering the shortfalls of the existing algorithm and the solutions im-
plemented in our algorithms to improve the security level in LoRaWAN. Moreover, the
discussion is based on the security claims detected by Scyther, as shown in Tables 5 and
6. Though asymmetric encryption is implemented to generate the session keys to secure
the communication between the key server and other servers, asymmetric encryption is
still heavy on resources and the resource-constrained nature of LoRaWAN should be
taken into consideration when designing security models. We positioned our paper pro-
posing a security model in LoRaWAN by implementing symmetric encryption for initiat-
ing the communication and securing the transmission parameters between the entities
and using a hash function to ensure authentication and message integrity. Symmetric en-
cryption is low consuming on resources as compared to asymmetric encryption; however,
hashing has low computational costs and time when performing authentication and ver-
ifying message integrity.

As illustrated in [7], the session key (SK2) is used only once for encrypting a message
from the key server to the application server, while the session key (5K1), without being
updated, is used for several operations such as encrypting messages between the network
server and key server and encrypting new messages between the key server and network

J. Sens. Actuator Netw. 2022, 11, 52 21 of 23

server with the same SK1. Session keys should be updated for every transmission to avoid
replay attacks. The nonce is used only to secure a message with AppSKey sent between
the key server and the application server. This implementation is infeasible for every
transmission as all transmissions are to be always secured. In our proposed algorithms,
the implementation of prime numbers guarantees message integrity in the transmission
when the request to join the message is initiated by the authenticated end device.

In Table 5, the evaluations are based on the security claims for each entity employed
in a specific model, and Table 6 is based on automatic security evaluations which are
based on assessing and analyzing the security level of the whole model considering all
employed entities at once. The security claims for each entity as illustrated in Table 5 show
that the existing algorithm in [7] has limited security for EDs, NwkS and KeySvr as our
proposed Algorithm A of only being secured within bounds except for the EDs in Algo-
rithm A which has no attacks at all. Though the overall security is verified for the work in
[7] and the security claims are being satisfied, it should be considered for further improve-
ment. We proposed an enhanced Algorithm B, which is an improvement of Algorithm A;
this is to ensure that no other attacks in future can be detected outside bounds. Further-
more, as shown in Table 6, for verifying automatic evaluations, the existing model in [7]
still maintains verified overall security; however, Scyther still detected no attacks within
bounds for the KeySvr. The trusted third party as the main key entity to generate, distrib-
ute and update the session keys, should be secured at all costs within and outside bounds
to avoid any external attacks that might exploit the network from outside the bounds. In
our proposed Algorithm A and the existing algorithm in [7], the majority of the transmis-
sions are composed of the same parameters which are infeasible if the transmissions con-
tinue for lengthy periods. However, in our enhanced Algorithm B, randomly changing
the transmission parameters for authentication and message integrity calculations guar-
anteed reinforced security within and outside bounds as is difficult for the attackers to
guess the parameters for the next transmission or use parameters from the previous trans-
mission to guess the next transmission.

Table 6. Comparison of proposed algorithms automatic security evaluation with similar algorithms.

Transmission Pa-

Entities :tlf;-s rameters Alive Weakagree Nisynch Niagree Secu(?fizi;r;i‘;tus
Secrecy
A No attacks No attacks No attacks No attacks No attacks Verified
EDs B No attacks No attacks No attacks No attacks No attacks Verified
7] No attacks within No attacks within No attacks within ~ No attacks No attacks Verified
bounds bounds bounds within bounds within bounds
A No attacks within No attacks within No attacks within =~ No attacks No attacks Verified
bounds bounds bounds within bounds within bounds
KeySvr B No attacks No attacks No attacks No attacks No attacks Verified
7] No attacks within No attacks within No attacks within =~ No attacks No attacks Verified
bounds bounds bounds within bounds within bounds
A No attacks within No attacks within No attacks within ~ No attacks No attacks Verified
NwkS bounds bounds bounds within bounds within bounds
B No attacks No attacks No attacks No attacks No attacks Verified
[7] No attacks No attacks No attacks No attacks No attacks Verified

8. Conclusions

This paper conducted a comprehensive literature review on LoRaWAN’s security
models and proposed two LoRaWAN algorithms that serve as a foundation for an im-
proved and secured LoRaWAN model. The algorithms were modelled and verified
against all possible LoORaWAN attacks using the Scyther security tool based on formal
analysis. Based on this tool, the proposed Algorithm A was verified and exhibited security
flexibility amongst all possible LoRaWAN attacks with no attacks detected on Eds.

J. Sens. Actuator Netw. 2022, 11, 52 22 of 23

However, the NwkS and the KeySvr, though secured, have some limitations of detecting
attacks only within the bounds which can be exploited out of bounds by attacks such as
bit flipping, replay, and DoS attacks. These attacks can intercept transited data out of
bounds and alter its bits, exploit the timestamps to avoid freshly generated messages, and
deny the services to other entities by exploiting the transmission parameters. Conse-
quently, Algorithm A was enhanced to be more robust against all possible LoRaWAN
attacks and supports an efficient trusted key management server. By employing Scyther,
the security claims of Algorithm B were verified based on Secrecy to ensure parameters
are always secured, aliveness and weakagree to guarantee that all the parameters are en-
crypted and entities implemented with the same scheme. Moreover, the nisynch claim
ensures that all the transmission processes and sessions in the network between the enti-
ties adhere to all the security specifications of the proposed protocol and all the partici-
pating entities adhere to being synchronized in their current state, while the niagree claim
guarantees all the participating entities in the same network adhere to and agree on the
same parameters to use for their transmission. We also compared the proposed algorithms
with a similar model based on the same security claims, as shown in Table 5, while Table
6 presents the automatic evaluation comparisons which justified the Algorithm B. This
shows that it is possible to improve an algorithm such as Algorithm A to ensure that it is
not only secured within bounds but also outside bounds. Lastly, we applied the BAN logic
formal analysis method to prove the logical correctness of the algorithms cryptograph-
ically. The proof shows that the improved Algorithm B is logically correct, and its authen-
ticity is guaranteed.

For future work, we aim to extend our work into finding the trade-offs between se-
curity level and energy efficiency by designing an integrated model and carrying out a
series of experiments to evaluate the effectiveness and performance.

Author Contributions: Conceptualization, K.N. and B.I,; methodology, B.L; investigation, K.N.;
writing —original draft preparation, K.N.; writing—review and editing, B.I. and A.M.A.-M.; super-
vision, B.I. and A.M.A.-M,; project administration, N.G.; funding acquisition, A.M.A.-M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This was supported by FNAS, UDSC, and the Department of Computer Science
at the North-West University, Mafikeng campus as well as the Council for Scientific and Industrial
Research (CSIR) via the Smart Networks collaboration initiative and IoT-Factory Program (funded
by the Department of Science and Innovation (DSI), South Africa).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Choi, J.; Kim, Y. An Improved LEA Block Encryption Algorithm to Prevent Side-Channel Attack in the IoT System. In Proceed-
ings of the 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju,
Korea, 13-16 December 2016; pp. 1-4.

2. Han,]; Wang,]. An enhanced key management scheme for LoRaWAN. Cryptography 2018, 2, 34.

3. Hu, Z. Layered Network Protocols for Secure Communications in the Internet of Things; University of Oregon: Eugene, OR,
USA, 2021.

4. Kim, J;Song, J. A dual key-based activation scheme for secure LoRaWAN. Wirel. Commun. Mob. Comput. 2017, 2017, 6590713.

5. Mahmood, Z; Ning, H.; Ghafoor, A. A polynomial subset-based efficient multi-party key management system for lightweight
device networks. Sensors 2017, 17, 670.

6. Na, S; Hwang, D.; Shin, W.; Kim, K.-H. Scenario and Countermeasure for Replay Attack Using Join Request Messages in Lo-

RaWAN. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11-13
January 2017; pp. 718-720.

J. Sens. Actuator Netw. 2022, 11, 52 23 of 23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

Naoui, S.; Elhdhili, M.E.; Saidane, L.A. Trusted Third Party Based Key Management for Enhancing LoRaWAN security. In
Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Ham-
mamet, Tunisia, 30 October-3 November 2017; pp. 1306-1313.

Roselin, A.G.; Nanda, P.; Nepal, S. Lightweight Authentication Protocol (LAUP) for 6(LOWPAN Wireless Sensor Networks. In
Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, 1-4 August 2017; pp. 371-378.

Ruotsalainen, H.; Zhang, J.; Grebeniuk, S. Experimental Investigation on Wireless Key Generation for Low-Power Wide-Area
Networks. IEEE Internet Things]. 2019, 7, 1745-1755.

KTsai, -L.; Huang, Y.-L.; Leu, F.-Y.; You, I. TTP based high-efficient multi-key exchange protocol. IEEE Access 2016, 4, 6261—
6271.

Tsai, K.-L.; Huang, Y.-L.; Leu, F.-Y.; You, I; Huang, Y.-L.; Tsai, C.-H. AES-128 based secure low power communication for
LoRaWAN IoT environments. IEEE Access 2018, 6, 45325-45334.

Yang, X.; Karampatzakis, E.; Doerr, C.; Kuipers, F. Security vulnerabilities in LoRaWAN. In Proceedings of the 2018 IEEE/ACM
Third International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, FL, USA, 17-20 April 2018;
pp- 129-140.

Qadir, A.M.; Varol, N. A Review Paper on Cryptography. In Proceedings of the 2019 7th International Symposium on Digital
Forensics and Security (ISDFS), Barcelos, Portugal, 10-12 June 2019; pp. 1-6.

Hamza, A.; Kumar, B. A Review Paper on DES, AES, RSA Encryption Standards. In Proceedings of the 2020 9th International
Conference System Modeling and Advancement in Research Trends (SMART), Moradabad, India, 4-5 December 2020; pp. 333-
338.

Dhanda, S.S.; Singh, B.; Jindal, P. Lightweight cryptography: A solution to secure IoT. Wirel. Pers. Commun. 2020, 112, 1947-
1980.

Zhang, Q. An Overview and Analysis of Hybrid Encryption: The Combination of Symmetric Encryption and Asymmetric En-
cryption In Proceedings of the 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA,
12-17 August 2021; pp. 616-622.

Lozupone, V. Analyze encryption and public key infrastructure (PKI). Int.]. Inf. Manag. 2018, 38, 42-44.

Long, S. A Comparative Analysis of the Application of Hashing Encryption Algorithms for MD5, SHA-1, and SHA-512. |. Phys.
Conf. Ser. 2019, 1314, 012210.

Zhu, S.; Zhu, C.; Wang, W. A new image encryption algorithm based on chaos and secure hash SHA-256. Entropy 2018, 20, 716.
Zefreh, E.Z. An image encryption scheme based on a hybrid model of DNA computing, chaotic systems and hash functions.
Multimed. Tools Appl. 2020, 79, 24993-25022.

Semal, B.; Markantonakis, K.; Akram, R.N. A Certificateless Group Authenticated Key Agreement Protocol for Secure Commu-
nication in Untrusted UAV Networks. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference
(DASC), London, UK, 23-27 September 2018; pp. 1-8.

Cremers, C. “Scyther” Semantics and Verification of Security Protocols. Ph.D. Thesis, University Press Eindhoven, Eindhoven,
The Netherlands, 2006.

Budiyanto, S.; Santosa, G.B.; Mariati, F.R.I. Upgrading the S-NCI Key Establishment Protocol Scheme to be Secure and Appli-
cable. IOP Conf. Ser. Mater. Sci. Eng. 2018, 453, 012002.

Dalal, N.; Shah, J.; Hisaria, K.; Jinwala, D. A comparative analysis of tools for verification of security protocols. Int.]. Commun.
Netw. Syst. Sci. 2010, 3, 779.

Naoui, S.; Elhdhili, M.E.; Saidane, L.A. Enhancing the Security of the IoT LoraWAN Architecture. In Proceedings of the 2016
International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN), Toulouse,
France, 26-28 September 2016; pp. 1-7.

Lee, J.; Hwang, D.; Park, J.; Kim, K.-H. Risk Analysis and Countermeasure for Bit-Flipping Attack in LoRaWAN. In Proceedings
of the 2017 International conference on information networking (ICOIN), Da Nang, Vietnam, 11-13 January 2017; pp. 549-551.

