Case studies of modified South African estuaries and implications for ecological restoration in these systems

Steven Weerts^{*1}, Fiona MacKay², Susan Taljaard¹, Lara Van Niekerk¹

sweerts@csir.co.za
Council for Scientific and Industrial Research
Oceanographic Research Institute

SER2019 World Conference on Ecological Restoration, Cape Town September 2019

our future through science

Four estuarine systems: Perturbation, intervention, trajectories of change

- St Lucia: Agriculture, mouth manipulation Restoration
- Nhlabane: Mining, dam Mitigation
- Richards Bay/Mhlathuze Estuary: Port development Mitigation
- Durban Bay: Port development Mitigation

What can we learn from these to guide successful ecological restoration in South African estuaries?

Introduction – Estuaries of KwaZulu-Natal

Introduction – Estuaries of KwaZulu-Natal

- Most threatened of all coastal habitats
- Port development, urban development, agriculture, mining
- Habitat loss and flow modification
- Pollution in the last 20 years, eutrophication and fish kills

St Lucia estuarine lake

- Estuarine lake largest in Africa
- SA's flagship estuary
- World Heritage Status
- RAMSAR site of national importance
- 80% of KZN estuarine area
- Important fish and prawn nursery
- Bird roosting, feeding and breeding area
- 60 km S-N
- s/a 350 km²
- Shallow (ave. depth 1 m)
- Small catchments except for Mfolozi at mouth

St Lucia Estuary

Mfolozi

Rive

St Lucia - perturbation

St Lucia - perturbation

St Lucia – intervention (restoration)

- R65 million spent on St Lucia Estuary restoration project
- 1.4 million cubic metres of sand (60 years of dredge spoil) removed

St Lucia – restoration success

St Lucia – or not?

St Lucia – or not (2)?

Umfolozi Sugar Planters Ltd (UCOSP) and farmers

VS

iSimangaliso, the Departments of Environment Affairs, Water and Sanitation, Rural Land Reform and Development and Agriculture Forestry and Fisheries

St Lucia - synopsis - hanging in the balance

- Well studied, science-based
- Natural recovery processes adopted
- Are sediments short-term or do they reflect lack of restoration in the lower catchment?
- Will the project be supported by local communities?

Lake Nhlabane

- Estuarine lake Clearwater system
- Seasonal connection to the sea
- Important fish nursery
- Important bird area
 - 6 km S-N

Lake Nhlabane - perturbation

Construction of barrage at south basin in 1977 for mine water Raised in 1999 (+6 m) Flow reduction Increased mouth closure Reduced flushing Loss of connectivity

Lake Nhlabane - intervention (fish ladder)

	I			
SPECIES	PRE-BARRAGE	POST-B	ARRAGE	SURVEYS
	1958 - 1977	1991 - 1996	2004 - 2007	1999 - 2000
Acanthopagrus berda	Х			Х
Monodactylus sp.	Х			Х
Pomadasys commersonnii		Х		
Rhabdosargus holubi				Х
Mugil cephalus	Х			Х
Valamugil robustus	Х			
Elops machnata	Х			
Liza macrolepis		Х		
Liza alata	Х	Х	Х	
Gerres acinaces		Х		
Caranx ignobilis				Х
Caranx sexfasciatus				Х
Anguilla spp.		Х		Х
Myxus capensis	Х	Х		Х
Megalops cyprinoides	Х			
Ambassis productus	Х	Х		Х
Eleotris fusca		Х		Х
Eleotris melanosoma				Х
Hypseleotris dayi				Х
Gilchristella aestuaria	Х	Х	Х	х
Awaous aeneofuscus				Х
Glossogobius callidus		Х	Х	Х
Glossogobius giuris	Х	Х		
Redigobius dewaali				Х
Clarias gariepinus	Х	Х	Х	
Clarias theodorae			Х	
Oreochromis mossambicus	Х	Х	Х	Х
Pseudocrenilabrus philander	Х	Х	Х	Х
Tilapia sparrmanii		Х	Х	Х
Aplocheilichthys spp.		Х	Х	Х
Barbus bifrenatus			Х	
Barbus paludinosus		Х	Х	
Barbus viviparus		х	Х	х
No. estuarine/marine spawners	9	7	1	9
No. freshwater spawners	5	11	11	12
Total no. of species	14	18	12	21

15

Lake Nhlabne – successful or not?

Fish ladder as a temporary mitigation

- Design issues
- Maintenance issues
- Scientific knowledge?

Decommissioning and restoration

- Reluctance to remove infrastructure after mining
- Important source of freshwater

Lake Nhlabne – synopsis

Temporary mitigation (fish ladder)

• Sufficient ecological knowledge?

Restoration (barrage removal)

• Commitment across all stakeholder groups?

Richards Bay/Mhlathuze

- Estuarine lake
- Permanent connection to the sea
- Important fish and prawn nursery
- Limited tidal range and therefore limited mangrove area
- Important estuarine habitat (eelgrass *Zostera capensis*)

Richards Bay/Mhlathuze - perturbation

Port development in 1975 Re-routed and channelized river inflow Massive destruction of pristine estuarine habitat

Richards Bay/Mhlathuze - intervention (conservation area)

- Large scale "design" of a remnant area to serve conservation and recreational purposes
- **Re-routed river**
- Tide gates to allow flow between systems
- New estuary mouth
- Predicted changes in tidal range

Richards Bay/Mhlathuze – successful (or lucky)?

- Predicted changes in tidal range occurred
- Intertidal mudflats
- Tide gates failed
- Tidal prism kept the mouth permanently open
- Natural recovery by biological succession (to mangroves) in both new systems (>50% SA mangrove area)
- Intervention in the case of Zostera

Richards Bay/Mhlathuze - synopsis

- Massive changes: one estuarine lake an bestuarine bay + permanently open estuary
- Well studied (scaled physical model)
- Followed natural recovery processes
- Habitat replacement (overall habitat loss)
- Stable state in <20 years (with exception of Zostera)
- Nationally important estuarine resource

Last 20 years

- Catchment water quantity and quality
- Invasive species
- Over-exploitation

Durban Bay – A highly modified estuarine resource

Allan DG, Sinclair JC and Rossouw J (1999). The waterbirds of Durban Bay: current status and historical trends. Durban Museum Novitates 24: 1–21.

Durban Bay – opportunity with development

Durban Bay – leveraging on development

Central Bay Tidal	3C long-	3D long-	3E	3F	3G	3H
Banks	term	term	development	development	development	development
			τοοιρηπι	τοοιρηπι	ιοοιριπι	ιοοιριπι
High Intertidal	-18128	-18142	-16495	-16346	-16346	-16353
Low Intertidal	-54937	-22389	5194	40545	43216	45000
Shallow Subtidal	10580	23656	7943	40130	40130	44580
Medium Subtidal	-6281	-8982	-9024	-7993	-7993	-6522
Deep Subtidal	-37411	-51059	-51135	-58383	-58383	-53209
Total	-106177	-76916	-63516	-2048	623	13497
Little Lagoon	3C long-	3D long-	3E	3F	3G	3Н
Little Lagoon Tidal Banks	3C long- term	3D long- term	3E development	3F development	3G development	3H development
Little Lagoon Tidal Banks	3C long- term	3D long- term	3E development footprint	3F development footprint	3G development footprint	3H development footprint
Little Lagoon Tidal Banks High Intertidal	3C long- term -1832	3D long- term -1832	3E development footprint -1742	3F development footprint -1742	3G development footprint -1742	3H development footprint -1742
Little Lagoon Tidal Banks High Intertidal Low Intertidal	3C long- term -1832 -1426	3D long- term -1832 -1426	3E development footprint -1742 1739	3F development footprint -1742 1739	3G development footprint -1742 1739	3H development footprint -1742 1739
Little Lagoon Tidal Banks High Intertidal Low Intertidal Shallow Subtidal	3C long- term -1832 -1426 3251	3D long- term -1832 -1426 3251	3E development footprint -1742 1739 -7	3F development footprint -1742 1739 -7	3G development footprint -1742 1739 -7	3H development footprint -1742 1739 -7
Little Lagoon Tidal Banks High Intertidal Low Intertidal Shallow Subtidal Medium Subtidal	3C long- term -1832 -1426 3251 7	3D long- term -1832 -1426 3251 7	3E development footprint -1742 1739 -7 7	3F development footprint -1742 1739 -7 7	3G development footprint -1742 1739 -7 7	3H development footprint -1742 1739 -7 7
Little Lagoon Tidal Banks High Intertidal Low Intertidal Shallow Subtidal Medium Subtidal Deep Subtidal	3C long- term -1832 -1426 3251 7 0	3D long- term -1832 -1426 3251 7 0	3E development footprint -1742 1739 -7 7 0	3F development footprint -1742 1739 -7 7 0	3G development footprint -1742 1739 -7 7 0	3H development footprint -1742 1739 -7 7 0

Durban Bay – bioenhancement technolgies

26

Natura 2000

Potential for restoration in estuaries

Characteristic	Unpredictable environment
Inertia (ability to resist perturbations)	Low
Elasticity (speed that a system returns to its original state)	High
Amplitude (magnitude of perturbation and degree of displacement from previous state)	High
Dynamic property (variety and nature of forces operating within a system)	Robust
Maturity (degree to which a system approached climax state)	Low
Stability (tendency of a system to remain near an equilibrium or to return to it after a disturbance)	Resilient

Whitfield 1990. Life-history styles of fishes in South African estuaries. Environmental Biology of Fishes 28: 295-308

Potential for restoration in estuaries

- We can create physical habitat and physico-chemical conditions (ecohydrology)
- 2. Connectivity recruitment natural succession
- 3. Stable states attained relatively quickly
- 4. Marine estuarine connectivity can be managed (can restore estuaries)
- Water quality good
- Main source of biota
- POEs with good flushing
- Climate change (sea level rise, berm heights and beach width)
- 5. Community involvement ?

- 1. Even well studied cases have failed in the past, scale is important (e.g. St Lucia)
- 2. Succession trajectories are sometime unpredictable
- 3. Not always predictable
- 4. Freshwater estuarine connectivity cannot (restoring catchments is difficult)
- Water quality issues
- Few biota (includes most threatened forms)
- TOCEs with small catchments, specific sources
- Global change (human pressure) and climate change (runoff and flows)
- 5. Community involvement ?

Decision tree: Restoration/Rehabiltation/Bioenhancement

Conclusion

- 1. We cannot have dead estuarine systems
- 2. Even ports must be more than ports
- 3. Restoration has to occur
- 4. We should embed Restoration Protocols into our existing estuarine management frameworks

Thank you

our future through science