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Abstract—Text extraction is an important part of natural 

language processing (NLP) tasks. Most NLP tasks like text 

classification, machine translation, text-to-speech, text-based 

language identification, text summarization, and named-entity 

recognition involve the use of textual data. Such data is limited 

for low-resourced languages making it difficult to experiment 

advanced NLP techniques on these languages. This paper 

presents a Python-based toolkit for text analysis and text 

extraction from different types of images, documents, and audio 

files. The toolkit is built as a library that has functions that can 

be imported and utilized for text extraction.  

Keywords—natural language processing, text extraction, text 

analysis 

I. INTRODUCTION 

With the rise of digital age, there is high number of data 
existing in various format. This data can be in structured or 
unstructured format. Much of the data is in unstructured 
format and it is a challenging task for data extraction 
processes. Data extraction is a process of extracting data from 
a source file into a format that is suitable for a task being 
solved.  

Data is an important part of natural language processing 
(NLP) since most NLP tasks are data driven. Data exists in 
different forms such as such as text, images, web pages, audio, 
sensors and many more. Some of these files are not in a current 
format that can be used in NLP tasks. Different software 
programs are required to process each type of file to extract 
the contents.  

Data extraction plays a vital role for low-resourced 
language since most of the data exists in a format that cannot 
be used. Low-resourced languages are languages that have a 
very limited data that can be used for NLP problems. This 
toolkit slightly enables access to the data set found in 
unstructured files. Fortunately, the data can now be extracted 
from those unstructured files, apply preprocessing tasks, and 
used for NLP tasks such as topic modelling and text similarity. 

Topic modelling is a process of learning, recognizing, and 
extracting topics from a collection of documents. These 
documents can be in any language. There are different types 
of topic modelling algorithms, namely, Latent Semantic 

Analysis (LSA), Latent Dirichlet Allocation (LDA) [10], and 
many more. Topic modelling enable a user to know the 
topic(s) of a group of documents. On the other hand, text 
similarity is a task of identifying similar documents using 
identical contents to measure the similarity score. Text 
similarity is used in text summarization, machine translation, 
question answer session, topic detection, text categorization, 
clustering, and information retrieval [14].  

This paper proposes the implementation of text extraction 
and text analysis toolkit that can also be used as a library that 
can be embedded or imported in other projects. The toolkit can 
work in any language (limited functionality) but it was tested 
on English for all its functions.  

This paper is organized as follows: Section II discusses the 
background and literature study. Section III discusses the 
methods used for text extraction and text analysis. Section IV 
discusses the toolkit’ methods and how these methods can be 
used while Section V concludes with future work.  

II. BACKGROUND  

A. Data Extraction Methods 

Data extraction methods depend on whether the data 

source is structured or unstructured. Structured data sources 

adhere to a certain format whereas unstructured data sources 

may contain text, images, web pages, audio and many more. 

We give a review of some of the data extraction libraries. 

Pandas [1] is an open-source Python library. It is a BSD-

licensed library, developed in 2008 by Wes McKinney. The 

Pandas package provides numerous tools for data analysis 

and multiple data structures that can be used for data 

manipulation tasks. It is a powerful input/output (IO) system 

for loading data from a wide variety of file formats or data 

sources through the “read” function, which loads the data into 

a data frame.  The Pandas library has several advantages. For 

starters, it presents data in a form that is suitable for data 

analysis. Additionally, it has methods for data filtering. 

Finally, Pandas extracts data from a variety of formats such 

as Comma Separated Values (CSV), JavaScript Object 

Notation (JSON), and Excel file formats such as Microsoft 



Excel Spreadsheet (XLS) and Microsoft Excel Open XML 

Spreadsheet (XLSX).   

Web scraping helps in converting unstructured data into a 

structured data that can be utilized for extracting insights. 

While Extensible Markup Language (XML), and Hyper-Text 

Markup Language (HTML) are both markup languages that 

can be extracted using Pandas, the files may occasionally be 

too complex. Numerous libraries have been developed for the 

purpose of extracting data from web pages. Well known 

extraction libraries for web pages in Python include Beautiful 

Soup [18], selenium [16], and scrapy [17]. 

Beautiful Soup [18] is a Python library widely used for 

web scraping. Leonard Richardson developed the library in 

2004 under an MIT license called BeautifulSoup3 which was 

discarded in 2020 for the latest version called BeautifulSoup4 

in 2021. It creates a parse tree for parsing HTML and XML 

documents. Beautiful Soup can easily be combined with other 

parsers like lxml [19]. It also works well with poorly designed 

HTML and has numerous functions, making it the most 

widely used web scraping tool.  Apart from HTML and XML 

files, Beautiful Soup can also be used to extract data from 

electronic publication (EPUB) file formats. 

Text files are text-based files that can be classified as 

plain text files or rich text files. Plain text files have no special 

formatting and are full of text, whereas rich text files may 

contain non-text content such as images and some formatting. 

Plain text file formats include text (TXT), and rich text file 

formats include Rich Text Format (RTF), Microsoft Word 

(Doc), Microsoft Word Open XML Format Document 

(Docx), Open document format (ODF) formats such as 

OpenDocument Text (ODT) and OpenDocument Text 

Template (OTT), and Portable Document File (PDF).   

Microsoft Word documents such as doc and DOCX are 

frequently used for text-based data. DOC is the predecessor 

of word and DOCX is the latest version of word. These file 

formats may contain in-line addition of tables, images, 

hyperlinks, etc. DOC file types can be extracted using the 

TextExtract library [36]. Additionally, it can be used to 

extract text from images. TextExtact is licensed under the 

MIT license, authored by Sayar Mendis.  

Numerous data extraction libraries are available for the 

latest version of Word, DOCX.  The Doc2txt library scrapes 

text and images from word documents. Additionally, it 

enables for the extraction of text from images. It is authored 

by Ankush Shah [20].  

ODF is an XML-based file format similar to DOCX file 

formats. ODF formats can be extracted using ODFPY library. 

ODFPY is licensed under the Apache software license, 

authored by Soren Roug [21]. 

PDF format is one of the most widely used file format for 

text and graphic documents. PDF file format is the most 

unstructured file format and extracting data from such file 

formats is a complicated task. Pdfminer.six library [22] can 

extract text from PDF files it is built from from PDFMiner 

software authored by Yusuke Shinyama. 

Postscript (PS) file formats can be extracted using Python. 

It iterates over all the lines in the file and extract the text. 

Additionally, there are extraction libraries for Presentation 

file format such as Microsoft PowerPoint Open XML 

Presentation file (PPTX) and Email file format such as email 

(EML). 

Optical Character Recognition (OCR) tool is used to 

recognize text from scanned documents, PDF documents, and 

images. This tool was invented in the late 1920s by Austrian 

engineer Gustav Tauschek [23]. OCR Python libraries used 

to read and extract data from images are tesseract-OCR and 

EasyOCR. Tesseract-OCR is a google wrapped tool that was 

developed at Hewlett-Packard (HP) Laboratories in 1984 and 

1999 for a PhD research project [2]. EasyOCR [24] is an 

open-source software that extracts text and data at the same 

time from images. EasyOCR performs faster on GPU and 

better with numbers compared to Tesseract-OCR which 

performs faster on CPU and better with alphabet recognition.  

Speech Recognition [25] is a library that converts audio 

or words that have been read aloud into readable text with 

several engines, application programming interface (API), 

online and offline. Speech Recognition was developed in the 

1950s and 1960s by Bell Laboratories which can only 

recognize digits. Later, in the 1980s it was able to recognize 

hundreds of words using a statistical method Hidden Markov 

Model (HMM) used to improve the accuracy of the text. 

Speech Recognition was last updated in late 2017 by Anthony 

Zhang under BSD License. Speech Recognition is fast and 

fairly accurate for those who speak fast and slow in writing.  

 

B. Topic Modelling 

Normally, when working with a small number of 

documents, it is much easier to read through and find the 

different topics presented within those documents. However, 

in the case of big data, that task becomes tedious. The need 

for more automated processes for the same task becomes 

apparent. As a tool, NLP has been used for language 

understanding [26] and at the document level, one of the most 

successful ways to accomplish that mundane and tedious 

manual task is called topic modelling. Topic modelling is the 

process of learning, recognizing, and extracting topics from a 

collection of documents. There are different ways to apply 

topic modelling algorithms to documents and we will discuss 

some of the different algorithms. When modelling topics on 

a collection of documents, two basic assumptions apply, 

namely, (a) each document contains a mixture of different 

topics, (b) and each topic contains a collection of words. 

Albalawi et al. [9] have done a study reviewing articles 

relating to topic modelling that were published between 2015 

and 2020. From this study we will focus on the methods 

explored namely Latent Semantic Analysis (LSA), Latent 

Dirichlet Allocation (LDA) [10], Non-Negative Matrix 

Factorization (NMF) [11], Random Projection (RP) [12] and 

Principal Component Analysis (PCA) [13]. 

LSA is an unsupervised learning model used to extract 

relationships from documents and it acts as a dimensionality 

method to reduce the dimension of the huge corpus of text 

data. NMF is a matrix factorization method where we ensure 

that the elements of the factorized matrices are non-negative. 

This method can perform both dimension reduction and 

clustering simultaneously. In RP, a random matrix is used, 

and the original high-dimensional data is mapped onto a 

lower dimensional subspace with the reduced time cost. This 

method delivers sparse results because fundamental structure 

of the original data is ignored, and this often leads to high 

distortion. LDA is a probabilistic model, and it is the most 

popular method in real-life applications for extracting topics, 



it provides more accurate results, and it can be trained online. 

It also addressed other models’ limitations, like the latent 

semantic indexing and probabilistic latent semantic indexing. 

The LDA model will be used for topic modelling in this 

paper. 

 

C. Text Similarity 

Text similarity is a task of identify similar documents 

using identical contents to measure the similarity score. There 

are different types of methods to measure similarity score, 

namely, cosine similar, and Jaccard similarity. 

Cosine similarity is a metric that models text document as a 

vector. The metric can be applied to any text in a form of 

sentence, paragraph, or a whole document [3]. It measures the 

similarity as the cosine of the angle between two vectors [4]. 

Cosine similarity can only be computed for two vectors that 

of the same size, the two vectors would be similar if they are 

close in terms of both magnitude and direction. 

Mathematically cosine similarity can be calculated using the 

dot product between the vectors and dividing it by the 

multiplication of the norms, it is defined as: 

 

cos 𝜃 =
𝐴.𝐵

||𝐴||||𝐵||
     (1) 

 

Jaccard similarity is a determination of the association 

between two texts [5]. It is a statistical measure of similarity 

between two sample sets, the two sets are defined as the 

intersection divided by their union. Mathematically it is 

defined by [6]: 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
    (2) 

 

Term Frequency – Inverse Document Frequency (TF-IDF) is 

an algorithm that determines the relative frequency of words 

in a specific document compared to the inverse proportion of 

that word over the entire document corpus [7]. The 

calculation determines the relevance of a given word in a 

particular document. TF measures the frequency of a word in 

a document, IDF is the inverse of the document frequency. 

Mathematically it is defined as: 

 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑). 𝑖𝑑𝑓(𝑡, 𝐷)  (3) 

 

Where D represent the corpus of the documents, t is the 

number of times a word occurs in a document, and d is 

document (set of words).  

III. METHODOLOGY 

This section discusses the architecture of the toolkit and 

the implementation. Firstly, we explain the methods used to 

extract the data, secondly, we explain the topic modelling 

pipeline followed by the text similarity pipeline. Figure 1 

shows the architecture of the toolkit. The toolkit contains 

APIs or methods that can be used by external programs which 

can send data in a form of images, audios, and different types 

of documents whereby the toolkit is able to determine 

document type and extract the data from the document then 

send back the textual data back to the external program. For 

text analysis, the external program can either request topic 

 
1 https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe 

modelling or type of text similarity using the APIs or 

methods, then the toolkit will be able to return the requested 

model back to the external program. 

 

 
Figure 1: Overall Architecture 

A. Data extraction 
This section discusses the implementation of the data 

extraction methods on different types of files. These files are 
in a form of CSV, JSON, Image, XML, XLSX, HTML, XLS, 
DOC and DOCX, ODT and OTT, PDF, PS, TEXT, PPTX, 
RTF, EPUB, and EML. 

• CSV/JSON/XML/XLSX/XLS: We use Pandas [1] 

library to process the CSV/JSON/XML/XLSX/XLS file 

and return the contents in a DataFrame1 format. 

• HTML: We use Beautiful Soup library to process the 

HTML file and extract the textual part excluding 

cascading style sheets (CSS) and JavaScript part. 

• AUDIO: The toolkit support files in a form of wave or 

mp3. The toolkit converts the mp3 into wave form then 

we pass the audio to speech recognition engine. The 

toolkit supports the following speech recognition 

engines: Google Cloud Speech API, Microsoft Bing 

Voice Recognition, Wit.ai, Houndify, IBM Speech to 

text, and CMU Sphinx. We extract the textual part from 

the speech recognition engine. These engines need to be 

acquired before they can be used. 

• Images: The toolkit supports wide range of various 

images listed in [8]. The toolkit can extract text from 

those images using a back-end software called tesseract 

[37].  

• DOC/DOCX: The toolkit supports DOC and DOCX 

documents. It can extract the text from DOC using a 

back-end software called antiword [27] which must be 

installed on the system. For DOCX, the toolkit uses a 

software called python-docx [28] to extract the textual 

part. 

• ODT and OTT: The toolkit supports both ODT and OTT 

documents. It can extract text from the documents using 

PYODF [21] library. 

• PDF: The toolkit can extract text from PDF documents. 

A software called pdfminer [22] is used to process the 

PDF file.  



• PS: The toolkit can extract text from PS documents. We 

use a software called Ghostscript [29] to process the PS 

documents and then we extract the textual part.  

• TEXT. The toolkit can read text files and return the text. 

• PPTX: The toolkit can read Microsoft PowerPoint PPTX 

files. We use a software called python-pptx [30] to extract 

the text from each slide. 

• RTF: The toolkit supports RFT documents. It uses unrtf 

[30] to extract the text. 

• EPUB: The toolkit can read EPUB documents. It uses a 

software called ebooklib [31] to extract the contents 

which are in XML format. It then passes the contents to 

Beautiful Soup to extract the textual content.  

• EML: The toolkit support EML documents. EML 

document contains plain text and HTML text. The toolkit 

extracts the contents of the EML file and pass the HTML 

part to Beautiful Soup to extract the text and combines 

with the plain text. 
 

B. Topic Modelling 

There are various algorithm exists to build topic modelling 
model. The toolkit uses Latent Dirichlet Allocation (LDA) 
algorithm. We tested the algorithm using a subset of the 
newsgroup dataset [33] which we used to train and test the 
model. The data was cleaned by removing stop words and 
special characters. The data was converted into bigrams and 
the words were lemmatized.  The library uses Python library 
genism [34] to build a back-of-word model that is passed to 
LDA algorithm. We chose number of topics to be 20 when 
building the model.   

C. Text Similarity 

1) Cosine similarity 
The toolkit contains methods that are used to read the input 

file, then pre-process the input file by removing non-
alphanumeric characters, then converting the string to lower 
case, then apply lemmatization on each word. The methods 
also use TFIDF vectorizer model to convert input text into 
vectors. Lastly, the method passes the vectors into scikit-learn 
cosine similarity [35] function that returns a cosine similarity 
matrix computed across the whole input corpus. 

2) Jaccard similarity 
The toolkit contains methods to pre-process the input file 

by removing punctuation characters, and then converting the 
string to lower case, and then removing stop words, and then 
applying lemmatization on each word. The method applies 
Jaccard similarity across all the documents in the corpus and 
then returns a similarity matrix computed across the whole 
input corpus. 

IV. HOW TO USE THE TOOLKIT 

A. Audio files 

As shown in Figure 2, the module must be imported on the 
environment, in this case speech module. The speech module 
accepts the following parameters:  

• path: Is of type string, is a path of an audio file. 

• mp3: Is of type Boolean, it indicates if an audio file is 
an mp3 file or not. By default, is set to nothing. 

• key: Is of type string. The token can be acquired from 
Bing or Wit.ai. By default, is set to nothing. 

• credentials_json: Is of type JSON. Is a file that 
contains google cloud credentials. By default, is set to 
nothing. 

• client_id: Is of type string. Is acquired from Houndify. 
By default, is set to nothing. 

• client_key: Is of type string. Is acquired from 
Houndify. By default, is set to nothing. 

• username: Is of type string. Is acquired from IBM. By 
default, is set to nothing. 

• password: Is of type string. Is acquired from IBM. By 
default, is set to nothing. 

• Engine: Is of type string. Is used to specify speech 
recognition engine. 

The module will return textual content in a form of a 
Python dictionary as shows in Figure 2. 

 

Figure 2: Speech module 

B. Image files 

Figure 3 shows an image module imported into an 

environment. The image module accepts a file path of the 

image as input parameter. The module will return the text 

contents of the image. 

 

 
Figure 3: Image module 

C. Document files 

A document module is used to extract text from various 
types of documents. Figure 4 shows a document module 
imported into an environment. The module accepts the path of 
the file, and the sheet name (if document is Excel) as 
parameters. The module identifies the type of the file using 
file name extension.  



 

Figure 4: Document module 

D. Topic modelling 

The topic modelling module is used to create topic models 

for a given dataset. As shown in Figure 5, the module requires 

file path to data set and number of topics to create. The 

module may take long time to run based on the size of the 

data set. The module returns the topic model. 

 

 
Figure 5: Topic modelling module 

E. Text similarity 

The text similarity module contains cosine and Jaccard 

similarity techniques. The cosine similarity module shown in 

Figure 6 requires file path of the data set and returns the 

cosine similarity matrix computed across the whole data set. 

 
Figure 6: Cosine similarity module 

 

The Jaccard similarity module shown in Figure 7 requires 

a file path of the data set to build the similarity index. Then 

model returns a Jaccard similarity matrix computed across the 

whole dataset. 

 

 
Figure 7: Jaccard module 

These modules can be used by any Python program that 

need to utilize the functions of the proposed toolkit.  

V. CONCLUSION AND FUTURE WORK 

The proposed toolkit only support programs that are only 
on Python. Hence, for future work we recommend creating 
web application APIs that interact with internal functions. The 
web application API will be used as an interface for any 
software that needs to interact with the toolkit. The software 

does not have to be on Python, but it can be any software in 
any programming language residing at any location.  

The limitations of some functionality of the toolkit is the 
dependency on Unix software platform which may not work 
on Microsoft Windows system. Hence, the future work will 
investigate and come with a solution for the tool to work on 
any operating system to make it independent. 
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