
A Toolkit for Text Extraction and Analysis for

Natural Language Processing Tasks

 Tshephisho Joseph Sefara

 Data Science Department

 Council for Scientific and Industrial

Research

 Pretoria, South Africa

 tsefara@csir.co.za

 Mahlatse Mbooi
 Data Science Department

Council for Scientific and Industrial

Research

Pretoria, South Africa

 mratsoma@csir.co.za

Katlego Mashile
 Data Science Department

 Council for Scientific and Industrial

Research

 Pretoria, South Africa

 jmashile@csir.co.za

 Thompho Rambuda

 Data Science Department

 Council for Scientific and Industrial Research

 Pretoria, South Africa

 trambuda@csir.co.za

 Mapitsi Rangata
 Data Science Department

 Council for Scientific and Industrial Research

 Pretoria, South Africa

 mrangata@csir.co.za

Abstract—Text extraction is an important part of natural

language processing (NLP) tasks. Most NLP tasks like text

classification, machine translation, text-to-speech, text-based

language identification, text summarization, and named-entity

recognition involve the use of textual data. Such data is limited

for low-resourced languages making it difficult to experiment

advanced NLP techniques on these languages. This paper

presents a Python-based toolkit for text analysis and text

extraction from different types of images, documents, and audio

files. The toolkit is built as a library that has functions that can

be imported and utilized for text extraction.

Keywords—natural language processing, text extraction, text

analysis

I. INTRODUCTION

With the rise of digital age, there is high number of data
existing in various format. This data can be in structured or
unstructured format. Much of the data is in unstructured
format and it is a challenging task for data extraction
processes. Data extraction is a process of extracting data from
a source file into a format that is suitable for a task being
solved.

Data is an important part of natural language processing
(NLP) since most NLP tasks are data driven. Data exists in
different forms such as such as text, images, web pages, audio,
sensors and many more. Some of these files are not in a current
format that can be used in NLP tasks. Different software
programs are required to process each type of file to extract
the contents.

Data extraction plays a vital role for low-resourced
language since most of the data exists in a format that cannot
be used. Low-resourced languages are languages that have a
very limited data that can be used for NLP problems. This
toolkit slightly enables access to the data set found in
unstructured files. Fortunately, the data can now be extracted
from those unstructured files, apply preprocessing tasks, and
used for NLP tasks such as topic modelling and text similarity.

Topic modelling is a process of learning, recognizing, and
extracting topics from a collection of documents. These
documents can be in any language. There are different types
of topic modelling algorithms, namely, Latent Semantic

Analysis (LSA), Latent Dirichlet Allocation (LDA) [10], and
many more. Topic modelling enable a user to know the
topic(s) of a group of documents. On the other hand, text
similarity is a task of identifying similar documents using
identical contents to measure the similarity score. Text
similarity is used in text summarization, machine translation,
question answer session, topic detection, text categorization,
clustering, and information retrieval [14].

This paper proposes the implementation of text extraction
and text analysis toolkit that can also be used as a library that
can be embedded or imported in other projects. The toolkit can
work in any language (limited functionality) but it was tested
on English for all its functions.

This paper is organized as follows: Section II discusses the
background and literature study. Section III discusses the
methods used for text extraction and text analysis. Section IV
discusses the toolkit’ methods and how these methods can be
used while Section V concludes with future work.

II. BACKGROUND

A. Data Extraction Methods

Data extraction methods depend on whether the data

source is structured or unstructured. Structured data sources

adhere to a certain format whereas unstructured data sources

may contain text, images, web pages, audio and many more.

We give a review of some of the data extraction libraries.

Pandas [1] is an open-source Python library. It is a BSD-

licensed library, developed in 2008 by Wes McKinney. The

Pandas package provides numerous tools for data analysis

and multiple data structures that can be used for data

manipulation tasks. It is a powerful input/output (IO) system

for loading data from a wide variety of file formats or data

sources through the “read” function, which loads the data into

a data frame. The Pandas library has several advantages. For

starters, it presents data in a form that is suitable for data

analysis. Additionally, it has methods for data filtering.

Finally, Pandas extracts data from a variety of formats such

as Comma Separated Values (CSV), JavaScript Object

Notation (JSON), and Excel file formats such as Microsoft

Excel Spreadsheet (XLS) and Microsoft Excel Open XML

Spreadsheet (XLSX).

Web scraping helps in converting unstructured data into a

structured data that can be utilized for extracting insights.

While Extensible Markup Language (XML), and Hyper-Text

Markup Language (HTML) are both markup languages that

can be extracted using Pandas, the files may occasionally be

too complex. Numerous libraries have been developed for the

purpose of extracting data from web pages. Well known

extraction libraries for web pages in Python include Beautiful

Soup [18], selenium [16], and scrapy [17].

Beautiful Soup [18] is a Python library widely used for

web scraping. Leonard Richardson developed the library in

2004 under an MIT license called BeautifulSoup3 which was

discarded in 2020 for the latest version called BeautifulSoup4

in 2021. It creates a parse tree for parsing HTML and XML

documents. Beautiful Soup can easily be combined with other

parsers like lxml [19]. It also works well with poorly designed

HTML and has numerous functions, making it the most

widely used web scraping tool. Apart from HTML and XML

files, Beautiful Soup can also be used to extract data from

electronic publication (EPUB) file formats.

Text files are text-based files that can be classified as

plain text files or rich text files. Plain text files have no special

formatting and are full of text, whereas rich text files may

contain non-text content such as images and some formatting.

Plain text file formats include text (TXT), and rich text file

formats include Rich Text Format (RTF), Microsoft Word

(Doc), Microsoft Word Open XML Format Document

(Docx), Open document format (ODF) formats such as

OpenDocument Text (ODT) and OpenDocument Text

Template (OTT), and Portable Document File (PDF).

Microsoft Word documents such as doc and DOCX are

frequently used for text-based data. DOC is the predecessor

of word and DOCX is the latest version of word. These file

formats may contain in-line addition of tables, images,

hyperlinks, etc. DOC file types can be extracted using the

TextExtract library [36]. Additionally, it can be used to

extract text from images. TextExtact is licensed under the

MIT license, authored by Sayar Mendis.

Numerous data extraction libraries are available for the

latest version of Word, DOCX. The Doc2txt library scrapes

text and images from word documents. Additionally, it

enables for the extraction of text from images. It is authored

by Ankush Shah [20].

ODF is an XML-based file format similar to DOCX file

formats. ODF formats can be extracted using ODFPY library.

ODFPY is licensed under the Apache software license,

authored by Soren Roug [21].

PDF format is one of the most widely used file format for

text and graphic documents. PDF file format is the most

unstructured file format and extracting data from such file

formats is a complicated task. Pdfminer.six library [22] can

extract text from PDF files it is built from from PDFMiner

software authored by Yusuke Shinyama.

Postscript (PS) file formats can be extracted using Python.

It iterates over all the lines in the file and extract the text.

Additionally, there are extraction libraries for Presentation

file format such as Microsoft PowerPoint Open XML

Presentation file (PPTX) and Email file format such as email

(EML).

Optical Character Recognition (OCR) tool is used to

recognize text from scanned documents, PDF documents, and

images. This tool was invented in the late 1920s by Austrian

engineer Gustav Tauschek [23]. OCR Python libraries used

to read and extract data from images are tesseract-OCR and

EasyOCR. Tesseract-OCR is a google wrapped tool that was

developed at Hewlett-Packard (HP) Laboratories in 1984 and

1999 for a PhD research project [2]. EasyOCR [24] is an

open-source software that extracts text and data at the same

time from images. EasyOCR performs faster on GPU and

better with numbers compared to Tesseract-OCR which

performs faster on CPU and better with alphabet recognition.

Speech Recognition [25] is a library that converts audio

or words that have been read aloud into readable text with

several engines, application programming interface (API),

online and offline. Speech Recognition was developed in the

1950s and 1960s by Bell Laboratories which can only

recognize digits. Later, in the 1980s it was able to recognize

hundreds of words using a statistical method Hidden Markov

Model (HMM) used to improve the accuracy of the text.

Speech Recognition was last updated in late 2017 by Anthony

Zhang under BSD License. Speech Recognition is fast and

fairly accurate for those who speak fast and slow in writing.

B. Topic Modelling

Normally, when working with a small number of

documents, it is much easier to read through and find the

different topics presented within those documents. However,

in the case of big data, that task becomes tedious. The need

for more automated processes for the same task becomes

apparent. As a tool, NLP has been used for language

understanding [26] and at the document level, one of the most

successful ways to accomplish that mundane and tedious

manual task is called topic modelling. Topic modelling is the

process of learning, recognizing, and extracting topics from a

collection of documents. There are different ways to apply

topic modelling algorithms to documents and we will discuss

some of the different algorithms. When modelling topics on

a collection of documents, two basic assumptions apply,

namely, (a) each document contains a mixture of different

topics, (b) and each topic contains a collection of words.

Albalawi et al. [9] have done a study reviewing articles

relating to topic modelling that were published between 2015

and 2020. From this study we will focus on the methods

explored namely Latent Semantic Analysis (LSA), Latent

Dirichlet Allocation (LDA) [10], Non-Negative Matrix

Factorization (NMF) [11], Random Projection (RP) [12] and

Principal Component Analysis (PCA) [13].

LSA is an unsupervised learning model used to extract

relationships from documents and it acts as a dimensionality

method to reduce the dimension of the huge corpus of text

data. NMF is a matrix factorization method where we ensure

that the elements of the factorized matrices are non-negative.

This method can perform both dimension reduction and

clustering simultaneously. In RP, a random matrix is used,

and the original high-dimensional data is mapped onto a

lower dimensional subspace with the reduced time cost. This

method delivers sparse results because fundamental structure

of the original data is ignored, and this often leads to high

distortion. LDA is a probabilistic model, and it is the most

popular method in real-life applications for extracting topics,

it provides more accurate results, and it can be trained online.

It also addressed other models’ limitations, like the latent

semantic indexing and probabilistic latent semantic indexing.

The LDA model will be used for topic modelling in this

paper.

C. Text Similarity

Text similarity is a task of identify similar documents

using identical contents to measure the similarity score. There

are different types of methods to measure similarity score,

namely, cosine similar, and Jaccard similarity.

Cosine similarity is a metric that models text document as a

vector. The metric can be applied to any text in a form of

sentence, paragraph, or a whole document [3]. It measures the

similarity as the cosine of the angle between two vectors [4].

Cosine similarity can only be computed for two vectors that

of the same size, the two vectors would be similar if they are

close in terms of both magnitude and direction.

Mathematically cosine similarity can be calculated using the

dot product between the vectors and dividing it by the

multiplication of the norms, it is defined as:

cos 𝜃 =
𝐴.𝐵

||𝐴||||𝐵||
 (1)

Jaccard similarity is a determination of the association

between two texts [5]. It is a statistical measure of similarity

between two sample sets, the two sets are defined as the

intersection divided by their union. Mathematically it is

defined by [6]:

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
 (2)

Term Frequency – Inverse Document Frequency (TF-IDF) is

an algorithm that determines the relative frequency of words

in a specific document compared to the inverse proportion of

that word over the entire document corpus [7]. The

calculation determines the relevance of a given word in a

particular document. TF measures the frequency of a word in

a document, IDF is the inverse of the document frequency.

Mathematically it is defined as:

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑). 𝑖𝑑𝑓(𝑡, 𝐷) (3)

Where D represent the corpus of the documents, t is the

number of times a word occurs in a document, and d is

document (set of words).

III. METHODOLOGY

This section discusses the architecture of the toolkit and

the implementation. Firstly, we explain the methods used to

extract the data, secondly, we explain the topic modelling

pipeline followed by the text similarity pipeline. Figure 1

shows the architecture of the toolkit. The toolkit contains

APIs or methods that can be used by external programs which

can send data in a form of images, audios, and different types

of documents whereby the toolkit is able to determine

document type and extract the data from the document then

send back the textual data back to the external program. For

text analysis, the external program can either request topic

1 https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe

modelling or type of text similarity using the APIs or

methods, then the toolkit will be able to return the requested

model back to the external program.

Figure 1: Overall Architecture

A. Data extraction
This section discusses the implementation of the data

extraction methods on different types of files. These files are
in a form of CSV, JSON, Image, XML, XLSX, HTML, XLS,
DOC and DOCX, ODT and OTT, PDF, PS, TEXT, PPTX,
RTF, EPUB, and EML.

• CSV/JSON/XML/XLSX/XLS: We use Pandas [1]

library to process the CSV/JSON/XML/XLSX/XLS file

and return the contents in a DataFrame1 format.

• HTML: We use Beautiful Soup library to process the

HTML file and extract the textual part excluding

cascading style sheets (CSS) and JavaScript part.

• AUDIO: The toolkit support files in a form of wave or

mp3. The toolkit converts the mp3 into wave form then

we pass the audio to speech recognition engine. The

toolkit supports the following speech recognition

engines: Google Cloud Speech API, Microsoft Bing

Voice Recognition, Wit.ai, Houndify, IBM Speech to

text, and CMU Sphinx. We extract the textual part from

the speech recognition engine. These engines need to be

acquired before they can be used.

• Images: The toolkit supports wide range of various

images listed in [8]. The toolkit can extract text from

those images using a back-end software called tesseract

[37].

• DOC/DOCX: The toolkit supports DOC and DOCX

documents. It can extract the text from DOC using a

back-end software called antiword [27] which must be

installed on the system. For DOCX, the toolkit uses a

software called python-docx [28] to extract the textual

part.

• ODT and OTT: The toolkit supports both ODT and OTT

documents. It can extract text from the documents using

PYODF [21] library.

• PDF: The toolkit can extract text from PDF documents.

A software called pdfminer [22] is used to process the

PDF file.

• PS: The toolkit can extract text from PS documents. We

use a software called Ghostscript [29] to process the PS

documents and then we extract the textual part.

• TEXT. The toolkit can read text files and return the text.

• PPTX: The toolkit can read Microsoft PowerPoint PPTX

files. We use a software called python-pptx [30] to extract

the text from each slide.

• RTF: The toolkit supports RFT documents. It uses unrtf

[30] to extract the text.

• EPUB: The toolkit can read EPUB documents. It uses a

software called ebooklib [31] to extract the contents

which are in XML format. It then passes the contents to

Beautiful Soup to extract the textual content.

• EML: The toolkit support EML documents. EML

document contains plain text and HTML text. The toolkit

extracts the contents of the EML file and pass the HTML

part to Beautiful Soup to extract the text and combines

with the plain text.

B. Topic Modelling

There are various algorithm exists to build topic modelling
model. The toolkit uses Latent Dirichlet Allocation (LDA)
algorithm. We tested the algorithm using a subset of the
newsgroup dataset [33] which we used to train and test the
model. The data was cleaned by removing stop words and
special characters. The data was converted into bigrams and
the words were lemmatized. The library uses Python library
genism [34] to build a back-of-word model that is passed to
LDA algorithm. We chose number of topics to be 20 when
building the model.

C. Text Similarity

1) Cosine similarity
The toolkit contains methods that are used to read the input

file, then pre-process the input file by removing non-
alphanumeric characters, then converting the string to lower
case, then apply lemmatization on each word. The methods
also use TFIDF vectorizer model to convert input text into
vectors. Lastly, the method passes the vectors into scikit-learn
cosine similarity [35] function that returns a cosine similarity
matrix computed across the whole input corpus.

2) Jaccard similarity
The toolkit contains methods to pre-process the input file

by removing punctuation characters, and then converting the
string to lower case, and then removing stop words, and then
applying lemmatization on each word. The method applies
Jaccard similarity across all the documents in the corpus and
then returns a similarity matrix computed across the whole
input corpus.

IV. HOW TO USE THE TOOLKIT

A. Audio files

As shown in Figure 2, the module must be imported on the
environment, in this case speech module. The speech module
accepts the following parameters:

• path: Is of type string, is a path of an audio file.

• mp3: Is of type Boolean, it indicates if an audio file is
an mp3 file or not. By default, is set to nothing.

• key: Is of type string. The token can be acquired from
Bing or Wit.ai. By default, is set to nothing.

• credentials_json: Is of type JSON. Is a file that
contains google cloud credentials. By default, is set to
nothing.

• client_id: Is of type string. Is acquired from Houndify.
By default, is set to nothing.

• client_key: Is of type string. Is acquired from
Houndify. By default, is set to nothing.

• username: Is of type string. Is acquired from IBM. By
default, is set to nothing.

• password: Is of type string. Is acquired from IBM. By
default, is set to nothing.

• Engine: Is of type string. Is used to specify speech
recognition engine.

The module will return textual content in a form of a
Python dictionary as shows in Figure 2.

Figure 2: Speech module

B. Image files

Figure 3 shows an image module imported into an

environment. The image module accepts a file path of the

image as input parameter. The module will return the text

contents of the image.

Figure 3: Image module

C. Document files

A document module is used to extract text from various
types of documents. Figure 4 shows a document module
imported into an environment. The module accepts the path of
the file, and the sheet name (if document is Excel) as
parameters. The module identifies the type of the file using
file name extension.

Figure 4: Document module

D. Topic modelling

The topic modelling module is used to create topic models

for a given dataset. As shown in Figure 5, the module requires

file path to data set and number of topics to create. The

module may take long time to run based on the size of the

data set. The module returns the topic model.

Figure 5: Topic modelling module

E. Text similarity

The text similarity module contains cosine and Jaccard

similarity techniques. The cosine similarity module shown in

Figure 6 requires file path of the data set and returns the

cosine similarity matrix computed across the whole data set.

Figure 6: Cosine similarity module

The Jaccard similarity module shown in Figure 7 requires

a file path of the data set to build the similarity index. Then

model returns a Jaccard similarity matrix computed across the

whole dataset.

Figure 7: Jaccard module

These modules can be used by any Python program that

need to utilize the functions of the proposed toolkit.

V. CONCLUSION AND FUTURE WORK

The proposed toolkit only support programs that are only
on Python. Hence, for future work we recommend creating
web application APIs that interact with internal functions. The
web application API will be used as an interface for any
software that needs to interact with the toolkit. The software

does not have to be on Python, but it can be any software in
any programming language residing at any location.

The limitations of some functionality of the toolkit is the
dependency on Unix software platform which may not work
on Microsoft Windows system. Hence, the future work will
investigate and come with a solution for the tool to work on
any operating system to make it independent.

REFERENCES

[1] J. Reback, W. McKinney, J. Van Den Bossche, T. Augspurger, P.

Cloud, S. Hawkins, A. Klein, M. Roeschke, J. Tratner, C. She and
others, “pandas-dev/pandas: Pandas 1.4.1,” Zenodo, 2022.

[2] R. Smith, “An overview of the Tesseract OCR engine,” in Ninth
international conference on document analysis and recognition
(ICDAR 2007), 2007, pp. 629-633.

[3] Rahutomo, Faisal, T. Kitasuka, and M. Aritsugi. "Semantic cosine
similarity”, in The 7th international student conference on advanced
science and technology (ICAST), vol. 4, no. 1, pp. 1, 2012.

[4] Xia, P., Zhang, L. and Li, F., 2015. "Learning similarity with cosine
similarity ensemble," in Information sciences 307, 2015, pp. 39-52.

[5] Niwattanakul, S., Singthongchai, J., Naenudorn, E. and Wanapu, S.
“Using of Jaccard coefficient for keywords similarity”, in Proceedings
of the international multiconference of engineers and computer
scientists, 2013, pp. 380-384.

[6] J. Bank and B. Cole, “Calculating the Jaccard similarity coefficient
with map reduce for entity pairs in Wikipedia”, Wikipedia Similarity
Team, vol 1, 2008, pp. 94.

[7] Ramos, J. “Using TF-IDF to determine word relevance in document
queries”, in Proceedings of the first instructional conference on
machine learning, vol 242, 2003, pp. 29-48.

[8] A. Clark, 2022. [Online]. Available:
https://pillow.readthedocs.io/en/stable/handbook/image-file-
formats.html#fully-supported-formats

[9] R. Albalawi, T. H. Yeap and M. Benyoucef, “Using topic modeling
methods for short-text data: A comparative analysis,” Frontiers in
Artificial Intelligence, vol. 3, 2020, pp. 42.

[10] D. M. Blei, A. Y. Ng and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, pp. 993-1022, 2003.

[11] D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” Advances in neural information processing systems, vol.
13, 2000, pp.556-562.

[12] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: applications to image and text data,” in Proceedings of the
seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, 2001, pp. 245-250.

[13] H. Abdi and L. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp.
433-459, 2010.

[14] N. Pradhan, M. Gyanchandani, en R. Wadhvani, “A Review on Text
Similarity Technique used in IR and its Application”, International
Journal of Computer Applications, vol 120, no 9, 2015.

[15] T. K. Landauer, P. W. Foltz, και D. Laham, ‘An introduction to latent
semantic analysis’, Discourse processes, vol. 25, no. 2–3, pp. 259–284,
1998.

[16] S. Gojare, R. Joshi, and D. Gaigaware, ‘Analysis and design of
selenium webdriver automation testing framework’, Procedia
Computer Science, vol. 50, pp. 341–346, 2015.

[17] D. Myers and J. W. McGuffee, ‘Choosing scrapy’, Journal of
Computing Sciences in Colleges, v. 31, no. 1, pp. 83–89, 2015.

[18] V. G. Nair, Getting started with Beautiful Soup. Packt Publishing Ltd,
2014.

[19] “lxml: Processing XML and HTML with Python.”, https://lxml.de/
(accessed Mar. 31, 2022)

[20] A. Shah “python-docx2txt.”, https://github.com/ankushshah89/python-
docx2txt/ (accessed Mar. 31, 2022)

[21] S. Roug “ODFPY.”, https://github.com/eea/odfpy (accessed Mar. 31,
2022)

https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html#fully-supported-formats
https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html#fully-supported-formats
https://lxml.de/
https://github.com/ankushshah89/python-docx2txt/
https://github.com/ankushshah89/python-docx2txt/
https://github.com/eea/odfpy

[22] Y. Shinyama “ODFPY.”, https://github.com/pdfminer/pdfminer.six
(accessed Mar. 31, 2022)

[23] K. Hamad and M. Kaya , "A Detailed Analysis of Optical Character
Recognition Technology", International Journal of Applied
Mathematics Electronics and Computers, no. Special Issue-1, pp. 244-
249, Dec. 2016

[24] "EasyOCR", https://github.com/JaidedAI/EasyOCR (accessed Mar.
31, 2022)

[25] A. Zhang, " Speech Recognition",
https://github.com/Uberi/speech_recognition (accessed Mar. 31, 2022)

[26] M. Namazifar, A. Papangelis, G. Tur and D. Hakkani-Tür, "Language
Model is all You Need: Natural Language Understanding as Question
Answering," ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 7803-
7807, doi: 10.1109/ICASSP39728.2021.9413810.

[27] A. van Os, " Antiword", http://www.winfield.demon.nl/ (accessed Mar.
31, 2022)

[28] "python-docx", https://github.com/python-openxml/python-docx
(accessed Mar. 31, 2022)

[29] "Ghostscript", https://ghostscript.com/doc/current/Psfiles.htm
(accessed Mar. 31, 2022)

[30] "python-pptx", https://pypi.org/project/python-pptx/ (accessed Mar.
31, 2022)

[31] "UNRTF", https://www.gnu.org/software/unrtf/ (accessed Mar. 31,
2022)

[32] "ebooklib", https://github.com/aerkalov/ebooklib (accessed Mar. 31,
2022)

[33] K. Lang. Newsweeder: Learning to filter netnews. In ICML, 1995, pp.
331-339.

[34] R. Řehŭřek, P. Sojka, and Others, “Gensim-statistical semantics in
Python”, Retrieved from genism.org, 2011.

[35] "Cosine similarity", https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_si
milarity.html (accessed Mar. 31, 2022)

[36] "TextExtract", https://pypi.org/project/TextExtract/ (accessed Mar. 31,
2022)

[37] "Tesseract", https://github.com/tesseract-ocr/tesseract (accessed Mar.
31, 2022)

https://github.com/pdfminer/pdfminer.six
https://github.com/JaidedAI/EasyOCR
https://github.com/Uberi/speech_recognition
http://www.winfield.demon.nl/
https://github.com/python-openxml/python-docx
https://ghostscript.com/doc/current/Psfiles.htm
https://pypi.org/project/python-pptx/
https://www.gnu.org/software/unrtf/
https://github.com/aerkalov/ebooklib
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://pypi.org/project/TextExtract/
https://github.com/tesseract-ocr/tesseract

