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Abstract

Improper selection of laser powder bed fusion (LPBF) process parameters tends to result in poor 

quality parts which imposes limitations with respect to the mechanical performance due to process 

induced defects. To address this LPBF processing challenge, this study employs a hybrid 

optimisation technique which combines artificial neural network (ANN) and response surface 

methodology (RSM) models. The models were employed for predicting the microstructural 

properties (porosity, microhardness and amount of martensite phase composition) and mechanical 

characteristic (wear resistance) of LPBF manufactured maraging steel 1.2709 parts as a function 

of a combination of process parameters (scan speed, laser power and hatch spacing). Both ANN 

and RSM models had a high tracking ability. However, ANN showed better prediction accuracy 
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than RSM. The most desirable optimum LPBF processing parameters for minimum wear volume 

and porosity while maintaining maximum microhardness and martensite phase composition were 

found at volumetric energy density (VED) of 77 J/mm³ (laser power = 165 W, scan speed = 784 

mm/s and hatch spacing = 91 μm). Optimum quality properties predicted by the RSM and ANN 

models were consistent with confirmatory experiment results.

Keywords: Maraging steel 1.2709, Laser Powder Bed Fusion (LPBF), Artificial Neural Network 

(ANN), Response Surface Methodology (RSM), Wear Resistance.

1.0 Introduction 

Laser powder bed fusion (LPBF) is an additive manufacturing (AM) technology. It allows the 

building of useful three-dimensional (3D) parts directly from a computer aided design (CAD) 

model. Consecutive layers of metal powder particles are melted and solidified on top of each other 

by the energy of an elevated intensity laser beam [1]. It is economically and technically efficient 

because of the basic principle of adding material based on a 3D CAD model, layer after layer, 

without a need for fixtures or tools. The complex 3D CAD model is reduced into simple two-

dimensional slices. Quantity has a limited impact on manufacturing cost and lead time because 

there is no need for individual tooling or CAM programming, since LPBF is a CAD driven process 

[2]. Other advantages of LPBF include versatility in processing a wide range of materials, 

production of near net shape parts that are ready to use, increased functionality, and the ability to 

set the quality properties of products during processing by varying process parameters and 

scanning strategies. However, certain applications of LPBF fabricated parts are hindered by poor 

surface finish as well as dimensional and geometrical inaccuracies when compared to 

conventionally machined parts. LPBF fabricated part quality can also be compromised by various 

process induced defects, which includes porosity as a result of insufficient fusion and gas 

entrapment [3]. 

Materials that can be processed using LPBF include alloys of iron, nickel, titanium, copper, cobalt 

[4] and alloys of aluminium [5]. In this study maraging steel (DIN 1.2709) powder was used. 

Maraging steels are a class of iron-based alloys mainly consisting of alloying elements such as 

nickel, cobalt, molybdenum and titanium. The elements are added to produce intermetallic 

precipitates. The precipitated particles hinder the movement of dislocations thereby strengthening 
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the steel [6]. Typical applications for maraging steels include missile and rocket motor cases, drill 

chucks, extrusion tooling, punching tools, metal casting dies, plastic injection moulds, high 

performance shafting, gears, and fasteners [7]. Maraging steels are particularly suitable for the 

LPBF manufacturing process because of their good weldability and their relative ease to transform 

the austenite to a martensitic structure.

Mechanical and microstructural properties of parts produced by LPBF process are mainly 

determined by the materials and process parameters as well as post processing heat treatment 

conditions they are subjected to. Poor product quality may result from improper combination of 

process parameters [8]. Hence it is imperative to investigate the effect of LPBF process parameters 

on the resulting microstructure and mechanical properties of LPBF fabricated maraging steel. The 

most significant parameters on mechanical and microstructural properties are laser power and 

scanning speed [9]. The focal point of this study is on the effect of laser power, scan speed and 

hatch spacing with a view of optimising the LPBF process parameters for minimum wear volume. 

However, the impact of the process parameters on microstructural properties (porosity, 

microhardness and phase composition) cannot be ignored. Hence, these microstructural quality 

characteristics are investigated and their inter-relationship with the wear resistance of LPBF 

fabricated samples is established.

Several studies have investigated the mechanical and microstructural properties of maraging steel. 

Guo and Sha,  [10] designed an ANN model for predicting the mechanical properties of maraging 

steel parts in relationship to process parameters, working temperature, and alloy composition. 

Their study focused on ageing temperature, ageing time, and deformation degree. The quality 

properties they studied were mechanical properties (including fracture toughness, ultimate tensile 

strength, hardness, elongation and impact energy) and martensitic conversion start temperature. 

The study concluded that desired maraging steel properties can be attained by applying the ANN 

model. Yasa et al.,  [7] assessed the effect of scan speed and layer thickness at constant laser power 

of approximately 105W on quality properties. Influence of laser re-melting and heat treatment 

were also investigated. Island scanning strategy was utilised to mitigate the impact of thermal 

gradients and thermal induced stresses. The investigated quality properties included micro and 

macro hardness, surface quality, relative density, toughness and tensile strength of maraging steel 

1.2709 parts produced by LPBF. The outcome of their study revealed that energy density have 
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significant influence on relative density of the maraging steel parts. In the tested range of scan 

speed was found to have significant impact on the relative density. Layer thickness and scan speed 

was observed to have insignificant effect on microhardness. High hardness was obtained at 480oC 

aging temperature and 5 hours aging time. The study inferred that the samples produced by LPBF 

achieved higher hardness and strength than conventionally manufactured samples. Mutua et al.,  

[8] applied a full factorial experimental design to optimize processing parameters and post heat 

treatment processes on microstructure and mechanical properties of LPBF manufactured maraging 

steel. Process parameters investigated by their study were laser power, scan speed, pitch, spot 

diameter, solution and aging treatment as well as quality properties (surface morphology, 

microstructure, hardness and densification behaviour). Samples were built on Matsuura LUMEX 

Avance-25 hybrid machine. Laser power was varied from 100-400W, scan speed from 400-

1000mm/s, pitch from 0.025-0.2 mm and spot diameter varied 0.05-0.3mm. Established optimum 

process conditions on that specific machine were scan speed 700mm/s, overlap rate of 40%, laser 

power of 300W and energy density of 71.43J/mm3. The study observed higher hardness and 

strength on parts manufactured by LPBF than on conventionally produced parts, a similar 

observation was found by [7]. Much work has been done on the influence of LPBF processing 

parameters on mechanical properties such as fracture toughness, hardness and tensile strength. 

However, very general and little work was done on wear behaviour of LPBF fabricated maraging 

steel [11]. Optimum processing parameters on the microstructural properties (porosity, 

microhardness and phase composition) and wear resistance of LPBF manufactured maraging steel 

still remain unclear. Ahmed et al., [13] defined wear as, “a process in which material gets removed 

from either or both sliding elements under the influence of prime variables namely speed, load and 

sliding distance”. Applications of maraging steel are limited by their relatively low hardness (HRC 

50-57) and low wear resistance. For example they cannot be used for manufacturing cutting tools 

because of their lower hardness [14]. Some studies reported that tribological applications of any 

material can be improved by its wear properties [13]. 

The employment of a hybrid of RSM and ANN modelling has gathered a developing interest in 

engineering and other various fields of study [15], [16], [17], [18], [19], [20]. Rezaei et al., [16] 

used ANN and RSM to optimise nanofiber diameter. The study compared ability of RSM and 

ANN models to optimise. It was concluded that both models results were in harmony with 

experimental data. However RSM predictions had better accuracy than ANN predictions. A study 
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conducted by Sada, [19] on modelling performance of ANN and RSM in predicting tensile strength 

of a welded part inferred that ANN had better prediction ability than RSM. According to Sada,  

[19] predictive abilities of RSM and ANN on non-linear relationships may differ due to the 

difference in their interpolation and extrapolation capabilities. Hence it is necessary to perform 

comparative analysis of their capabilities. 

Guo and Sha, [10] defined ANN modelling as, “a non-linear statistical analysis technique which 

is essentially a black box linking input data to output data using a particular set of non-linear 

functions”. ANN uses examples of a target function to determine the coefficients that make a 

certain mapping function estimate the target function as closely as attainable. ANN models does 

not require a long list of physics based equations. They automatically learn the correlation between 

the input data and output targets based on previous data. Neural networks map properties of 

phenomenon presented to it by detecting relationships of the presented data during its training 

phase and updates itself. Advantages of neural networks are that they make it possible to forecast 

investigated phenomenon of an arbitrary set of the input data. They do not require statistical and 

mathematical models of the investigated phenomenon [21]. Artificial neural networks have the 

capability to learn from their environment. This is useful when complexity of the data makes it 

difficult and almost impractical [22].

Response surface methodology (RSM) is a collection of statistical, graphical and mathematical 

methods that are useful to develop, improve and optimize processes [23]. The objective of RSM 

is to optimize a response (output variable) which is influenced by various independent (input) 

variables. RSM is superior to ANN because of its ability to explain the relationship between input 

variables and their response using of main effects plots. The interaction of the parameters can be 

visualized by the contour and surface plots [15]. In this study, a hybrid of ANN and RSM was 

employed to optimise the microstructural properties (microhardness, porosity and amount of 

martensite phase composition) and wear volume. A hybrid of response surface methodology and 

artificial neural network was employed to utilize the advantages of the two optimisation methods. 

The main objectives of this study were to: 

a. Develop RSM and ANN model which predicts mechanical properties of LPBF fabricated 

maraging steel 1.2709 samples.
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b. Investigate the influence of LPBF process parameters on microstructural features (porosity, 

microhardness and martensite phase) and wear resistance of maraging steel 1.2709 parts.

c. Establish the relationship between the microstructural properties and wear resistance of LPBF 

fabricated maraging steel with a view to optimising its quality characteristics.

d. Compare RSM and ANN models predictions to define the best approach.

e. Establish optimum LPBF processing parameters for depositing defect-free layers of maraging 

steel 1.2709 via hybrid optimization technique which combines ANN and RSM.

2.0 Experimental Design and Analysis

A hybrid optimization methodology of RSM and ANN that was employed in this study to optimise 

the microstructural properties and wear resistance of maraging steel is summarized in Figure 1 

[17], [18].

Figure 1 Procedure for implementing hybrid optimisation of the microstructural properties and wear resistance of 

LPBF fabricated maraging steel samples
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Database collection was the first step in the hybrid optimisation methodology (Table 5). Data 

obtained from a set of experiments was used to develop a RSM model and train a developed ANN 

architecture. Both models were used to obtain optimum responses.

2.1 Response surface modelling (RSM) technique

A central composite design (CCD), a subcategory of response surface methodology in Minitab 17 

software, was used to obtain experimental data for exploring the influence of LPBF processing 

parameters (Table 4) on the microstructural characteristics and wear resistance of LPBF fabricated 

maraging steel (1.2709) samples. Laser power, hatch spacing and scan speed were the three process 

independent variables considered with layer thickness being kept at constant 30 μm. The three 

variables were varied at three levels, they were ranked high alpha level, high level, zero level, low 

level and low alpha level (Table 1). Two star points were used for each variable. 

Table 1 

Selected process variables

Parameters Laser power [W] Scan speed [mm/s] Hatch spacing [μm]
Designations A B C
High alpha level (1.6818) 186.82 784 103.4
High level (1) 180 750 100
Zero level (0) 170 700 95
Low level (-1) 160 650 90
Low alpha level (-1.6818) 153.18 616 86.6
Variation range 20 100 10

In CCD, 6 central experimental points and 14 axial points making up 20 runs of experiments were 

engaged to optimise the microstructural characteristics and wear volume of LPBF fabricated 

maraging steel 1.2709 samples as process parameters were altered.

A quantitative pattern of relationship between responses  that depends on the controllable 𝑦

independent variables  which was used to evaluate the responses in RSM can be 𝑥1,𝑥2,𝑥3,. . . . . .𝑥𝑘

generalized by equation 1 [18]. 

𝒚 = 𝒇(𝒙𝟏,𝒙𝟐,𝒙𝟑,. . . . . .𝒙𝟒) ± 𝜺 (1)

Where the nature of the true response function  is not known, usually  is a first order or second 𝑓 𝑓

order polynomial.  is the error in the system, that is, other sources of variability not accounted for 𝜀
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in . For example, effects such as background noise, effect of other variables, and measurement 𝑓

error on the response [24].

A response surface that consist of linear, square, and cross product terms approximation by 

utilising the fitted second-order polynomial regression model, which is termed a quadratic model 

in RSM, was used in analysing the LPBF processing parameters and the responses (as in equation 

2). 

𝑓 = 𝑎0 +
𝑛

∑
𝑖 = 1

𝑎𝑖𝑥𝑖 +
𝑛

∑
𝑖 = 1

𝑎𝑖𝑖𝑥²𝑖 + ∑
𝒊˂

𝒏

∑
𝒋 = 𝟐

𝒂𝒊𝒋𝒙𝒊𝒙𝒋 +  𝜀
(2)

where  is the predicted response,  is the model intercept coefficient,  represents the linear 𝑓 𝑎0 𝑎𝑖

effect of ,  depict the quadratic effect of  and  represents the linear-linear relationship 𝑥𝑖 𝑎𝑖𝑖 𝑥𝑖 𝑎𝑖𝑗

between  and , n is the number of factors (In this study n = 3),  is residual error.𝑥𝑖 𝑥𝑗 𝜀

2.2 Artificial neural network (ANN)

The multilayer perceptron (MLP), feed-forward backpropagation neural network was used in this 

study. The training function Levenberg-Marquardt (Trainlm) and TanSigmoid transfer function 

(equation 3) were selected. Trainlm is an advanced nonlinear optimization algorithm. The Trainlm 

algorithm typically requires more memory but less time [25]. Training automatically halt when 

generalization cease to progress, as indicated by an increase in the mean square error of the 

validation sample. The sigmoid activation function is suitable for many training algorithms 

because it is continuous and differentiable. It varies monotonically from 0 to 1 as x varies from -∞ 

to ∞ [26].

𝑓(𝑥) =
1

1 + 𝑒𝑥𝑝( ‒ 𝑥)
(3)

The architecture of the network has 3 input neurons (process parameters laser power, scan speed 

and hatch spacing), 10 hidden layers, 4 output neurons (outputs: porosity, microhardness, amount 

of martensite phase composition, and wear volume) as highlighted in Figure 2. 
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Figure 2 ANN architecture (Matlab 2019)

The training data obtained from a database of 140 data points from the 20 experiment runs (Table 

5) was normalized between 0 and 1 for homogeneous attention on training (equation 4).

𝑋𝑛𝑜𝑟𝑚 =
𝑋 ‒ 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 ‒ 𝑋𝑚𝑖𝑛

(4)

Where  is the normalized data, X is the observed experimental data,  is the maximum 𝑋𝑛𝑜𝑟𝑚 𝑋𝑚𝑎𝑥

data point and  is the minimum data point. The data were categorized into the training data 𝑋𝑚𝑖𝑛

set 70%, validation data set 15% and testing data set 15% by dividerand data division function. 

Performance of the ANN model was measured by assessing its mean squared error (MSE) and 

correlation coefficient (R²). The R² value measures the network’s accuracy to predict responses 

that are close to the target (experiment) values. The ANN model was trained and tested with the 

Neural Network Toolbox in MATLAB R2019b (9.7.0) software. The network was re-trained until 

accurate prediction was obtained.

3.0 Materials and Methods

3.1 Materials

The material used for LPBF process was maraging steel powder (FE 339 or DIN 1.2709) and was 

supplied by Praxair Surface Technologies (Connecticut, USA). The typical chemical composition 

of the maraging steel powder is as shown in Table 2. 
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(a) (b) 

Figure 3 shows the microscopic images of the powder morphology taken with a Zeiss Merlin field 

emission scanning electron microscope (FE-SEM). The theoretical mechanical properties of the 

maraging steel parts before heat treatment are presented in Table 3.

Table 2 

Chemical composition of the maraging steel powder (1.2709)

Ni Co Mo Ti Al Cr C Mn, Si P, S Fe

17 - 19  
wt%

8.5 - 9.5 
wt%

4.5 - 5.2 
wt%

0.6 - 0.8 
wt%

0.05 - 
0.15 wt%

≤ 0.5 
wt%

≤ 0.03 
wt%

≤ 0.1 wt% 
(each)

≤ 0.01 wt% 
(each)

balance

Table 3

Theoretical mechanical properties of maraging steel parts produced with LPBF

Properties DIN 1.2709
Tensile strength (MPa) 1100 MPa ± 100MPa
Yield strength (0.2% MPa) 1000 MPa ± 100MPa
Elongation % 8% ± 3%
Rockwell Hardness (C-Scale) 33 – 37 HRC
Density >99.95%
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(a) (b) 

Figure 3: SEM images showing the morphology of the Praxair maraging steel (FE 339) powder at (a) 94X 

magnification and (b) 338X magnification

The morphology of the particles is mostly spherical with small satellite particles attached to the 

larger particles. 

3.2 Experimental procedure

The samples were built on a Concept Laser M2 LaserCUSING machine at the Department of 

Industrial Engineering at Stellenbosch University. The machine specifications are presented in 

Table 4.

Table 4 

Concept Laser M2 LaserCUSING machine specifications

Parameter Machine specifications
Laser power Up to 200 W
Scanning speed Up to 5000 mm/s
Layer thickness 20-50 μm
Focus diameter 50 μm
Coater blade Rubber
Laser system IPG Fiber laser 200 W (cw)
Build envelope 250×250×280 mm (x,y,z)

The range of process parameters used in this work was determined upon consultation with relevant 

literature [27] and consultation with industrial experts at the Stellenbosch Technology Centre - 

Laboratory for Advanced Manufacturing (STC-LAM). Parameters that were varied included laser 
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power (A: 80 to 200 W), scan speed (B: 300 to 1500 mm/s) and hatch spacing (C: 60 to 120 μm). 

An alternating raster scan with a rotation of 90 degrees per layer and a x, y shift of 0.12 mm per 

layer was used. The machines build chamber was filled with nitrogen gas such that oxygen 

concentration was maintained below 0.2 % (2000 PPM). The samples were directly built from the 

baseplate without supporting structure. 

The parameters were altered to investigate their influence on the microstructural properties 

(amount of porosity (P), microhardness (MH) and amount of martensite phase (MP)) and wear 

volume (WV) of LPBF fabricated maraging steel samples. Cuboid samples (with size 10 x 10 x 

10 mm) were manufactured according to the experimental matrix shown in Table 5. The 

experimental matrix was carried out once. It is usual that such matrix optimization design is only 

carried out once (as in one sample per condition), particularly considering the relatively large 

range of parameter values and 6 parameters replicated at the central point. A similar approach was 

applied by [28] in optimizing the process parameters of laser powder bed fusion.
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Table 5

Comparison of observed results with ANN and RSM predicted responses

Ru

n

 

Power 

(W)

Speed

(mm/s

)

Hatch 

(μm)

Porosity (Percentage) Microhardness (HV) Martensite (Percentage) Wear Volume (mm^3)

Expt AN

N

RSM Expt ANN RSM Expt ANN RSM Expt ANN RSM

1 160 650 100 0.52

7

0.52

2

0.417 414.00

0

413.99

7

415.47

9

73.63

0

73.62

4

74.22

4

0.096

0

0.095

9

0.098

9

2 170 784 95 0.85

8

0.82

0

0.791 415.60

0

415.58

3

417.99

6

75.16

8

75.07

4

76.25

8

0.051

0

0.051

0

0.051

8

3 170 700 95 0.92

1

0.75

2

0.754 422.00

0

420.66

3

421.06

3

82.08

0

81.58

1

81.65

9

0.082

6

0.080

9

0.079

8

4 170 700 95 0.54

0

0.75

2

0.754 424.37

5

420.66

3

421.06

3

83.51

0

81.58

1

81.65

9

0.077

6

0.080

9

0.079

8

5 170 700 95 0.92

0

0.75

2

0.754 420.57

1

420.66

3

421.06

3

80.86

0

81.58

1

81.65

9

0.082

1

0.080

9

0.079

8

6 170 700 95 0.45

0

0.75

2

0.754 419.25

0

420.66

3

421.06

3

81.96

0

81.58

1

81.65

9

0.077

2

0.080

9

0.079

8

7 160 750 90 0.02

0

0.03

2

0.021 412.00

0

412.02

6

411.17

3

82.68

0

82.72

1

82.12

7

0.064

9

0.064

9

0.068

4

8 180 750 90 0.01

0

0.01

1

-

0.025

424.58

0

424.51

0

422.48

9

72.42

9

72.76

8

71.38

3

0.071

7

0.071

5

0.069

2

9 180 650 100 1.44

1

1.44

1

1.295 410.70

0

410.75

4

410.91

6

80.44

0

80.40

7

80.54

1

0.086

9

0.086

9

0.083

9

10 186.8

2

700 95 0.51

9

0.55

9

0.717 415.75

0

417.03

0

415.31

3

76.23

0

75.42

5

76.61

6

0.078

7

0.081

8

0.080

7

11 170 700 86.60 0.36

0

0.38

9

0.499 429.91

7

430.00

5

431.13

3

79.15

8

78.82

1

80.07

3

0.077

9

0.077

9

0.075

8

12 170 616 95 1.30

4

1.31

4

1.576 428.33

3

428.33

0

426.80

4

77.49

0

77.48

3

77.04

0

0.078

5

0.078

5

0.077

1

13 170 700 95 0.98

4

0.75

2

0.754 419.00

0

420.66

3

421.06

3

80.23

0

81.58

1

81.65

9

0.077

4

0.080

9

0.079

8

14 180 650 90 0.90

0

0.88

4

0.680 425.66

7

425.55

1

427.21

9

78.52

0

78.72

8

78.55

9

0.065

7

0.065

6

0.068

1

15 160 750 100 0.11

0

0.25

0

0.187 411.88

9

408.83

2

409.72

5

80.96

0

83.40

4

80.47

0

0.069

7

0.074

3

0.067

7

16 153.1

8

700 95 0.01

0

0.01

3

0.017 408.33

3

408.33

5

409.63

5

80.08

6

79.04

0

80.33

9

0.095

2

0.094

6
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3.3 Characterisation of LPBF fabricated samples

Experimental tests were carried out in order to investigate the effect of laser power, scan speed 

and hatch spacing on the porosity, microhardness, amount of martensite phase composition and 

wear volume of maraging steel (1.2709) parts. The samples were detached from the base plate with 

an AgieCharmilles CA20, wire-electrical discharge machine (W-EDM) and the cross-sections 

were hot mounted with PolyFast, a Phenolic hot mounting resin with carbon filler for edge 

retention. The mounting was done on a Struers CitoPress-5. The resin was heated to 180 °C for 

3.5 minutes, at pressure of 250 bar and high cooling for 1.5 minutes. The samples were ground 

using a mrc MP-1B grinding and polishing machine with P1200 grit paper for the wear test and 

polished to 1 micron for the porosity and microhardness test.

Images of the whole cross-sectional surface were captured on an Olympus BX51M optical 

microscope for surface porosity analysis. The porosity analysis of the images was carried out using 

Stream Essentials software. The whole surface was divided into 16 portions, the Stream Essentials 

software analysed the 16 images for porosity and computed an average percentage porosity of the 

surface.

The microhardness values of cross-section surface of the parts were tested using a Zwick Roell 

ZHVμ Vickers hardness tester under the load of 1000 gf with the load-dwell time of 10 seconds. 

The microhardness was measured manually by changing the camera magnification from 10x to 

40x. The average values were obtained at 12 different locations uniformly distributed on the cross-

sectional surface of each sample. 

Wear tests were performed with a Rtec Universal tribometer using Silicon Nitride wear balls. The 

ball size was 6.35mm, with a 150N load, a velocity of 1 mm/s, an acceleration of 0.1 mm/s², a 

time of 10 minutes, and a sliding distance of 2 mm. The wear tracks were observed and the wear 

scar length (Y) and width (X) were measured with a Nikon ECLIPSE 50i POL optical microscope 

fitted with a digital camera. The width (X) was also measured with the Rtec Universal tribometer 

analysis application suite. The wear volume of the wear scar was calculated by using Equations 5, 

6 and 7 [29].
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𝑉𝑓 = 𝐿𝑠[𝑅𝑓
2sin ‒ 1 ( 𝑊

2𝑅𝑓) ‒
𝑊
2

(𝑅𝑓 ‒ ℎ𝑓)] + 𝜋
(𝐿 ‒ 𝐿𝑠)

3𝑊 [ℎ𝑓
2(3𝑅𝑓 ‒ ℎ𝑓)] (5)

  

ℎ𝑓 = 𝑅𝑓 ‒ 𝑅𝑓
2 ‒

𝑊2

4

(6)

  𝑅𝑓 = (𝐿 ‒ 𝐿𝑠

2 ) (7)

where  is the wear volume,  is the stroke length of the sliding wear ball, L is the length of the 𝑉𝑓 𝐿𝑠

wear scar, W is the width of the wear scar,   is the wear depth and  is the radius of the spherical ℎ𝑓 𝑅𝑓

surface at both ends of the wear scar.

X-ray diffraction (XRD) patterns were measured with a Bruker D8 Advance. The machine was set 

at the following parameters; Voltage: 40KV, Current: 40mA, Power: 16000W, X-ray source: Cu 

tube, Detector: LYNXEYE, Scan type: Coupled 2 theta/theta from 20° to 90°, Scan mode: 

Continuous PSD fast. Phase quantification was carried with Diffrac.EVA V3.1 software.

4.0 Results and discussion

The developed RSM and ANN models can correlate the LPBF process parameters to the 

microstructural characteristics and wear resistance of maraging steel (1.2709) parts.

4.1 Response surface modelling (RSM) analysis and validation

Table 5 shows the outcome of the RSM analysis of the experimental data. Analysis of variance 

(ANOVA) and regression analysis were performed in this section to evaluate the significance of 

the model.
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4.1.1 Analysis of variance (ANOVA)

4.1.1.1 Percent porosity (P) of the LPBF fabricated maraging steel samples

Analysis of variance (ANOVA) was performed using Minitab 17 software to evaluate the 

significance of the model, the crucial effect of the individual variables and combined variables. 

The significant model terms were determined via a stepwise regression procedure which 

automatically removes the insignificant terms. Based on the ANOVA analysis for porosity 

responses (Table 6), it is notable that the model was statistically significant with a large F-value 

of 16.45 and p-value < 0.05. Factors with a large F-value and p-value < 0.05 are considered 

significant. The most significant model factors for porosity were all three parameters (laser power 

(A), scan speed (B) and hatch spacing (C)). The combined parameters laser power * laser power 

(A2), scan speed * scan speed (B2), laser power * scan speed, (AB) laser power * hatch spacing 

(AC) and scan speed * hatch spacing (BC) were also statistically significant. A coefficient of 

determination R² value of 0.9229, adjusted R² value of 0.8668 and predicted R² value of 0.6792 

were obtained.

Table 6 

ANOVA and Response Surface Regression for % Porosity

Source Sum of squares df Mean squares F-value P-value prob>F
Model 5.9506 8 0.74383 16.45 < 0.000 

significant
Linear 1.8560 3 0.61865 13.68 0.000
A 0.5910 1 0.59103 13.07 0.004
B 0.7450 1 0.74503 16.48 0.002
C 0.5199 1 0.51989 11.50 0.06
Square 0.6674 2 0.33371 7.38 0.009
A2 0.2833 1 0.28331 6.27 0.029
B2 0.3242 1 0.32421 7.17 0.021
2-way interaction 3.4273 3 1.14242 25.27 0.000
AB 0.4979 1 0.49785 11.01 0.007
AC 1.8467 1 1.84675 40.85 0.000
BC 1.0826 1 1.08265 23.95 0.000
Residual error 0.4973 11 0.04521
Lack of Fit 0.2511 6 0.04185 0.85 0.583

not significant
Pure Error 0.2462 5 0.04924
Cor Total 6.4479 19
Std. Dev. 0.212621
R² 0.9229
Adjusted R² 0.8668
Predicted R² 0.6792
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The R² value indicates good correlation between the experimental and predicted data obtained for 

porosity as indicated in Figure 4. The difference between the adjusted R² and the predicted R² is < 

0.2 indicating that they are in reasonable agreement. The regression (equation 8) describes the 

empirical relationship between the porosity and the LPBF processing parameters after eliminating 

non-significant factors with the standard deviation of ± 0.21 of the mean value of porosity.

% Porosity = 298.2 – 0.767 A – 0.3130 B – 2.625 C – 0.001395 A2 + 0.000060 B2 + 

0.000499 BC + 0.00961 AC + 0.001471 BC

(8)

Figure 4. Predicted vs measured values of % porosity

4.1.1.2 Microhardness (MH) of the LPBF fabricated maraging steel samples

The results from the ANOVA for microhardness responses can be observed in Table 7, which 

suggests that the model was statistically significant with a large F-value of 27.99 and p-value < 

0.05. Factors with a large F-value and p-value < 0.05 are considered significant. All the three 

parameters were found to be significant model factors that influence microhardness. The combined 

parameters laser power * laser power (A2), hatch spacing * hatch spacing (C2), Power*Speed 

(AB), and Speed*Hatch (BC) were also statistically significant. A coefficient of determination R² 

value of 0.9423, adjusted R² value of 0.9086 and predicted R² value of 0.8205 were obtained. 
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Table 7 

ANOVA and Response Surface Regression for Microhardness

Source Sum of squares df Mean squares F-value P-value prob>F
Model 889.48 7 127.069 27.99 < 0.000 

significant
Linear 401.41  3 133.804 29.47 0.000
A 38.92 1 38.917 8.57 0.013
B 93.76 1 93.756 20.65 0.001
C 268.74 1 268.741 59.19 0.000
Square 157.97   2 78.985    17.40    0.000
A2 138.38    1 138.379    30.48    0.000
C2 11.23   1 11.225     2.47    0.142
2-way interaction 330.10  2 165.049    36.35    0.000
AB 174.35  1 174.351  38.40    0.000
BC 155.75 1 155.746 34.31 0.000
Residual error 54.48 12 4.540
Lack of Fit 34.78 7 4.968 1.26 0.413

not significant
Pure Error 19.70 5 3.940
Cor Total 943.96 19
Std. Dev. 2.13072
R² 0.9423
Adjusted R² 0.9086
Predicted R² 0.8205

The R² value of 0.9423 is very close to 1, which indicates good correlation between the 

experimental and predicted data obtained for microhardness as indicated in Figure 5. The 

difference between the adjusted R² and the predicted R² is < 0.2 indicating that they are in 

reasonable agreement. The regression equation (9) describes the empirical relationship between 

the microhardness and the LPBF processing parameters after eliminating non-significant factors 

with the standard deviation of ± 2.13 of the mean value of microhardness.

Microhardness = 2225 + 4.12 A - 3.316 B - 19.93 C - 0.03083 A² + 0.0352 C² 

+ 0.00934 AB + 0.01765 BC

(9)

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4192936

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



19

Figure 5 Predicted vs measured values of microhardness

4.1.1.3 Amount of martensite phase (MP) of the LPBF fabricated maraging steel 

samples

The model large F-value of 16.12 and p-value < 0.05 as shown in ANOVA Table 8, shows that 

the model is significant. Processing parameters with a large F-value and p-value < 0.05 are 

considered significant. Laser power was found to have the most significant effect on the martensite 

phase composition considering its F-value of 15.10 and p-value of 0.003. The combined 

parameters Power*Power (A2), Speed*Speed (B2), Hatch*Hatch (C2), Power*Speed (AB), 

Power*Hatch (AC) and Speed*Hatch (BC) were also statistically significant. A coefficient of 

determination R² value of 0.9355, adjusted R² value of 0.8775 and predicted R² value of 0.7374 

were obtained. 
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Table 8 

ANOVA and Response Surface Regression for % Martensite

Source Sum of squares df Mean squares F-value P-value prob>F
Model 160.765 9 17.8628    16.12 < 0.000 

significant
Linear 17.557   3 5.8523     5.28    0.019
A 16.729  1 16.7293    15.10    0.003
B 0.738   1 0.7377     0.67    0.434
C 0.090   1 0.0897 0.08    0.782
Square 59.335  3 19.7783    17.85    0.000
A2 18.240  1 18.2398    16.46    0.002
B2 45.262  1 45.2624    40.85    0.000
C2 3.789 1 3.7894 3.42 0.094
2-way interaction 83.873  3 27.9578    25.23 0.000
AB 37.980  1 37.9795    34.28    0.000
AC 34.823  1 34.8233 31.43 0.000
BC 11.071  1 11.0706 9.99 0.010
Residual error 11.080   10 1.1080
Lack of Fit 4.653   5 0.9306 0.72 0.634

not significant
Pure Error 6.427   5 1.2853
Cor Total 171.845 19
Std. Dev. 1.05261  
R² 0.9355

Adjusted R² 0.8775
Predicted R² 0.7374

The good correlation between the experimental and predicted data obtained for percentage 

martensite phase composition was observed based on the R² value, this was further indicated by 

plot diagram in Figure 6. The difference between the adjusted R² and the predicted R² is < 0.2 

indicating that they are in reasonable agreement. The regression equation (10) describes the 

empirical relationship between the amount of martensite phase composition and the LPBF 

processing parameters after eliminating non-significant factors with the standard deviation of ± 

1.05 of the mean value of martensite phase composition.

%Martensite = -288 + 2.80 A + 1.283 B - 6.47 C - 0.01125 A² - 0.000710 B² -

 0.0205 C² - 0.004358 AB + 0.04173 AC + 0.00471 BC

(10)
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Figure 6 Predicted vs measured values of % martensite

4.1.1.4 Wear volume (WV) of the LPBF fabricated maraging steel samples

An ANOVA was performed to evaluate the significance of the model for wear volume responses 

(Table 9), high F-value of 25.88 and p-value < 0.05 of the model indicates that it is significant. All 

the three parameters were significant in the model for wear volume since their F-value is large and 

p-value < 0.05. The combined parameters Power*Power (A2), Speed*Speed (B2), Power*Speed 

(AB) and Speed*Hatch (BC) were also statistically significant. Further discussion on the influence 

of the single and combined factors was highlighted with the main effects and contour plots in the 

following sections. 
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Table 9 

ANOVA and Response Surface Regression for Wear volume

Source Sum of squares df Mean squares F-value P-value prob>F
Model 0.002000  7 0.000286    25.88    < 0.000 

significant
Linear 0.001138  3 0.000379    34.38    0.000
A 0.000172  1 0.000172    15.57    0.002
B 0.000774  1 0.000774    70.09    0.000
C 0.000193  1 0.000193    17.48    0.001
Square 0.000560  2 0.000280    25.37    0.000
A2 0.000080  1 0.000080     7.22    0.020
B2 0.000442  1 0.000442    40.04    0.000
2-way interaction 0.000301  2 0.000151    13.64    0.001
AB 0.000252  1 0.000252    22.82    0.000
BC 0.000049  1 0.000049     4.46    0.056
Residual error 0.000132  12 0.000011
Lack of Fit 0.000098  7 0.000014     2.01 0.231

not significant
Pure Error 0.000035  5 0.000007
Cor Total 0.002132 19
Std. Dev. 0.0033223  
R² 0.9379
Adjusted R² 0.9016
Predicted R² 0.7798

A coefficient of determination R² value of 0.9379, which is closer to 1, indicates good correlation 

between the experimental and predicted data obtained for porosity as indicated in Figure 7. The 

difference between the adjusted R² value of 0.9016 and predicted R² value of 0.7798 is < 0.2 

indicating that they are in reasonable agreement. The empirical relationship between the wear 

volume and the LPBF processing parameters after eliminating non-significant factors with the 

standard deviation of ± 0.0033 of the mean value of wear volume is described by the regression 

equation (12).

Wear Volume = 0.445 - 0.01617 A + 0.001976 A + 0.00770 C + 0.000023 A² -

 0.000002 B² + 0.000011 AB - 0.000010 BC

(11)
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Figure 7 Predicted vs measured values of wear volume

4.2 Influence of LPBF process parameters on the sample properties

Main effects and contour plots are presented in the following sections. They describe how laser 

power, scan speed and hatch spacing affect the porosity, microhardness, amount of martensite 

phase and wear volume of maraging steel (1.2709) parts.

4.2.1 Influence of LPBF process parameters on porosity

The main effects plot presented in Figure 8 describes how laser power (A), scan speed (B) and 

hatch spacing (C) affect porosity of the samples. The main effects plot indicates that micro-

porosity in the samples increases as laser power increases from 160 W to 177.5 W (Figure 8a). 

This is contrary to expectation that porosity is reduced as laser power increases [8], According to 

Mugwagwa et al., [27], this could be attributed to the mismatch between the process parameters. 

By increasing the laser power above 177.5 W (Figure 8a), the porosity is seen to decrease. This 

could be attributed to the energy dissipated to the melt pool, the energy would be sufficient to 

completely melt the powders [7] but not too much to cause over melting and balling of the melt 

pool [27]. Figure 9 (a to c) support the outcome reported in Figure 8a. Meanwhile, it is also evident 

from Figure 9 (a to b) that laser power, besides influencing the amount of porosity imparted in the 
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LPBF fabricated sample, also determines the pore morphology, the pore size and the inter-pore 

spacing. According to Figure 9 (a and b), it is evident that pore sizes increase (0 to 50 μm) , the 

inter-pore spacing (250 μm) decreases while the pores are non-uniformly distributed within the 

microstructure when laser power less than 177.5 W is selected to dissipate heat into the melt pool. 

However, by dissipating heat into the melt pool with a laser power set above 177.5 W, the pore 

size reduces (10 μm), the inter-pore spacing (400 μm) increases while the pores are more uniformly 

distributed (Figure 9c).  

A study of Figure 8b indicates that as scanning speed (B) is increased from 650 mm/s to 738 mm/s, 

the porosity is seen to decrease to the minimum value. This could be attributed to over melting and 

balling at speeds lower than 738 mm/s [27]. By increasing the scanning speed above the threshold 

value of 738 mm/s, the porosity increases due to a decrease in the width of the melt pool at higher 

scanning speed [27]. The energy density delivered to the melt pool would be insufficient for 

complete melting of the powders [7] hence the increase in porosity. It is clear from Figure 9 (d and 

e) that pore sizes reduce (0 to 50 μm), the inter-pore spacing (250 μm) increases while the pores 

appear to be uniformly distributed within the microstructure when the value of scanning speed 

tends towards 738 mm/s. By scanning laser beam at a speed greater than 738 mm/s, the pore size 

increases (10 μm), the inter-pore spacing (400 μm) reduces while the pores appear non- uniformly 

distributed (Figure 9f). 

The main effect plot Figure 8c indicates that as hatch spacing is increased from 87 μm to 103 μm, 

the porosity is seen to increase to the maximum value. This could be due to decreased energy 

density dissipated to the melt pool as the hatch spacing is increased. The energy density would be 

insufficient for complete melting of the powders [7] hence the increase in porosity. The optical 

microscope images (Figure 9 g to h) support the outcome reported in Figure 8c. 
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Figure 8 Main effects plot for the influence of all parameters on porosity

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 9: Porosity analysis of LPBF fabricated samples as a function of laser power (a) 153 W, (b) 170 W, (c) 187 W; 

scanning speed (d) 616 mm/s, (e) 700 mm/s, (f) 784 mm/s; hatch spacing (g) 87 μm, (h) 95 μm and (i) 103 μm 

a b c
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The effects of the interaction between laser power and scan speed, scan speed and hatch spacing, 

as well as laser power and hatch spacing on porosity were presented in contour plots Figure 10a, 

Figure 10b and Figure 10c respectively. The contour plot describes the interaction between two 

parameters holding the third parameter at zero level. A porosity < 0.4 % is obtained when the scan 

speed is set above 725 mm/s whilst setting power <163 W, as presented in Figure 10a. Less 

porosity (<0.5%) is also observed when speed is set above 725 mm/s and hatch spacing <91.25 

μm as shown in Figure 10b. Less porosity (<0.2) is observed when power is >180 W and hatch 

spacing <90 μm Figure 10c.
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(a) (b) 

(c) 

Figure 10 (a) Contour plot of the influence of laser power and scan speed on porosity (b) Contour plot of the influence 

of hatch spacing and scan speed on porosity (c) Contour plot of the influence of hatch spacing and laser power on 

porosity

4.2.2 Influence of LPBF process parameters on microhardness

Figure 11 shows the influence of laser power (A), scan speed (B) and hatch spacing (C) on 

microhardness of the LPBF manufactured samples. The results obtained for microhardness Figure 

11 a and b are contrary to the porosity results Figure 8 a and b because, whenever possible, the 

microhardness was measured at pore free locations [1]. The main effects plot Figure 11a shows 
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that with increasing the laser power from 153.2 W to 170 W the microhardness increases to the 

maximum. This could be attributed to increase in energy density, the energy dissipated to the melt 

pool would completely melt the powders [7], hence the increase in microhardness. By increasing 

the laser power above 170W (Figure 11a), the microhardness is seen to decrease. This could be 

attributed to over melting and balling at power inputs higher than 170 W [27]. The microhardness 

distribution graphs Figure 12 a to c support the findings on Figure 11 a. It is evident from Figure 

12 a to c that laser power influenced microhardness distribution, the distribution changed from 

heterogeneous at 153 W (Figure 12a) to homogeneous at 170 W (Figure 12b) and heterogeneous 

again at 187 W (Figure 12c). 

The main effect plot Figure 11b indicates that as scanning speed (B) is increased from 616 mm/s 

to 784 mm/s, the microhardness is seen to decrease to the minimum value. The microhardness 

decreases with the increase in scan speed Figure 11b. Yasa et al., [7] obtained a similar pattern on 

the effect of scan speed on microhardness. However, their study stated that change of scan speed 

does not have a significant influence on microhardness within the low speed range. This would be 

due to reduction in the supplied energy density as the scan speed is increased [30]. The energy 

density delivered to the melt pool would be insufficient for complete melting of the powders [7] 

hence the decrease in microhardness. Decrease in the microhardness would also be attributed to 

the microhardness distribution. Figure 12 d to f indicates that the microhardness distribution 

changed from homogeneous to heterogeneous.

The main effect plot Figure 11c indicates that as hatch spacing (C) is increased from 87 μm to 103 

μm, the microhardness is seen to reduce to the minimum value. This could also be attributed to 

reduction in the supplied energy density as the hatch spacing is increased [30]. The hatch spacing 

has noticeable influence on microhardness distribution. The distribution changed from fairly 

homogeneous at 86.6 μm (Figure 12g) to heterogenous at 95 μm (Figure 12h) and homogenous at 

103.4 μm (Figure 12i).
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Figure 11 Main effects plot for the influence of all parameters on microhardness

ba c
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Figure 12 Microhardness distribution on LPBF fabricated samples as a function of laser power (a) 153 W, (b) 170 W, 

(c) 187 W; scanning speed (d) 616 mm/s, (e) 700 mm/s, (f) 784 mm/s; hatch spacing (g) 86.6 μm, (h) 95 μm and (i) 

103.4 μm

Figure 13a and b show the 2D contour plots of the interactive effect of the significant parameters 

on microhardness: scan speed vs laser power and scan speed vs hatch spacing respectively. Figure 
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13a was developed with scan speed and laser power being varied whilst setting hatch spacing at 

centre point. At scan speed < 663 mm/s and laser power < 174 W, a high microhardness was 

observed (> 422.5HV). Figure 13b shows that high microhardness (> 432HV) was also observed 

at low speed value (663 mm/s) and low hatch spacing (91 μm).

(a) (b) 

Figure 13 (a) Contour plot of the influence of scan speed and laser power on microhardness (b) Contour plot of the 

influence of hatch spacing and scan speed on microhardness

4.2.3 Influence of LPBF process parameters on the amount of martensite phase 

composition

Amount of martensite phase composition significantly influences strength and hardness of 

maraging steel whilst amount austenite influences ductility and toughness [31], [32], [33]. This 

implies that amount of martensite influences wear volume since it has significant influence on 

microhardness [34]. The martensitic matrix is strengthened by intermetallic nano-precipitates 

formed in the martensite matrix [35], [33]. The precipitated particles will hamper the movement 

of dislocations thereby strengthening the steel [6].

The influence of laser power (A), scan speed (B) and hatch spacing (C) on the amount of martensite 

phase composition of the samples is presented by main effects plot Figure 14 a to c. The XRD 

analysis results of manufactured samples showed that the samples consisted of a large amount of 
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martensite and a small amount of austenite phase composition because of the rapid cooling rates 

experienced during the LPBF process. The main effects plot Figure 14a shows that with increasing 

the laser power from 153 W, the martensite phase composition increases to the maximum amount 

until a laser power of 165 W is reached. Maximum amount of martensite was obtained at 165 W, 

as the melt pool temperature was sufficient to convert the austenite to a martensitic phase. Micro-

segregation of nickel solute element at cellular boundaries during solidification stabilized the small 

amount of austenite phase [36]. The large amount of martensite obtained at 165 W can also be 

attributed to a reduced cooling rate due to increase in laser energy density [37]. By increasing the 

laser power above 165 W the amount of martensite phase composition is seen to decrease due to 

the increase in melting temperature that results in reversion of the martensite phase into the 

austenite phase [35].

Figure 14b shows that with increasing the scan speed, the amount of martensite phase composition 

increases to the maximum until scan speed of 700 mm/s. The phase composition reduces when the 

scan speed is increased above 700 mm/s. The temperature would be insufficient to convert 

austenite to martensite phase due to a decrease in the width of the melt pool at higher scanning 

speed. High scanning speed at constant laser power and hatch spacing reduces laser energy input, 

reducing cooling rate during solidification thereby reducing the martensite lath size [37].

The amount of martensite phase composition increases to maximum volume fraction as hatch 

spacing increases from 86 μm to 96 μm (Figure 14c). Percent volume of martensite phase 

composition is low at hatch spacing lower than 96 μm because the large temperature produced at 

the high energy density could cause the reversion of the martensite phase into the austenite phase. 

By increasing the hatch spacing above 96 μm, the amount of martensite phase composition is seen 

to decrease. This could be due to a reduction in the supplied energy density as the hatch spacing is 

increased hence the temperature would be insufficient for austenite to martensite phase conversion 

[37].
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Figure 14 Main effects plot for the influence of all parameters on martensite phase composition

Figure 15a, b and c represent the interactive influence of two parameters on the martensite phase 

composition whilst keeping the other parameter constant. Between 713 mm/s and 738 mm/s 

scanning speed , the martensite phase would be >82% when laser power < 165 W (Figure 15a). 

When scan speed is at 700 mm/s (zero level), martensite phase would be > 81 % despite the hatch 

spacing (Figure 15b). Figure 15c shows that > 82% martensite phase would be obtained at laser 

power < 675 W and hatch spacing < 94 μm.

 

cba
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(a) (b) 

(c) 

Figure 15 (a) Contour plot of the influence of scan speed and laser power on martensite phase composition (b) Contour 

plot of the influence of scan speed and hatch spacing on martensite phase composition (c) Contour plot of the influence 

of laser power and hatch spacing on martensite phase composition

4.2.4 Influence of LPBF process parameters on wear volume

Figure 16 is a main effects plot which describes how laser power (A), scan speed (B) and hatch 

spacing (C) affects wear volume of the samples. The main effects plot (Figure 16a) indicates that 

with increasing the laser power from 153 W, the wear volume decreased to the minimum until 

certain value of laser power (178 W) was reached. The wear volume was observed to be increasing 
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when the power value exceeds 178 W. This would be attributed to the microhardness of the sample 

(Figure 11a) and amount of martensite phase composition (Figure 14a). From section 4.2.3, 

amount of martensite phase composition significantly influences material hardness, strength, 

ductility and toughness [31], [32], [33]. The hardness significantly affects the wear resistance of a 

material [34]. Within the tested power range, effect of porosity (Figure 8a) was overridden by the 

corresponding amount of martensite and microhardness.

Figure 16b indicates that wear volume in the samples increases as the scanning speed increases 

from 616 mm/s to 675 mm/s. This is opposed to the expected pattern of wear volume decreasing 

to a minimum then increase again due to the corresponding porosity (Figure 8b) and phase 

composition (Figure 14b). This could be attributed to the corresponding microhardness (Figure 

11b) that had resulted from the mismatch between the process parameters. By increasing the 

scanning speed above 675 mm/s (Figure 16b), the wear volume is seen to decrease. Meanwhile 

Figure 12d to f suggest that the wear pattern could be due to the microhardness distribution at the 

different scanning speeds. The wear volume increased to maximum as the microhardness changed 

from homogeneous distribution at 616 mm/s (Figure 12d) to heterogeneous distribution at 700 

mm/s (Figure 12e). Beyond that point the wear volume reduced as the microhardness changed to 

fairly homogeneous distribution again at 784 mm/s (Figure 12f).

The main effect plot Figure 16c indicates that as hatch spacing (C) is increased from 87 μm to 103 

μm, the wear volume is seen to increase to the maximum value. This could be attributed to the 

corresponding reduction in microhardness (Figure 11c) and an increase in porosity (Figure 8c). 

The increase in wear volume as the amount of martensite increase (Figure 14c) may be attributed 

to the brittleness of the martensite phase. A further increase in the wear volume would be attributed 

to the increase in volume of the soft austenite phase.
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Figure 16 Main effects plot for the influence of all parameters on wear volume

The interaction between the significant factors for wear volume namely: scan speed with laser 

power (AB) and scan speed with hatch spacing (BC) are presented in Figure 17a and b respectively. 

The interaction between the two factors on wear volume was observed whilst holding the third 

value at a constant centre value. Minimum wear volume (< 0.07mm³) would be obtained when 

scan speed is > 737.5 mm/s for any value of laser power < 178 W (Figure 17a). The minimum 

wear volume would also be obtained at scan speed > 737.5 mm/s irrespective of the hatch spacing 

(Figure 17b).
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(a)  (b) 

Figure 17 (a) Contour plot of the influence of scan speed and laser power on wear volume (b) Contour plot of the 

influence of scan speed and hatch spacing on wear volume

4.3 ANN Model

4.3.1 Analysis and validation of the ANN model

The performance of the ANN model was measured with the correlation coefficient R² and mean 

square error (MSE). The regression plot for training R value of 0.97833, validation R value of 

0.99834, testing R value of 0.9997 and overall network prediction R value of 0.98472 against the 

experimental results are presented in Figure 18. The overall R value of 0.98472 indicates that the 

model accurately predicts the responses.
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Figure 18 Regression plots of the ANN model

The training performance of the model is presented by the MSE variation graph in Figure 19. 

Similar characteristic of the test and validation graphs indicates that there was no significant over-

fitting. The training was terminated in 9 epochs, the best performance was 0.00479 at epoch 3.
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Figure 19 Model training, validation and testing MSE performance 

5.0 Comparison of response surface modelling and artificial neural network model’s 

results with experimental outcomes

Comparison of the experimental results with the ANN and RSM predicted responses is shown in 

Table 5. The ANN model is more accurate than the RSM model as its predicted results are closer 

to the experimental results as shown in Figure 20, Figure 21, Figure 22 and Figure 23. The 

prediction accuracy of the ANN and RSM models was also compared based on their coefficient of 

determination R². The ANN model with coefficient of determination R² value of 0.97 was more 

accurate than the RSM models with coefficient of determination R² values of 0.92 for porosity and 

0.94 for microhardness, martensite phase composition and wear volume. The higher predicting 

ability of the ANN model could be due to its capability to generalize nonlinear systems. However, 

building RSM models may consume less time since it performs single step second order 

calculations compared to ANN that consumes more computational time to create and train because 

of the many associated iterative calculations. 
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Figure 20. Comparison of experimental outcomes with ANN and RSM models results on porosity
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Figure 21 Comparison of experimental outcomes with ANN and RSM models results on microhardness
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Figure 22 Comparison of experimental outcomes with ANN and RSM models results on martensite phase composition
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Figure 23. Comparison of experimental outcomes with ANN and RSM models results on wear volume

6.0 Optimisation and validation via RSM and ANN

The optimum LPBF processing parameters for minimum wear volume, minimum porosity, 

optimum microhardness and amount martensite phase composition were obtained by applying the 

developed RSM model. The RSM desirability function approach to multiple responses 

optimisation technique was used to optimise the responses. The desirability function approach 

transforms multiple response data to a single response by performing mathematical 

transformations [38]. Equation 12 describes the mathematical relationship of the desirability 

function (D(Y)) with responses [39]. 
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max 𝐷(𝑌) = (𝑑1(𝑦1)𝑘1 × 𝑑2(𝑦2)𝑘2 × … ×  𝑑𝑛(𝑦𝑛)𝑘𝑛)
1

∑𝑖𝑘𝑖
(12)

Where  is the determined value of response i,  is the relative importance of response i relative 𝑦𝑖 𝑘𝑖

to other responses,  is the converted desirability value of i’th response. 𝑑𝑖(𝑦𝑖)

The optimisation goal was to achieve minimum wear volume and porosity while maintaining 

maximum microhardness and amount of martensite phase composition. It was noted from this 

study that desired laser power for improving wear resistance also improves the amount of 

martensite and microhardness however it tends to contradict that of porosity. The preferred scan 

speed for improving wear resistance improves microhardness however it tends to oppose that of 

porosity and amount of martensite phase composition. The desired hatch spacing for enhancing 

wear resistance also improves porosity and microhardness however it tends to contradict that of 

the amount of martensite phase composition. Hence the need to balance the processing parameters 

to obtain low wear volume and porosity whilst maintaining preferred amount of martensite phase 

composition and microhardness. More weight was assigned to minimum wear volume and 

porosity.  Solution 1 (Where p is the laser power, v is the scanning speed, d is hatch spacing and t 

is layer thickness.

) with desirable function 0.847 was the selected optimum operating parameters. The LPBF 

processing parameters are laser power = 165 W, scan speed = 784 mm/s and hatch spacing = 91 

μm. The process volumetric energy density (VED) = 77 J/mm³ (Equation 13). The RSM predicted 

quality properties under these operating conditions are porosity = 0.01 %, microhardness = 411 

HV, amount of martensite = 77.2 % and wear volume = 0.051 mm³.

𝑉𝐸𝐷 =
𝑃

𝑣 × 𝑑 × 𝑡
(13)

Where p is the laser power, v is the scanning speed, d is hatch spacing and t is layer thickness.
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Table 10 

RSM process optimisation
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1 165.074 784.000 91.012 0.010 411.055 77.186 0.051 0.847 X
2 186.818 623.649 86.600 0.119 427.848 73.964 0.050 0.740

3 186.818 619.922 86.600 0.186 428.121 73.988 0.048 0.660

4 186.191 625.220 86.600 0.180 428.769 74.266 0.051 0.656

5 186.818 616.906 86.600 0.242 428.346 78.209 0.047 0.598

6 186.818 616.121 86.600 0.257 428.405 73.992 0.047 0.582

7 158.352 784.000 103.400 0.373 409.019 78.209 0.047 0.420

6.1 Validation by experiments

The developed ANN model was used to validate the RSM optimum parameters of the selected 

solution 1 in 

(maxDY) = (𝑑1(𝑦1)𝑘1 × 𝑑2(𝑦2)𝑘2 × … ×  𝑑𝑛(𝑦𝑛)𝑘𝑛)
1

∑𝑖𝑘𝑖

(12)

Where  is the determined value of response i,  is the relative importance of response i relative 𝑦𝑖 𝑘𝑖

to other responses,  is the converted desirability value of i’th response. 𝑑𝑖(𝑦𝑖)

The optimisation goal was to achieve minimum wear volume and porosity while maintaining 

maximum microhardness and amount of martensite phase composition. It was noted from this 

study that desired laser power for improving wear resistance also improves the amount of 

martensite and microhardness however it tends to contradict that of porosity. The preferred scan 

speed for improving wear resistance improves microhardness however it tends to oppose that of 
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porosity and amount of martensite phase composition. The desired hatch spacing for enhancing 

wear resistance also improves porosity and microhardness however it tends to contradict that of 

the amount of martensite phase composition. Hence the need to balance the processing parameters 

to obtain low wear volume and porosity whilst maintaining preferred amount of martensite phase 

composition and microhardness. More weight was assigned to minimum wear volume and 

porosity.  Solution 1 (Where p is the laser power, v is the scanning speed, d is hatch spacing and t 

is layer thickness.

) with desirable function 0.847 was the selected optimum operating parameters. The LPBF 

processing parameters are laser power = 165 W, scan speed = 784 mm/s and hatch spacing = 91 

μm. The process volumetric energy density (VED) = 77 J/mm³ (Equation 13). The RSM predicted 

quality properties under these operating conditions are porosity = 0.01 %, microhardness = 411 

HV, amount of martensite = 77.2 % and wear volume = 0.051 mm³.

𝑉𝐸𝐷 =
𝑃

𝑣 × 𝑑 × 𝑡
(13)

Where p is the laser power, v is the scanning speed, d is hatch spacing and t is layer thickness.

. The ANN results in Table 11 were consistent with the RSM data, the minimum percentage error 

was 0.00 % on wear volume, 1.405 % on amount of martensite, 2.573 % on microhardness and the 

maximum percentage is 20.00% on porosity.

Table 11 

Validation of the RSM optimized parameters by ANN 

Porosity

(%)

Microhardness

(HV)

Martensite

(%)

Wear Volume

(mm³)

RSM Predicted 0.010 411.06 77.19 0.051
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ANN Predicted 0.012 421.63 78.51 0.051

Error (%) 20.000 2.57 1.71 0.000

Validation experiments were carried out to confirm the optimum process parameters established 

by RSM and ANN. Results from the confirmatory experiments were consistent with the RSM and 

ANN predictions (Table 12). The ANN model predictions were more accurate than the RSM model 

as its predicted results were closer to the experimental results as shown Table 12.

Table 12 

Validation of RSM and ANN predicted by confirmatory experiment results

Porosity 

(%)

Microhardness

(HV)

Martensite

 (%)

Wear Volume

(mm³)

Validation Experiments Results 0.21 353.6 80.4 0.053

RSM Predicted 0.010 411.1 77.2 0.051

Error (%) 95.24 -16.26 +3.98 +3.77

Validation Experiments Results 0.21 353.6 80.4 0.053

ANN Predicted 0.012 421.6 78.5 0.051

Error (%) 94.29 -19.23 +2.36 +3.77

7.0 Conclusions

A hybrid of ANN and RSM optimization technique was applied in this study to optimise 

microstructural and mechanical properties of LPBF manufactured maraging steel 1.2709 parts. 

Analysis of variance (ANOVA) indicated that the RSM models are suitable for predicting 

microstructural and mechanical properties of LPBF manufactured maraging steel. The ANOVA 

indicated that all three LPBF processing parameters (laser power, scanning speed and hatch 

spacing) have significant influence on the microstructural characteristics (porosity, microhardness 

and martensite phase) and wear resistance of manufactured maraging steel samples. The effects of 

individual and combined processing parameters were described by main effects and contour plots 

respectively. For example, the wear volume decreased to the minimum when power was increased 

until a value of laser power (178 W) was reached. The wear volume was observed to be increasing 
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when the power value exceeded 178 W. The main effects plot also described the relationship of 

microstructural properties with wear volume.

Performance analysis of the configured and trained ANN model with regression coefficient (R²) 

and root mean squared error (RMSE) indicated that the model can successfully predict the 

optimum microstructural and mechanical properties. RSM and ANN were compared using the 

regression coefficient (R²). The ANN model had a better predicting ability with coefficient of 

determination R² value of 0.97 compared to the RSM models with coefficient of determination R² 

values of 0.92 and 0.94. The results of the ANN and RSM models were compared with 

experimental results. Both models have a high tracking ability, however, ANN had better 

prediction accuracy than RSM.

The developed RSM model was applied to determine the optimum LPBF processing parameters 

and the results were validated by an ANN model. The most desirable optimum LPBF processing 

parameters for the specific machine and material were: laser power = 165 W, scan speed = 784 

mm/s and hatch spacing = 91 μm with a desirable function of 0.847. The RSM predicted quality 

properties under these operating conditions are: porosity = 0.010 percent, microhardness = 411 

HV, amount of martensite = 77.2 percent and wear volume = 0.051 mm³. The RSM and ANN 

results are in good agreement with the error range of 0.00 to 20 %.

The RSM and ANN model predictions were consistent with confirmatory experiment results. The 

developed RSM and ANN models are suitable for predicting microstructural and mechanical 

properties of LPBF manufactured maraging steel.
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