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ABSTRACT A predictive long short-term memory (LSTM) model developed on a particular water quality
dataset will only apply to the dataset and may fail to make an accurate prediction on another dataset.
This paper focuses on improving LSTM model tolerance by mitigating discrepancies in model prediction
capability that arises when a model is applied to different datasets. Two predictive LSTM models are
developed from the water quality datasets, Baffle and Burnett, and are optimised using the metaheuristic
genetic algorithm (GA) to create hybrid GA-optimised LSTM models that are subsequently combined with
a linear weight-based technique to develop a tolerant predictive ensemble model. The models successfully
predict river water quality in terms of dissolved oxygen concentration. After GA-optimisation, the RMSE
values of the Baffle and Burnett models decrease by 42.42% and 10.71%, respectively. Furthermore, two
ensemble models are developed from the GA-hybrid models, namely the average ensemble and the optimal
weighted ensemble. The GA-Baffle RMSE values decrease by 5.05% for the average ensemble and 6.06% for
the weighted ensemble, and the GA-Burnett RMSE values decrease by 7.84% and 8.82%, respectively. When
tested on unseen and unrelated datasets, the models make accurate predictions, indicating the applicability
of the models in domains outside the water sector. The consistent and similar performance of the models
on any dataset illustrates the successful mitigation of discrepancies in the predictive capacity of individual
LSTM models by the proposed ensemble scheme. The observed model performance highlights the datasets
on which the models could potentially make accurate predictions.

INDEX TERMS Ensemble model, environment, genetic algorithm, long short term memory, rivers, water,
water quality, water conservation, weight based model fusion.

I. INTRODUCTION

Rivers are valuable inland water resources utilised for human
consumption, agricultural needs, industrial and recreational
purposes. Increased urbanisation, poor water infrastructure,
and climate change have increased pressure on rivers, neces-
sitating efficient water management. To effectively manage
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rivers, the quality of the water must be continuously
monitored [1].

Water quality is commonly evaluated through expen-
sive and time-consuming laboratory analyses. This process
includes, but is not limited to, water sample collection from
the relevant river, the correct storage and transportation of
samples to the laboratory, chemical laboratory tests and anal-
ysis, after which the quality of the water can be evaluated.
There is more than enough room for error and inefficiency in
this layered process [2]. The ability to predict water quality
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beforehand can greatly increase the efficiency of water
management [3].

This study proposes the optimized Long Short-Term Mem-
ory (LSTM) model, which is an advanced recurrent neural
network (RNN), for water quality prediction. The LSTM is
the most appropriate network for sequential data in which
temporal dependency is an implicit feature and when the
retention of information of the earlier stages of the sequential
data is necessary for forecasting future trends [4]. Such is the
case with time-sequential water data used for water quality
prediction.

Discrepancies in LSTM predictive model capability can
arise when the model, developed using a particular water
quality dataset, is applied to different water quality datasets
for prediction purposes. The model will probably not make
an accurate prediction on other water quality datasets. The
LSTM models tend to be case study-specific.

This research aims to improve the tolerance of LSTM
prediction models by mitigating these discrepancies through
optimising the LSTM network using the metaheuristic
genetic algorithm (GA). Two different GA-optimised LSTM
models, used as base models, will be fused using a lin-
ear weight-based approach to create a final tolerant LSTM
ensemble model.

This research produced three main contributions. The first
was adaptation and optimisation through the successful adap-
tation of the LSTM network for water quality prediction
for two temporal-based water quality datasets taken from
different rivers and time periods. Both models were subse-
quently optimized by GA, to improve efficiency and robust-
ness, resulting in two-hybrid GA-optimised LSTM prediction
models. The second contribution was the combination of the
two-hybrid GA-LSTM prediction models, using a weight-
based technique to develop a single more tolerant ensemble
model. Generalization, the third contribution, explored the
possible use of the final GA-optimised LSTM-based ensem-
ble prediction model in areas other than water quality. The
purpose was to assert the tolerance and thus the relevance
of the final ensemble model in the wider field of LSTM and
ensemble prediction models.

The paper progresses as follows: Sec. I contains the intro-
duction, Sec. II details the LSTM and Sec. III the GA,
Sec. IV describes the weight-based combination technique,
while Sec. V discusses the water bodies (rivers) and relevant
water quality parameters used. After which, Sec. VI describes
the development of the robust and tolerant water quality
prediction LSTM based ensemble scheme, while Sec. VII
focuses on the results and analysis, and Sec. VIII concludes
the paper with further recommendations.

Il. LONG-SHORT TERM MEMORY (LSTM) NETWORK

Most artificial neural networks (ANNs) are feed-forward
neural networks [5], incapable of capturing sequences and
accounting for the temporal nature of data and thus can-
not model memory [10]. The RNN is a Deep Neural
Network (DNN) that has a looping mechanism, allowing
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FIGURE 1. Internal structure of LSTM recurrent network cell adapted
from [16].

for the information retention of the previously processed
elements in the sequence, thus enabling the modeling of
memory [8], [11].

RNNSs are incapable of learning long time dependencies
and retaining information of the beginning of the sequence,
skewing results [10], [12]. RNNs are trained using backprop-
agation, where the gradients of the previous layer are used
to calculate the gradients of the current layer [13]. Small
weight adjustments will result in smaller weight adjustments
with each subsequent layer [7], [8] until the internal weights
are barely adjusted, and earlier network layers cannot learn
anything [9]. This shrinking of gradients [13] is referred to
as the vanishing gradient [9]. The LSTM is widely used to
mitigate the complications created by the vanishing gradi-
ent [8] and was first suggested by Hochreiter and Schmidhu-
ber in 1997 [14]. The opposite, the phenomena of gradients
increasing exponentially in size [6], [8], referred to as the
exploding gradient can also occur [13]. Gradient clipping,
which entails shrinking the gradient when norms exceed a
particular threshold, is used to mitigate this [6], [8].

The LSTM can scale to longer sequences with its unique
architecture [10], which is illustrated in Figure 1 [16]. Each
LSTM cell has a cell state, the network memory [6], [15]
which is regulated by the forget, input, and output LSTM
gates that control which information is added or removed
from the cell state, ensuring that only relevant information
is used to make predictions [15].

The forget gate (f;) controls information removal and reten-
tion. The input of the LSTM cell at the current time step
(x;) and the output from the previous hidden state (h;_1) are
both individually multiplied by the weight of the forget gate
(Wr) and summed together, the result of which is added to
a bias vector (by) then passed through the logistic sigmoid
activation (o) [15] as shown in (1). Notably, each gate has a
different set of weights. The equations below are expressed
in accordance to Figure 1 [16] and were adapted from [4]:

f; = o (Wrx; + Wrh;_1 + by). e

When the previous hidden state and current input are multi-
plied by the weight of the input gate (W;), added to the bias
vector (b;) and passed through the logistic sigmoid activation,
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it determines which values are updated. And hence the input
gate (i;) can update the cell state [15] in (2):

ir = o(Wix; + Wih;_1 + b;). )

An intermediate cell state (¢;) is calculated, where the output
of the previous hidden state and the current input is multiplied
by the weight of the intermediate cell state (W), the product
of which is added to a bias vector (b.) and passed through a
tanh function to regulate the network [6], [15] as expressed
in(3):

¢; = tanh(W.x; + W:h,_1 + b,). 3)

The Hadamard element-wise product (o) of the output of the
forget gate and the memory of the previous state (¢;_1) is then
used to calculate the current cell state (¢;) when it is added
(through point-wise addition) to the product of the output of
the intermediate cell state and the output of the input gate.
Thus the sigmoid output determines what should be retained
from the tanh output [15] as expressed in (4):

c,=f,oc;_1+i,o(~3,. (4)

Using the current cell state, the output gate (o;) determines
what the next hidden state should be when the previous
hidden state and the current input are multiplied by the weight
of the output gate (W,), then added to a bias vector (b,) and
finally passed through a logistic sigmoid activation [15] as
shown in (5):

0o; = o (Wox; + Woh,_1 4+ by). (5)

The hidden state (h;) is then calculated by passing the current
cell state through the tanh activation and multiplying it by the
output gate in (6), determining the information carried by the
hidden state to the next time step [15].

ht = 0; 0 tanh C;. (6)

The output is dependent on the input at the current time step
and the previous hidden state and is modulated between one
and zero by the sigmoid functions. The gate will block a
signal if the output is zero. The model learns the weights and
biases of each gate through the minimisation of the difference
between the LSTM outputs and the training samples [17].

LSTMs have several parameters, such as the number of
layers, the number of units in the hidden layer, time window
size, batch size, etc., referred to as hyperparameters [18],
which influence network behaviour [4] and thus should be
optimised before the training process [18].

Hyperparameter optimisation can be manual or auto-
matic [4]. The manual adjustment of each hyperparameter
and the interpretation of the effect of the adjustment on the
network are dependent on the knowledge and experience
of the researcher. Automatic optimisation ranges from the
exhaustive grid search, which explores all the possible hyper-
parameter combinations, and the random search algorithms,
which converge slowly until the global optima are found,
to the more complex model-based algorithms [20].
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FIGURE 2. Basic process of the genetic algorithm (GA) adapted from [4].
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Hyperparameters influence model underfitting or overfit-
ting, affecting the final accuracy of the network [4]. The
temporal nature of the chosen data dictates the need for the
optimal number of LSTM units in hidden layers and time
window size, which should contain an appropriate dataset
background enabling the LSTM to learn enough from past
information [19]. A large time window will lead to model
overfitting, while a small window will neglect important
information [10].

Ill. GENETIC ALGORITHM

Innately stochastic metaheuristic algorithms such as GA
mimic observed natural behaviour to solve complex opti-
mization problems within limited time and computational
capacity. GA is known to lessen search complexity and to
find optimal (or close to optimal) values for tunable LSTM
hyperparameters [4]. Thus this paper suggests a hybrid solu-
tion integrating GA with the LSTM network [19] to find the
optimal hyperparameters.

GA-optimisation of the LSTM network is initialised by a
generated population of random individuals [4], where each
individual represents a potential solution- hyperparameter
values that are expressed as binary strings [19]. Individuals
are arbitrarily selected from the search space and are eval-
uated by the fitness function defined before the optimisa-
tion process. Individuals with higher fitness functions are
considered to be near-optimal solutions and are preserved
for the next generation, while the rest are disregarded [10],
replicating the natural evolution where stronger individuals
are more likely to reproduce [4]. Figure 2 [4] illustrates
the basic GA process with six distinct stages: initialization,
fitness calculation, termination condition check, selection,
crossover, and mutation [10].

Thus with every generation, the worst performing indi-
viduals are removed, and new individuals are added to the
population to add genetic diversity to the evolutionary process
through crossover, mutation, and selection genetic opera-
tors [4]. The crossover operator creates new individuals by
replacing some of the portions of the two-parent individu-
als [4] by only utilising information in the search space, with-
out generating new information [10]. The mutation operator
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generates new information by mutating portions of individual
strings [10] to create unique individuals [4]. An inappro-
priate definition of the solution representation could lead
to incorrect choice of mutation and crossover operators [4].
The selection operator effectively exploits the information
accumulated through the GA search by selecting the stronger
individuals as their offspring will have higher fitness (fit-
ness function) and thus survive the next generation [4]. The
generated individual goes through the process of selection,
crossover, and mutation while calculating its fitness to the
model and verifying the termination criteria. Once the termi-
nation criteria are satisfied, the process stops [10].

Iterative modifications and evaluation of the population
allow GA to find optimal or near-optimal hyperparameters in
a search space with many peaks and valleys while traditional
gradient-based methods get stuck at the local optima. Also,
diversity injected into the population enables the execution
of a global search by allowing the exploration of new areas
in the search space. Thus GA is the appropriate choice for
combinatorial optimization where a thorough search of all the
possible solutions is required and would demand enormous
computational power [4].

IV. ENSEMBLE MODELS THROUGH

WEIGHT-BASED FUSION

The inherent human approach to problem-solving that
involves making informed decisions based on several
inputs [21] forms the basis of ensemble learning [22]. Ensem-
ble models are developed by combining a finite number of
different neural networks to improve the overall prediction.
Similarly, a human would combine the knowledge of sev-
eral differently sourced opinions to make a final decision.
Individual networks are independently trained, and their pre-
dictions are combined using a mathematical rule [23] to
form a final single ensemble model prediction. Ensemble
forecasting can alleviate challenges in time series forecasting
where data is volatile, dynamic, and non-stationary such as
in the geology, energy, water quality, and finance sectors,
enhancing the forecasting accuracy instead of a single model
forecast [24].

Weight-based ensemble approaches use weighting schemes
for the ranking of features or models [25], such as weighted
linear combination techniques. The weights allocated to each
model can be equal, such as in the simple average ensemble
model. They can also be determined through a mathemat-
ical rule, as with the weighted ensemble model. The most
appropriate way to combine individual LSTM model fore-
casts is unknown and undecided as the research into LSTM
applicability in ensemble forecasting is scarce [24]. This
study chose to evaluate the combined forecast of the LSTM
models through a linear function of the individual model
forecasts [26]. These linear combinations can be calculated
as follows from [26]: Let Y be the actual time series that will
be forecasted using n different models, where

=[y1,y2, - on1T. 7
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Let YO be the forecast obtained from the i’th model
(i=1,2,...,n) where [26]:

YO =5{,59, . 501 @®)

A linear combination of these n forecasted series of the
original time series can be shown as follows [26]:

YO =555 T ©
which is produced by:

A(C) —f(y(l) ~(2)

D@ ) Vk=1,2,...,N  (10)

where f is a linear function of the individual forecasts and
which results in [26]:

5 2

Yk _lek +W2)’k +. +Wny](<n) szyl(? (11)

where w; is the weight assigned to the i’th forecast. The added
weights amount to unity [26]. All the models are assigned
equal weights in the simple average approach [26]:

wp = —. (12)
n

For the weighted ensemble model, greater weight is assigned
to the more skilled model, indicating greater trust in the
model [23]. In contrast, all the models are allocated the same
weight regardless of skill in the average ensemble, rendering
it incapable of dealing with extreme values, such as outliers
and skewed distributions [24]. These weights are small pos-
itive values. The sum of all the weight coefficients in the
ensemble must be equal to one [23]. The more skilled model
is emphasised in the weighted ensemble. Thus it is expected
to perform better than the average ensemble [23].

Effective ensemble forecasting requires a considerable
amount of diversity between individual LSTM models [24].
This study accounts for diversity in LSTM models through
different time window sizes and as a result, a different number
of LSTM units, which is advantageous for the modeling
of highly non-linear statistical dependencies. Consequently,
an ensemble model with LSTM based models of different
time window sizes will be capable of handling the non-
stationary and dynamic nature of real-world time series [24].
Tuning the hyperparameters of each LSTM based model in
the ensemble will increase their quality, thus enhancing the
overall quality of the ensemble [27] provided that a sufficient
amount of diversity exists between each model. This study
highlighted the weight-based approach for combining the
two-hybrid GA-LSTM models.

V. WATER BODIES AND WATER QUALITY PARAMETERS
For the development of the models, data was taken from two
water bodies (rivers), the Burnett river and the Baffle river.
The Burnett River is in southeast Queensland, Australia,
named after J.C. Burnett, the first explorer of the river
in 1847 [28]. The river rises on the western slope of
the Burnett Range, east of the Eastern Highlands [28] at
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Mount Gaete [29] and flows a 435 km course into the Coral
Sea of the South Pacific Ocean at Burnett Heads [29]. The
Auburn, Boyne, and Barambah rivers are tributaries to the
river [28]. Small crops and sugar cane are grown in the areas
around the river, which are part of the South East Queensland
and Brigalow Belt bio-regions [30]. The Baffle Creek, also
known as the Baffle river, was named by politician and pas-
toralist William Henry Walsh in the 1850s. He was unable to
track down raiders through the dense bush along the banks of
the creek, leaving him baffled, hence the name [31]. The river
is in southeast Queensland, Australia, and flows a 124 km
course from Arthurs Seat down into the Coral Sea of the South
Pacific Ocean [32]. The tributaries into the river from the right
are the Scrubby, Granite, Grevillea, and Three Mile creeks
and the Euleilah and Island creeks from the left[33]. The
Burnett and Baffle datasets included water quality parameters
such as water temperature (°C), pH, electrical conductivity
(mS/cm), dissolved oxygen (mg/L), and turbidity (NTU).

The dissolved oxygen (DO) concentration is the most rel-
evant water quality parameter as it reflects the equilibrium
between the oxygen-producing and consuming processes in a
river [34]; it is the amount of free non-bonded, non-compound
oxygen present in water [35]. DO is an obvious criterion of
river health, as DO is directly or indirectly influenced by
other water quality parameters, such as temperature, salinity,
oxygen depletion, pH, turbidity, etc. [34]. River-dwelling
organisms, such as fish, invertebrates, plants, and bacteria,
use DO in water just as land organisms use atmospheric oxy-
gen. Extreme DO levels can adversely impact water quality
and harm aquatic life [35].DO levels range between 6 and
14 mg/L [36], with healthy rivers at 6.5 to 8 mg/L [37]. The
monitoring and prediction of DO levels ahead of time with
predictive models will aid in optimising water quality control
measures [34] and is thus of paramount importance [35].

Water temperature is a physical property and a measure of
the average thermal energy of the water [38]. The river tem-
perature is dependent on four factors: the type and depth of the
river, the environment surrounding the river, and the season of
temperature recording [38]. There are no typical water tem-
perature ranges that apply to all rivers. However, rivers have
annual temperature patterns. Temperatures that deviate from
the pattern should be viewed in context. Rivers and streams
exhibit faster and greater temperature fluctuations than lakes
and oceans. Observed seasonal temperatures across Ameri-
can rivers on average can be as low as between 1 to 4.5° C
and as high as between 30 to 35° C [38]. Water temperature
influences the physical and chemical properties of water.
An increase in temperature will decrease the solubility of
gases (such as oxygen) in water. Thus warmer waters hold
less dissolved oxygen [35]. Other water quality parameters
such as electrical conductivity, salinity, compound toxicity,
water density, and pH are also affected [38].

The pH is a measure of the activity of the hydrogen ion
(H+) in water. pH ranges from 0 to 14 and is reported as
the reciprocal of the logarithm of the hydrogen ion activity.
A river with a pH of 7 has 10~7 moles per liter of hydrogen
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TABLE 1. Typical values for water quality parameters.

Water Quality Parameter Range
Dissolved oxygen 6 mg/L-14 mg/L [36]
pH 6.5-8.5 [39]
Temperature 1-4.5°C - 30-35°C [38]
Conductivity 0.05 mS/cm - 1.5 mS/cm [40]
Turbidity I NTU - 1000 NTUs [43]

ions [39]. River pH ranges from 6.5 to 8.5 and is slightly lower
for groundwater pH at 6 to 8.5 [39].

Conductivity measures the ability of a river to pass an
electrical current, which increases with the presence of inor-
ganic dissolved solids with either a negative or positive charge
in the water. Organic compounds have low conductivity in
water [40]. The conductivity of rivers ranges from 50 to
1500 pmhos/cm (0.05 to 1.5 mS/cm). Some inland fresh-
waters have observed ranges from 150 to 500 pmhos/cm
(0.15 to 0.5 mS/cm) and heavily polluted industrial waters at
10,000 mhos/cm (10 mS/cm) [40].

Turbidity, an optical characteristic of water, is a measure
of the relative clarity of river water [41]. Turbidity measures
the light that is scattered by suspended particles when light
is shone through the water sample [42]. Solid particles sus-
pended in the water include sediment (clay and silt), a variety
of microscopic organisms, fine inorganic and organic matter,
algae, and plankton [41].

High turbidity lessens the light penetration of the water,
altering the ecological productivity, habitat quality, and aes-
thetic value of the river, causing harm to fish and aquatic
life. Pollutants, such as bacteria and metals, also attach them-
selves to suspended particles enabling further pollution [42].
Athigh turbidity levels, suspended solid particles absorb heat,
causing an increase in water temperature, thereby causing
a decrease in DO concentration. Suspended particles also
reduce the sunlight penetrating the river, inhibiting the pho-
tosynthesis of river plants, hindering DO production [43].
Turbidity levels can range from 1 to 1000 NTUs. Lower
values indicate low turbidity and healthier rivers [43].
On average, river turbidity levels usually range from 10 to
25 NTUs [41].

The observed typical values for each water quality param-
eter has been summarised in Table 1.

VI. A ROBUST AND TOLERANT WATER QUALITY
PREDICTION LSTM BASED ENSEMBLE SCHEME

The methodology used to develop a robust and tolerant
water quality prediction GA-optimised LSTM based ensem-
ble scheme is described below through a sequence of steps
and is illustrated in Figure 3.

A. WATER QUALITY DATASETS AND DATA PREPARATION

Two water quality datasets were used to develop two LSTM
models. The historical water quality data was publicly avail-
able from the Ambient Estuarine Water Quality Monitor-
ing Programme on the Queensland Government open data
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FIGURE 3. Schematic diagram of the development of a robust and tolerant water quality prediction LSTM based ensemble model.

portal [44]. The Burnett river (dataset A) consists of data
from the beginning of January 2017 to the end of Decem-
ber 2019, with 48 observations per day, 17 520 observa-
tions per year, and thus 52 560 observations over three
years. The Baffle river (dataset B) consists of data from the
beginning of December 2018 to the end of November 2019,
with 144 observations per day and thus 52 560 observations
per year.

The data was pre-processed and cleaned in accordance
with the following steps, prior to model development (yellow
block in Figure 3):

1) Only highly problematic inconsistent observations,
such as a negative pH were removed, etc., were strate-
gically removed using Table 1 as a reference as certain
incongruous values could represent a reality that should
be recorded.

2) Statistical analysis through evaluation of the mini-
mum, maximum, mean, standard deviation and the
first, second, and third quartile of each parameter
was used to remove outliers along with the interquar-
tile range (IQR), found using the upper boundary
03 i.e. (75”’ percentile) and lower boundary Q; i.e.
(25" percentile). of each parameter and shown
in (13) [45]

IQR = Q3 — Q1. (13)

3) Duplicate observations were removed to prevent repe-
tition from distorting results.

4) Observations at irregular time intervals were removed,
while missing values at regular intervals were calcu-
lated through interpolation.

The correlation between the parameters was evaluated using
Spearman’s Correlation to identify which parameters could
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TABLE 2. Spearman’s correlation coefficients.

Parameters Burnett Data  Baffle Data
Temperature -0.437 -0.419
pH 0.361 -0.055
Dissolved oxygen 1.00 1.00
Electrical conductivity -0.080 -0.075
Turbidity -0.129 -0.100

be inputs for the predictive models. Correlation measures the
association between two parameters and is expressed as a
value between —1 and 1. When there is a positive correlation
(closer to one), one parameter increases as the other parame-
ter increases. When there is a negative correlation (closer to
negative one), one parameter increases as the other parameter
decreases. When the correlation is neutral (close to zero),
there is no relationship between the parameters. A strong cor-
relation indicates a strong relationship between two parame-
ters, implying they can be used to build a model [6], [46]. The
Spearman’s coefficients of each parameter in relation to DO
(target feature) are shown below in Table 2.

DO shares the strongest negative correlation with temper-
ature for both datasets as shown in Table 2, thus as water
temperature increases, DO levels will decrease. The corre-
lation between DO and electrical conductivity and turbidity
is insignificant for both datasets. In contrast, pH behaves
differently in each dataset and has a moderate positive cor-
relation with DO in the Burnett dataset but a weak nega-
tive correlation in the Baffle dataset. Thus highlighting the
difference between causation and correlation, which are not
equitable and are often confused when working with time-
series data [47]. A causal relationship exists between two
parameters when three requirements are met: an association
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between the parameters, appropriate time order, and the elim-
ination of other parameters [48], under experimental condi-
tions. A causal stimulus can also be tested. If manipulation of
a parameter causes a sufficient change in the other parameter,
a causal relationship can be established [49].

Any assumed causation between pH and DO was disre-
garded due to the different correlation values in datasets and
no documented causal relationship between the parameters
at the time of this study. Thus DO and the water temper-
ature were chosen as input parameters for the models. The
other parameters were removed, and new Burnett and Baffle
datasets only containing the input parameters were created.

B. DEVELOPMENT OF A MULTIVARIATE MULTI-STEP
STACKED LSTM MODEL

Two water quality predictive LSTM models (brown circle
in Figure 3) were developed and evaluated using the free
open source publicly available Keras Python library and
were defined by efficient numerical libraries using Ten-
sorflow backend, in Google Colab (Google Colaboratory),
a hosted Jupyter notebook service which executes python
code through the browser [50].

The Burnett model was developed as a multivariate multi-
step stacked LSTM model. Models are defined as a sequence
of layers in Keras. DO and water temperature, in the input
layer, are used to predict the target parameter, DO. The model
has two hidden layers. The first hidden layer has more LSTM
units than the second hidden layer. The dense output layer
connects the whole model and outputs a multi-step prediction
of DO values 24-time steps ahead. Root Mean Square Prop-
agation (RMSprop) is the chosen optimiser, and Rectified
Linear Unit (ReLU) is the activation function. The Baffle
model was developed with a similar architecture, using the
same two input features, two hidden layers (the first layer
has more LSTM units than the second layer) and a dense
output layer predicting DO values 24-time steps ahead, with
RMSprop and ReL.U as the optimiser and activation function
respectively. The Baffle model has more LSTM units than
the Burnett model due to the structural nature of the different
datasets.

The Baffle and Burnett datasets both have a total of
52 560 observations. The Burnett dataset has the observations
spread across three years, while the Baffle dataset has the
observations spread across a single year. Hence it is easier for
the LSTM network to pick up variations in the Burnett data
and learn trends over three years. Therefore an LSTM model
with an overall smaller architecture was used for the Burnett
model. The Baffle data is denser, with many close clusters of
similar points with little variation between them, increasing
the difficulty of learning a trend to make a prediction. Thus
a larger LSTM was used to accommodate the densely spaced
Baffle dataset.

ReLU is linear for positive inputs, retaining linearity prop-
erties when training neural networks with backpropagation
and behaves like a nonlinear function when the input is nega-
tive and outputs a value of zero [6], [15]. Thus still affording
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hidden layers the opportunity to be activated, while sigmoid
and tanh functions can only approximate values close to zero
but not zero [15]. Other advantages of the ReLU include
representational sparsity, linear behaviour, and computational
simplicity and implementation at a lower computational cost
as it excludes the computation of an exponential function,
unlike the sigmoid and tanh functions [6], [51].

The Root Mean Square Propagation (RMSprop) optimiser
is an adaptive learning rate method developed to address the
problem of drastically diminishing learning rates observed
when using the Adagrad optimiser [52].

The pre-processed data was split into the training, val-
idation, and testing datasets in a 50%, 20%, 30% ratio,
respectively. The training dataset was the largest to ensure
there were enough samples for the LSTM network to learn
from. Water quality parameters with different ranges and
scales were normalised before the data was fed to the models.
Normalisation reduced model training difficulty and ensured
the model was independent of input unit choice. The mean
(%) and standard deviation (oy) of the original data (x) were
used to calculate the normalised data (x”) in both the training
and validation datasets, in accordance to (14) [27]

=21 (14)

Ox

The test dataset was not normalised, allowing for the
generality of the model to be assessed, thus enabling the
development of a better predictive algorithm. If the test data
is normalised with the entire dataset, the testing process will
validate the model and not assess model generality [27].
Model predictions were scaled back to the original scale for
each parameter by reversing the normalisation calculation in
(14) before the evaluation of performance metrics.

C. TRIAL-AND-ERROR OPTIMISATION OF THE

LSTM MODEL

The LSTM models were initially optimised in terms of time
window size and the number of LSTM units in the two hidden
layers using trial-and-error (orange triangles in Figure 3).

Three arbitrary values were chosen for the time window
size, the number of LSTM units in the first hidden layer, and
the number of LSTM units in the second hidden layer, and
as previously stated, there are more units in the first hidden
layer than the second layer.

The LSTM model was trained and a prediction was made
by the model. The RMSE value was calculated to evaluate
the accuracy of the model prediction. The smaller the RMSE
value, the more accurately the model can predict DO from
the historical data. In the second run, the three values were
arbitrarily lowered. The process was repeated, and the RMSE
was recorded. In round three, the values were arbitrarily
increased. The process was repeated, and the RMSE was
recorded. Thereafter, arbitrary combinations of the number
of LSTM units in the two hidden layers were chosen, while
the time window size remained constant. The process was
repeated, and the RMSE was recorded. The time window size
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was then changed while the LSTM units remained constant,
and the same procedure was followed.

The behaviour of the model was observed with each change
and influenced the choice of the values chosen for the subse-
quent run. If lower RMSE values were achieved at small time
window sizes, then consistently lower values were chosen for
the window size, until the RMSE values started increasing
again at the smaller window size values. This strategy was
also used to find the number of LSTM units and the combi-
nation of the time window size and LSTM units that would
produce the lowest RMSE value.

The hyperparameter values for the Burnett model found
through trial and error were 32 LSTM units in the first
hidden layer, 16 LSTM units in the second layer, and a time
window size of 100-time steps. The Baffle model values
were 64 LSTM units in the first hidden layer and 32 LSTM
units in the second hidden layer, with a time window size
of 150-time steps. As expected, the Baffle LSTM model
network architecture is larger than the Burnett model, with a
bigger window size and almost double the amount of LSTM
units.

D. HYBRID GENETIC ALGORITHM OPTIMISED LSTM
BURNETT AND BAFFLE MODELS

The Burnett and Baffle LSTM models were optimised with
GA utilising the “Distributed Evolutionary Algorithms in
Python” package, referred to as DEAP [53], using Keras
and Tensorflow. The models were optimised separately. The
hyperparameter values found through the trial-and-error pro-
cess were used as the initial values for the GA-optimisation
process shown in Figure 4 [10]. The GA-optimisation process
was used to find the optimal time window size and the optimal
number of units in the first and second hidden layers for each
model (light green hexagon in Figure 3). Genetic parameters
were specified using the DEAP package, such as a population
size of 70, mutation rate of 0.15, crossover rate of 0.7, and
the number of generations at 10. These values were chosen
for similar studies [10]. Ordered crossover, shuffle mutation,
and roulette wheel selection, were also chosen and specified
using DEAP as they produced the best possible results from
the available options [53].

During the optimisation process, the search space was
explored by the genetic operators, and the population became
composed of possible solutions (optimal hyperparameter val-
ues), in the form of chromosomes encoded by binary bits,
which represent the number of the LSTM units and the time
window size [10]. The binary solution was of length 14. The
first six digits were for the time window size, the subsequent
four digits were for the number of LSTM units in the first
hidden layer, and the last four digits were for the number of
LSTM units in the second hidden layer. The selection and
recombination operators search for the best solution within
the solution-composed population. Each solution is evaluated
with the predefined fitness function, and the solution with the
best performance is chosen for reproduction [10].
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Defining the fitness function before the optimisation pro-
cess is crucial. The RMSE value was used to evaluate the
fitness of each solution [10] and had to be minimised for
optimisation to occur. DEAP was used to define the Fit-
ness Maximum as —1.0 for minimisation [53]. The chro-
mosome that provided the combination of hyperparameter
values that resulted in the lowest RMSE value was consid-
ered the optimal or near-optimal solution. The termination
criteria were satisfied by the optimal solution. The optimal
solution was implemented by the LSTM model, to create the
GA-optimised LSTM version of the model, which could now
be used to make a prediction. If the termination criteria were
not satisfied, the cycle of selection, crossover, and mutation
would continue until the optimal solution was found [10].
The pseudo-code of the GA-Burnett and GA-Baffle models
is shown in Algorithm 1.

Algorithm 1 GA-Optimised LSTM Model

1: Split the data into training (30%), validation (50%) and
test (20%) data.

2: The LSTM is evaluated on the validation data.

3: Initialise the population size (70), the number of genera-
tions (10) and the length of the chromosome at 14 (binary
style).

4: Set RMSE as the fitness function.

5. if timewindowsize == 0 or numberofunitsA == 0
> number of units in first hidden layer or
numberofunitsB == 0 > number of units in second
hidden layer then

6: Probability of 0.15 for mutation of new chromo-
somes;

7: Probability of 0.7 for crossover of chromosomes;

8: Evaluation of the freshly generated chromosome

through use of the fitness function;

9: return RMSE of 1000 > Stopping condition as
minimisation of RMSE is the aim

10: end if

11: Choose the best individual chromosome which repre-
sents the optimal time window, the optimal number of
units in the first hidden layer and the optimal number of
units in the second layer.

12: Apply the optimal window size and optimal number of
units in the two hidden layers in the LSTM and make a
prediction on the unseen test data.

The optimal time window size for the hybrid GA-optimised
Burnett and Baffle LSTM models were 57 and 63-time steps,
respectively. The optimal LSTM units in the first hidden
layer for the GA-Burnett and GA-Baffle models were 10 and
12 LSTM units, respectively, and 8 and 10 LSTM units in
the second layer for the GA-Burnett and GA-Baffle models,
respectively. Again, the Baffle model has an overall larger
architecture than the Burnett model. These values are sum-
marised in Table 3.
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FIGURE 4. Illustration of the optimisation of LSTM by GA adapted from [10].

TABLE 3. Hyperparameter values for LSTM models.

Burnett GA-Burnett Baffle =~ GA-Baffle
Window Size 100 57 150 63
Units 1st layer 32 10 64 12
Units 2nd layer 16 8 32 10

E. ENSEMBLE LSTM-BASED MODEL THROUGH A
WEIGHT-BASED TECHNIQUE

The linear weight-based technique (dark green rectangles in
Figure 3) combined the predictions made by the models by
allocating a weight to the prediction made by each model,
which was indicative of the contribution the model made
to the new ensemble model. The ensemble model was cre-
ated using dataset C, a Baffle river (different to the Baffle
dataset 2019 used for the Baffle model) water quality dataset
beginning from January 2015 and ending in December 2015,
48 observations per day and a total of 17 520 observations for
the year. The process of the development of the weighted and
average ensemble models from the two GA-optimised LSTM
base models, GA-Burnett model, and GA-Baffle model is
detailed below and was inspired by [54]. An illustration of
the process is shown in Figure 5.

The Baffle 2015 dataset was divided into the training, val-
idation, and testing datasets at 30%, 50%, and 20%, respec-
tively. The holdout validation dataset, which was unseen by
both models during the training process, was larger than
the training dataset as it was used to estimate the optimal
weight contribution of each model in the ensemble model.
The validation dataset had to be large and representative to
prevent the model from over-fitting.

GA-Burnett and GA-Baffle models defined according to
their optimal hyperparameters were trained on the training
dataset and made predictions using the validation dataset
as the test dataset. The predictions were evaluated through
comparison to the actual DO values by calculating the
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RMSE value. A lower RMSE value indicated greater model
performance.

The optimal weight coefficients for each model prediction
were found through an exhaustive grid search, comprised of
weight coefficients starting from 0.0, increasing increments
of 0.1, and ending in 1.0. The sum of the two possible weight
coefficients must be equal to one. The weight coefficient
values were multiplied by the GA-Burnett and GA-Baffle
model predictions until the optimal weight combination was
found, through a function that minimises the RMSE value.
The validation dataset, which was unseen by the individual
models, was used to simultaneously perform the grid search
to find the optimal weight combination, while each model
made a prediction on the validation dataset, with RMSE
minimisation as the final goal. The performance of the models
was compared to each other and the ensemble models, using
the RMSE value. The optimal weight combination repre-
sented the extent of the contribution of each model to the
final weighted ensemble model. The weighted ensemble was
evaluated on the test dataset.

In an average ensemble model, each model contributes
equally to the ensemble prediction. Thus the continuous-
valued output is the average of the individual member
predictions. As there are only two members in the ensem-
ble, the weight coefficient of each model is 0.5. The more
skilled model has a larger weight coefficient than the less
skilled model in a weighted ensemble model. The aver-
age ensemble will be compared to the weighted ensemble.
A well-configured weighted ensemble model is expected to
outperform an average ensemble model. The pseudo-code for
the ensemble model is shown in Algorithm 2.

F. PERFORMANCE METRICS

The ensemble models were assessed by computing com-
mon performance metrics for continuous output models, such
as the Mean Squared Error (MSE), Mean Absolute Error
(MAE), Mean Absolute Error Percentage (MAPE) and the
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FIGURE 5. lllustration of the development of ensemble models through a linear weight-based technique.

Algorithm 2 Ensemble Model

1: Split the data into training (30%), validation (50%) and
test (20%) data; > validation data must be the biggest
dataset

2: The individual model weight combinations are evaluated
on the validation data.

3: Fit the GA-Burnett model on training data;

4: Fit the GA-Baffle model on training data;

5: Make a prediction with each model using the validation
data.

6: Create a grid of weights from 0.0 to 1.0 with increments
of 0.1.

7: Define a function which multiplies a weight from the grid
with the prediction from each model and then sums the
product of the associated model weight and prediction for
each model to make a final prediction:

8: predepsemble = Wq * predy + wp * predy >a,b=
GA-Burnett, GA-Baffle

9: Define a function to evaluate the ensemble prediction by
calculating the RMSE score with the ensemble prediction
and the true values of the validation data;

10: while w, +wp, = 1 and wg, wp, > 0 do

11: minimise RMSE score for the weighted ensemble

12: end while

13: The best weight for each model will form the weight
combination that gives the lowest RMSE on the valida-
tion data

14: The best weight combination for the weighted ensemble
can be used to make a prediction on the unseen test data

15: For the average ensemble, w, and w, are equal i.e. 0.5

16: The average ensemble is also used to make a prediction
on the unseen test data

Root Mean Squared Error (RMSE). The MSE (15) [10] is a
measure of average squared difference between the predicted
values and the actual values [55]. The smaller the MSE, the
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more accurate the model prediction:

1 & .
MSE = — Z}(yi -5 (15)
=
where 7 is the number of samples, y; is the desired output and
y; is the predicted output value of the observation made by the
model i. The MAE (16), MAPE (17) and RMSE (18) were
evaluated in accordance to the following equations [10]:
n PR— A.
MAE = M (16)
n
The MAE defined in (16) is the average of the absolute differ-
ence between the predicted values and the actual values [56].
The smaller the MAE value, the closer the predicted values
are to the actual values.

Yo i = 30/yil N
n

MAPE = 100. a7
The MAPE defined in (17) is the average of the absolute
percentage of the difference between the estimated values
and the actual values, providing a measure of the error in
a comprehensible percentage. The smaller the MAPE, the
better the forecast [57].

RMSE = (18)

The RMSE value defined in (18) is the quadratic average
of the differences between the predicted and actual values
and measures the accuracy of a model on a dataset and not
between datasets as it is scale dependent [58]. Outliers dispro-
portionately affect the RMSE value [59]. A good prediction
has a low RMSE. RMSE value of zero indicates a perfect
fit between model and data [58]. The R? score defined by
(19) [56] is the coefficient of determination [60] and indicates
how well the model fits the data, thus measuring how well
unseen data is likely to be predicted by the model. Here y is
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the average of the actual values [56]:
D1 i =30
Z?:] i—y
The Median Absolute Error, defined by MedAE in (20) [56] is

a measure of the error and finds the median of all the absolute
differences between the predicted and actual values [56]:

RP=1- 19)

MedAE = Median(ly1 — yil, .- -, |Yn — Yul)- (20)

The maximum error defined by MaxError in (21) [56], calcu-
lates the maximum residual error by capturing the worst error
between the predicted value and the desired outcome [56]:

MaxError = max(|y; — yi|). 21

The explained variance defined by the EV score in (22) [56],
indicates how well the model accounts for the variation of
a dataset. The closer the score is to one, the better the per-
formance of the model. Var is variance, the square of the
standard deviation [56]:

_ Varly )

EV =1
Var{y}

(22)

G. ASSESSMENT OF MODELS ON UNSEEN DATA

The four models: the GA-Burnett, GA-Baffle, average
ensemble, and weighted ensemble, were tested on three mul-
tivariate and one univariate publicly available online datasets.

Wind Power Forecasting Dataset [61] includes seven key
columns labeled “wpl” to “wp7” for the wind power mea-
surements of seven different wind farms. As the data were
normalised by the data provider, the original values, units, and
scale are unknown. The data is publicly available and visible
on the Kaggle: Machine Learning and Data Science Commu-
nity as part of their Global Energy Forecasting Competition
2012 on Wind Forecasting. The Air Temperature Dataset is
referred to as the Jena Climate Dataset on Kaggle [62] and
includes various meteorological parameters along with air
temperature, such as air pressure, air density, etc., which are
used to predict the air temperature. The Pollution Dataset,
referred to as the Beijing PM2.5 Data dataset [63] on Kag-
gle, includes parameters such as temperature, pollution level,
pressure, dew point, wind speed, and direction, etc., which is
used to predict the future pollution level in terms of PM2.5
(atmospheric particulate matter (PM) that has a diameter less
than 2.5 micrometers) [64]. The daily minimum temperature
in Melbourne is a univariate dataset [65] containing the single
temperature parameter used to predict the future minimum
temperature. It was viewed on Kaggle while the original
dataset was hosted by the Data Market Qlik Sense Data
Sources.

Comparison is one of the best performance measures.
Thus the predictive capability of four classical time series
forecasting methods, the Autoregression (AR), Moving Aver-
age (MA), Autoregressive Moving Average (ARMA), and
Autoregressive Integrated Moving Average (ARIMA) was
compared to that of the four models on the univariate dataset.

24648

TABLE 4. Summary of datasets.

Dataset Parameter Samples Mean  “Std.Dev
Burnett DO mg/L 52560 6.58 0.88
Baffle 2019 DO mg/L 52560 6.77 0.96
Baffle 2015 DO mg/L 17 520 6.79 0.97
Air Temperature Temp °C 420 551 9.45 8.42
Pollution PM2.5 ug/m3 43 800 94.01 92.25
Minimum Temp Temp °C 3650 11.18 4.07

PWind Power  Wind Power 18757 - -

@Standard Deviation
bExternal normalisation thus values unavailable
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FIGURE 6. Performance of LSTM Burnett model.
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FIGURE 7. Performance of LSTM Baffle model.

A summary of all the datasets used in this study is pre-
sented in Table 4. As the wind power dataset was normalized
externally and the original values were unknown, the mean
and standard deviation could not be calculated.

VII. RESULTS AND ANALYSIS

A. TRIAL-AND-ERROR OPTIMISED BURNETT AND BAFFLE
LSTM MODELS PREDICTIVE CAPABILITY

The Burnett model in Figure 6 has a greater ability to pre-
dict DO concentration 24-time steps ahead than the Baffle
model in Figure 7, from historical water temperature and
DO data (blue line) as seen from the well-aligned red points
(predicted DO values) and green points (actual DO values).
The green and red points in Figure 7 are hardly aligned and
only intersect at one point. Table 5 supports this notion with
a detailed comparison of model predictive ability in terms of
the performance metrics.
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TABLE 5. Performance metrics of GA-Burnett, Burnett, GA-Baffle and
Baffle LSTM models.

Performance Metric ~ GA-Burnett  Burnett Baffle = GA-Baffle
RMSE mg/L 0.25 0.28 0.99 0.57
MAE mg/L 0.17 0.18 0.65 0.42
MSE (mg/L)2 0.06 0.08 0.98 0.33
MAPE % 2.5 2.7 9.4 6.11
R? 0.84 0.80 0.36 0.79
EV 0.84 0.81 0.47 0.82
MaxError mg/L 0.22 0.14 0.21 0.59
MedAE mg/L 0.12 0.13 0.40 0.39

The hyperparameters of the Burnett and Baffle LSTM
models optimised through the trial-and-error process are in
Table 3. The Baffle model RMSE value of 0.99 is almost
four times greater than the Burnett model at 0.28. Similarly,
the Baffle model MAE is 0.65, while the Burnett model
MAE is 0.18. The Baffle model MSE value is 0.98, 12 times
greater than the Burnett model at 0.08. The MAPE value
for the Burnett model is 2.7 and 9.4 for the Baffle model,
approximately three times bigger. The performance metrics
indicate a smaller difference between the predicted and actual
DO Burnett values than the difference between predicted and
actual DO Baffle values.

The Burnett model has significant predictive capability
compared to the Baffle model, achieving a R? score value of
0.80, while the Baffle model scores half that value at 0.36.
The Burnett model is also more capable of accounting for
variation in data with an explained variance (EV') score of
0.81, while the Baffle model scored 0.47. The maximum error
from the Burnett model is 0.14 and is less than the 0.21 of
the Baffle model. The median absolute errors (MedAE) are
0.13 and 0.40 for the Burnett and Baffle models, respectively.
The maximum error (MaxError) of the Burnett model is close
to the median absolute error, while the median absolute error
of the Baffle model is greater than the maximum error, further
reinforcing the superiority of the Burnett model.

The Burnett model performs better, despite having a
smaller time window size of 100-time steps than the Baffle
model with 150-time steps per window. The Burnett model
is fed data over a longer period of three years than the Baffle
model, as is evident by the three peaks in the graph shown as
a repeated trend in Figure 6. The Baffle model is fed denser
spaced data over a single year which is evident from the single
peak in the graph in Figure 7. The greater period of data
allowed for the greater diversity of data and the repetition of
the same trend three times. That enabled the Burnett model
time window to effectively capture the appropriate dataset
background, resulting in a better trained Burnett model with
a greater predictive capacity than the Baffle model.

B. HYBRID GA-OPTIMISED LSTM BURNETT AND BAFFLE
MODELS PERFORMANCE CAPACITY

1) GA-BURNETT AND BURNETT LSTM MODELS

The GA-Burnett model in Figure 8 shows the predicted
DO values 24-time steps ahead with a time window size
of 57-time steps of historical DO data (blue line), almost
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FIGURE 8. Performance of GA-optimised LSTM Burnett model.

half the size of the previous Burnett model. The number
of parameters to be trained by the Burnett model decreased
from 32 to 10 LSTM units in the first hidden layer and
from 16 to 8 LSTM units in the second hidden layer. These
hyperparameter values are under GA-Burnett and GA-Baffle
headings in Table 3. The graph in Figure 8 is similar to the
graph in Figure 6, where the red and green points (predicted
and actual DO values) align at numerous instances. This
similarity of model performance is mirrored by Table 5.
The improvement in the performance of the Burnett model
after GA-optimisation, resulting in the GA-Burnett model
was notable as shown by the observable difference between
the performance metric values achieved by the Burnett and
GA-Burnett models on the same dataset in Table 5.

The GA-Burnett model has RMSE, MAE, MSE and
MAPE values of 0.25, 0.17, 0.06 and 2.5 respectively. These
values are slightly lower than the Burnett model. After
GA-optimisation, the RMSE value of the Burnett model
decreases by 10.71%. The MAE value is reduced by 5.55%,
whilst the MSE is decreased by 25%. The MAPE value is
reduced by 0.2%.

The GA-Burnett model has a bigger maximum error than
the Burnett model at 0.22, but the median absolute error of the
GA-Burnett model at 0.12 is similar to the Burnett model,
implying that the maximum error of the GA-Burnett is due
to an outlier prediction. Both the R? score and explained
variance score of 0.84 are only slightly greater than the
Burnett model. The R? score of the Burnett model increased
by 5% and explained variance score improved by 3.7% after
GA-optimisation.

There is a notable yet relatively small change in predictive
ability, despite the obvious GA-optimisation of the Burnett
model. The Burnett model may have already been optimised
to a great extent before the GA-optimisation, as shown by
the good performance metric values in Table 5 and the close
alignment of the green and red points in Figure 6, and any
further optimisation would noticeable improve but not greatly
alter the predictive ability of the model.

2) GA-BAFFLE AND BAFFLE LSTM MODELS

The performance of the Baffle model has significantly
improved after GA-optimisation, as illustrated by the
performance of the GA-Baffle model in Figure 9. There is
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FIGURE 9. Performance of GA-optimised LSTM Baffle model.

a closer alignment of the red and green points in the graph,
compared to the green and red points that only intersected
once in Figure 7 for the Baffle model.

This improved performance between the Baffle and
GA-Baffle LSTM models is illustrated by the substan-
tial difference in performance metrics shown in Table 5.
The GA-Baffle model had obtained RMSE, MAE, MSE,
and MAPE values of 0.57, 0.42, 0.33, and 6.11, all of
which are significantly lower than the Baffle model. After
GA-optimisation, the RMSE value of the Baffle model
decreased by 42.42%. The MAE was reduced by 35.38%,
while the MSE was decreased by 66.32%. The MAPE was
reduced by 3.29%.

The most evident improvement is the twice as large R?
score from 0.36 to 0.79. The R? score improved by 119.44%.
The explained variance score had also doubled from 0.47 to
0.82, showing an improvement of 74.47% by the Baffle
model after GA-optimisation. The GA-Baffle model fits the
data better, resulting in greater predictive capability and
capacity to account for the variation in the data.

The median absolute error of the GA-Baffle model is very
similar to the Baffle at 0.39. The maximum errors are quite
different with the GA-Baffle model at 0.59 and the Baffle
model at 0.21. The maximum error of the Baffle model
is half the size of the absolute median error, showing the
inferior performance of the Baffle as the maximum error of
the GA-Baffle is probably due to an outlier.

The prominent performance improvement that existed
between the Baffle and GA-Baffle models, was not present
between the Burnett and GA-Burnett models. After optimiza-
tion, the time window size for the Baffle model changed from
150-time steps to 63-time steps, less than half the size it was.
The units in the first and second hidden layers were reduced
from 64 to 12 and from 32 to 10 units, respectively. The
architecture of the GA-Baffle model is much smaller than
that of the Baffle model. The difference in the architecture
of the Baffle model after GA-optimisation is greater than the
difference observed by the Burnett model and is responsible
for the significant performance improvement.

3) GA-BURNETT AND GA-BAFFLE LSTM MODELS
The Burnett model has performed better than the Baffle
model every time, primarily due to the structure of the dataset
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used to train the Burnett model. The already well-performing
Burnett model was only slightly optimised by GA, while the
Baffle model was greatly optimised by GA but not enough for
the GA-Baffle model to outperform the GA-Burnett model as
shown by the values in Table 5.

4) GA-OPTIMISED LSTM MODELS AND LSTM MODELS
Table 5 summarises the performance metrics of all four mod-
els alongside one another for comparison. The Baffle model
has the largest and the worst RMSE, MSE, MAE, and MAPE
values, while the GA-Burnett model has the lowest and the
best values for these performance metrics. The GA-Burnett,
Burnett, and GA-Baffle models all have similar R? scores,
around 0.8. Similarly, all their explained variance scores are
also approximately 0.8. The Baffle model has a much lower
R? score of 0.36 and explained variance score of 0.47, almost
half the value of the other models. The Baffle model only fits
the data and accounts for the variation in the data half as well
as the other models.

The GA-optimised models have larger maximum errors
than their original counterparts. The median absolute errors
of the GA-optimised models are smaller than their maxi-
mum errors. Despite producing more accurate and consistent
predictions, the GA-optimised models seem to be prone to
outlier predictions. Overall, the GA-Burnett model shows the
best predictive capability, while the Baffle model has the
worst performance from all four models. In general, both
GA-optimised models show improved predictive perfor-
mance compared to their respective original counterparts.
This performance improvement is representative of the
improved robustness of the original LSTM models.

C. ENSEMBLE MODEL PREDICTIVE CAPABILITY

The GA-Burnett and GA-Baffle models contributed equally
to the average ensemble model. An optimal weight combi-
nation of 60% of the GA-Burnett model and 40% of the
GA-Baffle model was found for the weighted ensemble
model. There is only a 10% difference in the weight combi-
nation of the ensembles. The optimal weight combination did
not deviate much from the equal weight combination after the
exhaustive grid search. This was largely due to the similarities
in the architecture of the two GA-optimised LSTM based
models. The only architectural difference between the base
models is the number of units in the hidden layers. The
GA-Burnett and GA-Baffle models have 1344 and 1904 train-
able parameters, respectively, amounting to a difference of
560 parameters and 6 minutes of computation time.

1) AVERAGE AND WEIGHTED ENSEMBLE MODELS

The negligible difference in the performance of the ensemble
models is shown in Table 6. The average ensemble achieved
RMSE, MSE, MAE and MAPE values of 0.188, 0.034,
0.129 and 2.093, respectively while the weighted ensemble
achieved similar RMSE, MSE, MAE and MAPE values of
0.186, 0.035, 0.129 and 2.083, respectively. The ensemble
models have similar R? scores for the average ensemble at
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TABLE 6. Performance comparison of average and weighted ensemble
models and the GA-optimised LSTM models.

TABLE 7. Prediction capability of ensemble and GA-optimised LSTM
models on wind power generation data.

Metric Average  Weighted ~ GA-Burnett =~ GA-Baffle Metric GA-Burnett ~ GA-Baffle  Average  Weighted
RMSE mg/L 0.188 0.186 0.204 0.198 RMSE mg/L 0.258 0.258 0.257 0.256
MSE (mg/L)? 0.034 0.035 0.042 0.039 MSE (mg/L)? 0.067 0.067 0.066 0.065

MAE mg/L 0.129 0.129 0.139 0.147 MAE mg/L 0.201 0.206 0.202 0.201

MAPE % 2.093 2.083 2.239 2.421 R2 0.117 0.173 0.183 0.257

R? 0.879 0.878 0.853 0.862 EV 0.178 0.176 0.183 0.183

EV 0.88 0.879 0.858 0.871 MaxError mg/L 0.204 0.147 0.187 0.190
MaxError mg/L 0.31 0.29 0.302 0.499
MedAE mg/L 0.09 0.09 0.096 0.114

0.879 and weighted ensemble at 0.878 and similar explained
variance scores for the average ensemble at 0.88 and weighted
ensemble at 0.879.

The maximum error of the average ensemble at 0.31
and the weighted ensemble at 0.29 are similar. Both mod-
els have the same median absolute error of 0.09. The large
difference between the maximum error and median absolute
error in both ensembles reaffirms the trend of random outlier
predictions observed in the GA-optimised LSTM based mod-
els. The behavior of the base models has been transferred to
ensemble models.

In Table 6, the overall difference in the performance of the
ensemble models is negligible and can be attributed to the
LSTM based model weight contribution in each ensemble,
where the GA-Burnett model only has 10% greater power in
the weighted ensemble than in the average ensemble. Thus
the difference in performance and predictive capability of the
ensembles can only be slight.

2) ENSEMBLE MODELS AND GA-OPTIMISED LSTM MODELS
Table 6 shows the performance of the GA-optimised and
ensemble models on the same Baffle 2015 dataset. The RMSE
value of the GA-Baffle model decreased by 5.05% with the
average ensemble and 6.06% with the weighted ensemble.
A larger decrease was observed by the RMSE value of the
GA-Burnett model, which was reduced by 7.84% with the
average ensemble and 8.82% with the weighted ensemble.
The MSE value of the GA-Baffle model decreased by
12.82% with the average ensemble and 10.25% with the
weighted ensemble. The MSE value of the GA-Burnett model
was reduced by 19.047% with the average ensemble and
16.66% with the weighted ensemble. The MAE value of the
GA-Baffle model decreased by 12.24% with both the average
and weighted ensembles. A larger decrease was observed by
the MAE value of the GA-Burnett model, which was reduced
by 7.19% with both the average and weighted ensembles. The
MAPE values are of all four models are relatively similar.
The R? score of the GA-Baffle model increased by 1.97%
with the average ensemble and by 1.8% with the weighted
ensemble. The R? score of the GA-Burnett model improved
by 3.05% with the average ensemble and by 2.93% with
the weighted ensemble. The explained variance score of
the GA-Baffle model increased by 1.03% with the aver-
age ensemble and by 0.92% with the weighted ensemble.
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The explained variance score of the GA-Burnett model
improved by 2.56% with the average ensemble and by 2.45%
with the weighted ensemble.

The difference in the model performance of all four models
can be considered notable but not significant. This demon-
strates consistency in model performance and prediction
capability and is evidence of model robustness and improved
model tolerance. Overall, the weighted ensemble performs
the best, with the average ensemble performing almost as
well. The performance difference between the ensembles is
negligible.

The GA-Baffle and GA-Burnett model performance are
surprisingly similar, with the GA-Baffle even outperform-
ing the GA-Burnett at points. Previously the Burnett model
always performed better. This is possibly due to the sim-
ilar structure of the Baffle 2015 dataset and the Baffle
2019 dataset. In the Baffle 2015 and 2019 datasets, the data
is spread over a single year and exhibits the trend only once.
The Baffle 2015 dataset was used to train and optimise the
GA-Baffle model, hence the improved performance of the
GA-Baffle model on this particular dataset.

D. ENSEMBLE AND GA-OPTIMISED LSTM MODELS ON
UNSEEN MULTIVARIATE DATA

1) WIND POWER

Table 7 shows the consistency in the performance of all four
models. The GA-Burnett, GA-Baffle, average, and weighted
ensemble models have similar RMSE, MSE, and MAE values
with negligible differences. All the R? and explained variance
(EV) scores are low and very far from the numeric value of
one, indicating that despite consistently low RMSE, MAE,
and MSE values, none of the models were able to predict the
generation of wind power accurately. The models achieved
consistently low maximum errors. The values used to train
the models were normalised (by the data provider) positive
decimals less than one. Thus in context, these seemingly low
values are quite large. The weighted ensemble performs the
best by a small margin. In general, both the ensemble models
outperform the GA-optimised LSTM models. Consequently,
all four models show consistent but poor predictive capability
on this dataset.

The structure and data preparation of the wind power
dataset could be responsible for this behaviour. The dataset
has more than one parameter, but the parameters refer to
the same feature, wind power from different wind farms.
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In practice, each of these values is treated as a different
parameter as they come from different systems (wind farms),
while in essence, they are the same feature- wind power
values. This data structure differs from the data structure of
the water quality datasets used to develop the models. These
datasets had several different parameters, each representative
of a unique feature of the same system, such as water temper-
ature, dissolved oxygen, to name a few. The models struggle
to make predictions on datasets that do not have multiple
features from the same system.

The models were developed on data that was normalised
using the mean and standard deviation of the dataset. The
manner in which the wind power data was normalised by the
data provider is not known and might differ from the normal-
isation carried out on the other datasets, by this study. This
possible difference in data preparation leads to the weaker
performance of the models on the dataset. In conclusion, the
models exhibit great consistency but low tolerance on the
wind power generation multivariate dataset.

2) AIR TEMPERATURE

In Table 8, the similar RMSE, MSE, and MAE values of
each model point towards the consistency in the predictive
capability of each model. The R? and explained variance
(EV) scores are similar, consistently large, and very close to
the numeric value of one, highlighting the good predictive
capability and capacity to account for data variation of each
model on the air temperature dataset. This good performance
contrasts with the poor performance of the models on the
wind power generation dataset. As with the wind power
generation forecast, the weighted ensemble model performs
the best, but the performance is comparable to that of the other
models with negligible differences.

The dataset contained various related meteorological
parameters in addition to air temperature values, such as
air density and wind speed, to name a few, all recorded as
part of the same system. Thus the dataset contained several
parameters representing different features within the same
system, which is similar in structure to the water quality
datasets used to develop the models and could be a possible
reason for the excellent model performance on this particular
dataset.

All the air temperature dataset values were normalised
before training using the mean and standard deviation of
the data. This method of data preparation was applied to
datasets used to develop the models. The similarity in the air
temperature data structure and data preparation to the water
quality datasets used to develop the models is the cause of the
consistent and good model predictive capacity.

The air temperature dataset is the largest dataset with
has 420 551 samples. The wind power dataset is one of
the smaller datasets with only 18 757 samples as shown in
Table 4. Thus the models might be better suited to larger
datasets with multiple features from the same system. Inter-
estingly, the GA-Burnett model performed the worst on this
dataset. The GA-Burnett has the smallest architecture of all
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TABLE 8. Performance metrics of GA-optimised LSTM models and the
average and weighted ensemble models for the prediction of air
temperature.

Metric GA-Burnett  GA-Baffle  Average  Weighted
RMSE mg/L 2.545 2.538 2.528 2.520
MSE (mg/L)2 6.475 6.440 6.400 6.348
MAE mg/L 1.938 1.925 1.920 1.912
R? 0.900 0.901 0.902 0.905
EV 0.903 0.903 0.904 0.906

TABLE 9. Performance metrics of GA-optimised LSTM models and the
average and weighted ensemble models for the prediction of pollution
level.

Metric GA-Burnett GA-Baffle  Average  Weighted
RMSE mg/L 685 69.0 68.0 67.0
MSE (mg/L)2 5.0 47 4.0 3.0
MAE mg/L 46.0 47.0 45.0 440
R? 0.472 0.472 0.474 0.476
EV 0.473 0.473 0.477 0.478

the models and thus a lower capacity for a large dataset.
In summary, the models exhibit great consistency and high
tolerance on the air temperature multivariate dataset.

3) POLLUTION LEVEL

Table 9 shows the model performance consistency, which was
present with the previous two datasets. The RMSE values
of the models were consistently similar to one another. The
same trend was witnessed with the MSE and MAE values.
The R? and explained variance (EV) scores were exceedingly
and consistently similar and close to 0.5. Thus the models
are moderately capable of making predictions and have an
average ability to account for the variation in the pollution
dataset. As with the other datasets, the ensemble models per-
form better than the individual GA-optimised LSTM models,
with the weighted ensemble model performing the best, but
by an insignificant margin.

The pollution dataset has 43 800 samples (Table 4 and is
smaller than the air temperature dataset but larger than the
wind power dataset. The models seem to perform moderately
or poorly on smaller datasets. In summary, the models exhibit
great consistency and moderate tolerance on the pollution
dataset.

E. MODELS AND CLASSICAL TIME SERIES FORECASTING
METHODS ON UNSEEN UNIVARIATE DATA

1) MODEL PERFORMANCE COMPARISON

Table 10 shows the model performance on the daily mini-
mum temperature dataset in terms of RMSE values. Although
the model performance difference is not large, it is more
prominent than the notable but insignificant model perfor-
mance difference observed on the multivariate datasets. The
GA-Burnett and GA-Baffle models that performed similarly
on the multivariate datasets exhibit a distinct difference in
performance on the univariate dataset.
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TABLE 10. Performance metrics of classical time series forecasting
methods, GA-optimised LSTM models and ensemble models on minimum
temperature dataset.

Method/Model RMSE mg/L
AR 2.389
MA 2.980
ARMA 2.320
ARIMA 2.316
GA-Burnett 2.920
GA-Baffle 4.280
Average Ensemble 3.330
Weighted Ensemble 2.990

The GA-Burnett model with the smallest network archi-
tecture performed better than the other models on the uni-
variate dataset with a RMSE of 2.92. The GA-Baffle model
performed poorly compared to the other models with a
RMSE of 4.28, as its architecture might have been too large
for the univariate dataset. The average ensemble performed
worse than the weighted ensemble, which is composed of
60% GA-Burnett and 40% GA-Baffle, with RMSE values of
3.33 and 2.99, respectively. Thus the ensemble model that
comprised more of the model with the smaller architecture
performed better.

The univariate dataset only considers one feature (tem-
perature) for model training and predictions. The models
were developed on multivariate datasets with the two fea-
tures, DO and water temperature, used for model training.
Thus the architecture of the models catered for multi-feature
datasets. The univariate dataset is the smallest dataset with
3650 samples. This is possibly why the model with the small-
est architecture performs the best on this dataset. In general,
the models do not perform well on the dataset, further empha-
sising that the models do not perform well on smaller datasets.

2) MODELS AND CLASSICAL TIME SERIES

FORECASTING METHODS

It can be seen from Table 10 that the classical methods
perform better than the models on the univariate dataset. The
ARIMA method performs the best with the lowest RMSE
of 2.316, with the ARMA method achieving almost the
same value at 2.320. The AR and MA methods achieved
RMSE values of 2.389 and 2.98, respectively. MA is the
worst performing method. The performance of the classical
methods is comparable, rendering the performance difference
insignificant.

Many of the classical methods outperform the models
on the univariate dataset, shown in Table 10. The ARIMA
method achieved the lowest RMSE value. As mentioned, the
GA-Baffle model has the highest RMSE value. MA, the poor-
est performing classical method, has the same performance
capabilities as the best performing model, GA-Burnett.
Hence classical time series forecasting methods might still
be more appropriate for univariate datasets than LSTM
and ensemble models. Of all the models, the GA-Burnett
model most closely replicated the behaviour of the classical
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TABLE 11. Total number of trainable parameters and the computation
time for each model.

Model No. Trainable Parameters ~ Computation Time
Burnett 8024 23min 41s
GA-Burnett 1344 13min 6s
Baffle 30360 1h 10min 31s
GA-Baffle 1904 19min 29s
Ensemble 3248 25min 41s

methods, on the univariate datasets, due to the small architec-
ture of the model. Thus the models show a lower tolerance on
univariate datasets than on multivariate datasets. The models
with smaller architectures have a higher tolerance on univari-
ate datasets than the models with larger architectures.

F. COMPUTATION TIME AND TRAINABLE PARAMETERS
Table 11 shows the number of trainable parameters for each
model, based on the number of units in the two hidden
layers and the computation time taken to train each model.
Trainable parameters are the number of trainable elements in
a network- the parameters that are changed during gradient
computation by the optimiser after the application of back-
propagation [66]. All the models were developed, trained, and
tested on an Aspire A315-53 laptop, with a processor (CPU)
of Intel(R) Core(TM) i5-7200U, installed RAM of 4 GB
DDR4 (Double Data Rate 4), of which 3,88 GB is usable
and storage of 1 TB HDD (hard disk drive) with an effective
storage of 930 GB.

As seen in Table 11 after GA-optimisation the trainable
parameters for the Burnett model decreased by 6680 param-
eters and the model training computation time was reduced
by 10 minutes. The trainable parameters of the Baffle model
were reduced by 28 456 parameters and the computation
time by 50 minutes, thus emphasising the impact of the
GA-optimisation on the original Baffle model. The ensemble
model has 3248 trainable parameters, which is the sum of
the trainable parameters of the GA-Burnett and GA-Baffle
models. Training the ensemble model takes 25 minutes and
41 seconds. This is less than the sum of the individual training
time of the GA-Burnett and GA-Baffle models, which is
32 minutes and 35 seconds. The training of the ensemble
model takes much less time than training the Baffle model
and is comparable to the Burnett model training time.

The GA-optimisation of the LSTM models had the greatest
impact on model robustness and computation time from all
the processes in the ensemble development by decreasing the
trainable parameters and hence computation time of the orig-
inal Baffle and Burnett models. This concurs with literature,
especially by Krstanovic and Paulheim [27], which suggested
that configuring the individual LSTM base models of an
ensemble through hyperparameter tuning will increase the
base model quality, enhancing the resultant ensemble model
quality.

The weight-based combination of the two models did not
impact the number of parameters and caused a slight change
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TABLE 12. Overall model performance on datasets.

Dataset Best Best Worst Worst Diffe-

Model RMSE Model RMSE  rence

mg/L mg/L mg/L

Baffle Weighted 0.186 GA- 0.204 0.018
2015 ensemble Burnett

Wind Weighted 0.256 GA-Burnett 0.258 0.002

power ensemble GA- Baffle

Air Weighted 2.520 GA- 2.545 0.025
Temp ensemble Burnett

Pollution =~ Weighted  67.000 GA- 69.000  2.000
ensemble Baffle

Minimum GAT - 2.920 GA- 4.280 1.360
Temp Burnett Baffle

TABLE 13. Spearman’s coefficients for water quality datasets.

Parameters Burnett  Baffle 2019  Baffle 2015
Data Data Data
Temperature -0.437 -0.419 -0.752
pH 0.361 -0.055 0.731
Dissolved oxygen 1.00 1.00 1.00

TABLE 14. Descriptive statistics of datasets used to develop models.

StdDev®  Min®  25%¢  50%9 75%° Max'
Burnett |
Temp°C 2445 358 1176 2107 2476 2758 3229

Parameter ~ Mean

AGA-Burnett with RMSE of 2.92
marginally outperforms the weighted ensemble with RMSE of 2.99

in computation time. However, it did have an impact on model
performance and model tolerance. The weighted ensemble
model had the best performance on many of the datasets. This
is evident from Table 12, which shows the best and worst-
performing models and their performance difference on each
dataset in terms of RMSE values.

In four out of the five datasets, the weighted ensemble
model performed better than the other models to differing
extents. At times, the difference in model performance was
significant and sometimes notable but insignificant. The
worst performing models on each dataset were either the
GA-Burnett or GA-Baffle model. Thus the weight-based
combination of the GA-optimised models improved the per-
formance of the individual GA-optimised models, even if
only marginally in certain instances and without substantially
increasing computation time, indicating increased model
robustness and tolerance.

G. DESCRIPTIVE STATICS AND CORRELATIONS OF

THE WATER QUALITY DATASETS

Table 13 shows Spearman’s coefficients for the most signifi-
cant water quality parameters in relation to DO for the three
water quality datasets. The datasets show a significant nega-
tive correlation between DO and temperature, implying that
as water temperature increases, DO concentration decreases,
concurring with the research literature. The negative corre-
lation is similar for the Burnett and Baffle 2019 datasets at
—0.437 and —0.419, respectively, and is much stronger for
the Baffle 2015 dataset at —0.752.

The relationship between pH and DO is unclear. Both the
Burnett and Baffle 2015 datasets show a positive correlation.
The Baffle 2015 correlation at 0.731 is much stronger than
the Burnett at 0.361. In contrast, pH and DO share a weak
negative correlation in Baffle 2019. Correlation does not
necessarily translate to causation, and as previously stated,
there was no documented correlation between DO and pH
at the time of this study. The negligible correlation in Baffle
2019 does not support the existence of a causal relationship,
and thus this study excluded pH from the predictive DO
models.

24654

DOmg/L 6.58 0.88 6.00 6.04 6.54 7.04 13.90

pH 7.88 0.53 6.00 774 784 795 84l
\ Baffle 2019 \
Temp°C  25.10 3.94 1682 2124 2598 2850 32.63
DOmg/L  6.77 0.96 401 606 672 737 9.0
pH 737 1.08 453 765 176 185 821
\ Baffle 2015 \

Temp°C 24.80 3.80 1572 21.52 25.24 28.17 3281
DOmg/L 6.79 0.97 3.93 6.09 6.83 7.53 9.18
pH 7.90 0.37 6.23 7.72 8.01 8.14 8.48
9 Standard Deviation, ® Minimum, € 25 percentile
d 50t percentile, © 75N percentile, © Maximum

The different pH-DO correlations should not be over-
looked. The Baffle 2015 dataset has 17 520 observations
spread over a single year. Similarly, the Burnett dataset
with a total of 17 520 observations per year. The Burnett
dataset has this density of data over three years, culminating
in 52 560 observations. Perhaps if the pH-DO relationship
is observed for over three years, the correlation becomes
weaker, and thus the Baffle 2015 dataset has a higher positive
pH-DO correlation. The Baffle 2019 is the densest dataset
with 52 560 observations over a single year. Densely spaced
datasets indicate closer clusters of similar observations with
little variation between them. Thus more detailed daily obser-
vations could imply no correlation between pH and DO.
Hence it is plausible to assume that if the Baffle 2015 had
more observations per day, the strong pH-DO correlation
might not exist.

In Table 14 which shows the statics of the water qual-
ity datasets, the pH minimum and maximum of the Baffle
2019 dataset are 4.53 and 8.21, respectively. The minimum
pH is lower than the typically observed 6.5 to 8.5 pH val-
ues, indicating highly acidic waters. It is improbable that an
external event caused the low pH as the other water quality
parameter values (DO and temperature) are unaffected and in
range. There is a greater possibility of the incorrect recording
of pH for the Baffle 2019 dataset. Despite the discrepancy in
pH values, all the datasets have an average pH of around 7,
which falls well within the range of typical pH values and
indicates neutral river waters.

From Table 14, the mean temperature of the datasets are
similar and fall well within the range of typically observed
water temperatures shown in Table 1 with 24.5° C, 25.1° C
and 24.8° C for the Burnett, Baffle 2019 and Baffle 2015,
respectively. The mean temperatures also fall on the upper
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end of the typical temperature range, indicating that both
rivers are in warm areas. Both rivers are in the fairly warm
southeast Queensland, Australia. Thus this is a realistic depic-
tion. The maximum temperature for all the datasets is around
32 to 33° C, and the minimum temperatures for the Burnett,
Baffle 2019, and 2015 are 11.8° C, 16.8° C, and 15.7° C,
respectively, implying that Baffle river is overall warmer than
the Burnett river. It is also possible that the Burnett dataset
that spans over three years, unlike the Baffle datasets, would
have a larger temperature range due to the longer period.

The Burnett DO values fall within the range of the typical
observed values from 6 to 14 mg/L. The minimum DO val-
ues of the Baffle 2019 and 2015 datasets are 4.0 mg/L and
3.9 mg/L, respectively. They are out of range, possibly due
to the higher temperatures observed in the Baffle river, which
would lower the DO concentration. The minimum DO values
are observed at the minimum temperature values, which are
higher for the Baffle datasets. The average DO values for the
datasets are around 6.5 to 7 mg/L, falling within the typical
range for healthy river waters from 6.5 to 8 mg/L.

VIIl. CONCLUSION AND FUTURE WORK

The proposed LSTM based ensemble scheme improved
the tolerance (mitigated the discrepancies of the individual
LSTM models) of the hybrid GA-optimised LSTM water
quality prediction models, for different water quality datasets
taken from different sites and different times. Three main
contributions and many observations were made by this study
to achieve this result.

A. DEVELOPMENT OF THE LSTM FOR WATER

QUALITY PREDICTION

Water quality prediction increases the efficiency of water
quality monitoring, enabling effective water management,
which is necessary for the preservation of rivers. Two LSTM
models, the Burnett and Baffle LSTM models were developed
from two different time-sequential water quality datasets with
differently spaced data structures from two different time
periods. Both models can successfully predict water quality
ahead of time in terms of dissolved oxygen concentration,
using historical dissolved oxygen concentration values and
corresponding water temperature values. This is evident from
the low RMSE, MSE, MAE, and MAPE values, along with the
high R? and explained variance scores achieved by the models
for water quality prediction.

B. PREDICTIVE LSTM MODELS AND DATA STRUCTURE

Overall, the Burnett LSTM model performed better than the
Baffle LSTM model due to differences in dataset structure.
The Burnett dataset had 52 560 observations spread over three
years, and the Baffle dataset 2019 was more densely spaced,
with 52 560 observations over a single year. The Burnett
dataset allowed the Burnett model to observe a repeated trend
over three years with greater variation in data, while the
Baffle dataset only exhibited the trend to the Baffle model
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once with a single year of densely spread data with little
variation.

C. GA-OPTIMISATION OF LSTM MODELS

The Burnett and Baffle LSTM models were successfully
optimised using GA to increase their efficiency and robust-
ness, resulting in the hybrid GA-optimised LSTM mod-
els, GA-Burnett and GA-Baffle LSTM models. Both the
GA-optimised models outperformed their original coun-
terparts, showing an enhancement in model performance
through hyperparameter tuning. GA-optimisation had the
biggest impact on decreasing the overall computation time
and the number of trainable parameters. The computa-
tion time of the Baffle model was reduced by 50 minutes
and the trainable parameters by 28 456 parameters after
GA-optimisation, thus significantly reducing the overall
computation time of the final ensemble model. Thus
base model optimisation was crucial for ensemble model
development.

The improvement in performance by the Baffle model
after optimisation was much greater than the Burnett model.
Unlike the Baffle model, the Burnett model was well-
optimised through the trial-and-error method and could not
be further improved. Thus when models, are developed from
datasets that are spread over long periods and exhibit repeated
trends, they are easier to optimise using trial-and-error meth-
ods. While models based on more densely spaced datasets
with little variation in observations over shorter periods, not
exhibiting repeated trends, require a more powerful optimi-
sation technique, such as GA. After the Burnett and Baffle
models were GA-optimised, the performance of the models
became comparable. Model performance was not similar
before optimisation.

D. WEIGHT BASED ENSEMBLE SCHEME

A linear weight-based technique combined the GA-Burnett
and the GA-Baffle LSTM models to create two ensemble
models, the average and weighted ensemble models. Due
to increased robustness and improved predictive capability,
the ensemble models performed better than the individual
GA-optimised LSTM base models, even if it was only by a
slight margin in certain instances and without significantly
increasing the computation time. The performance difference
between the two ensembles was notable but not significant,
with the weighted ensemble only slightly outperforming the
average ensemble, mainly due to the similar weight coeftfi-
cients of the base models.

The similarity of the weight coefficients was due to the
similarity in the architecture of the two base models, as the
only difference between the base models was the number of
LSTM units in the two hidden layers and the time window
size. When two similar base models with similar performance
capacities are combined to create an ensemble model, both
the base models will have an equal or an almost equal con-
tribution. The weighted ensemble was the more powerful
of the two ensembles as the GA-Burnett, which performed
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better than the GA-Baffle had a greater contribution in the
weighted ensemble. The similarity of the base models and
the resultant similarity of the ensemble models were the
cause of the similar behaviour exhibited by all four mod-
els: weighted ensemble, average ensemble, GA-Burnett, and
GA-Baffle.

E. GENERALISATION AND MODEL TOLERANCE

The behaviour and predictive capability of all the models
were similar and consistent. The weighted ensemble model
only marginally outperformed the other models on the multi-
variate datasets. On particular datasets, the models had con-
sistent good predictive capabilities and consistent moderate to
poor predictive capacities on other datasets. Thus this study
has mitigated the discrepancies and improved the tolerance
of the individual LSTM models developed from different
datasets, taken from different rivers and periods through the
employment of the GA-optimised LSTM based ensemble
scheme, to a large extent. Thus further asserting the rele-
vance and tolerance of the developed models, especially the
weighted ensemble model, in the wider field of LSTM and
ensemble prediction models.

As the models were developed on multivariate datasets,
greater consistency in model performance was observed on
the multivariate datasets than on the univariate dataset. Clas-
sical forecasting methods outperformed the LSTM models
on the univariate dataset, illustrating that the classical meth-
ods were more appropriate than LSTM models, even LSTM
based ensemble models for making predictions on univariate
datasets. The smaller LSTM models were better suited to
univariate datasets than bigger LSTM models. In general,
the models performed better on bigger datasets than smaller
datasets. The models performed better on datasets with mul-
tiple related features in a single system and when the data
was prepared (normalised) in the same way it was for the
development of the models. Hence the models tend to perform
well on datasets that are similar in structure, preparation, and
size to the datasets used to develop them.

F. FUTURE WORK

This work was limited to two LSTM based models. Future
studies can identify the optimum number of LSTM based
models required to make the most tolerant ensemble model
for water quality prediction and possibly in other areas such
as energy, finance, geology, and many more. The Burnett
and Baffle river datasets were taken from different sites and
times, but both rivers are situated in southeast Queensland,
Australia, and flow into the Coral Sea of the South Pacific
Ocean. More diverse water quality datasets, possibly from
different regions, could be used to increase the tolerance of
the final ensemble model. The GA-optimised LSTM based
models had a different number of LSTM units and time
window sizes but were similar in other regards. The use
of LSTM based models with greater architectural differ-
ences and diversity in terms of the number of hidden layers,
input parameters, various activation functions, and optimisers
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could be explored to enhance the tolerance of the ensemble.
Different metaheuristic algorithms, such as particle swarm
optimisation, could be used to optimize the LSTM network
to gauge the effect of other optimisation algorithms on the
tolerance of the ensemble model. The focus of this study
was the prediction of DO levels, but water temperature also
influences other water quality parameters. Thus the devel-
opment of a water temperature prediction model along with
a DO prediction model should be encouraged. This paper
mentioned the correlation between DO and pH. Whether this
correlation translates into causation or any other possible link
between the two parameters and what their potential pairing
could hold for the development of water quality prediction
models should be explored.
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