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Unary self-verifying symmetric difference automata have a known tight bound of 2n−1−1
for their state complexity. We now consider the non-unary case and show that, for every

n ≥ 2, there is a regular language Ln accepted by a non-unary self-verifying symmetric

difference nondeterministic automaton with n states, such that its equivalent minimal
deterministic finite automaton has 2n−1 states. Furthermore, given any SV-XNFA with

n states, it is possible, up to isomorphism, to find at most another |GL(n,Z2)| − 1

equivalent SV-XNFA. Finally, we show that for a certain set of non-unary SV-XNFA,
2n−1 is a tight bound on the state complexity.

Keywords: descriptional complexity; symmetric difference automata; self-verifying au-

tomata.

1. Introduction

Symmetric difference nondeterministic finite automata (XNFA) are interesting from

a state complexity point of view. Determinising XNFA is done via the subset con-

struction as for NFA, but instead of taking the union of sets, the symmetric differ-

ence is taken. This means that 2n − 1 is an upper bound on the state complexity

of XNFA. This has been shown to be a tight bound for unary alphabets [10].

Self-verifying automata (SV-NFA) were described in [1,4,5] as having two kinds

of final states: accept states and reject states. Non-final states are called neutral

states. It is required that for any word, at least one such a final state is reached,

and that only one kind of final state is reached on any path, so that any word

is either explicitly accepted or explicitly rejected by the automaton. It was shown

in [5] that eΘ
√
n lnn is an upper bound for the unary case, but not a tight bound,

while in the non-unary case, g(n), where g(n) grows like 3
n
3 , is a tight upper bound.

In [7], we extended the notion of self-verification (SV) to XNFA to obtain SV-

XNFA. We showed that 2n−1 is not a tight upper bound for SV-XNFA in the case
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of a unary alphabet. A lower bound of 2n−1− 1 was established for the unary case,

and we showed this to be a tight bound in [6].

In this paper, we now consider the state complexity of SV-XNFA with non-unary

alphabets. We give an upper bound of 2n − 1 and a lower bound of 2n−1.

Furthermore, any XNFA can be transformed into an equivalent XNFA by per-

forming a change of basis operation [9]. We show that this holds also for SV-

XNFA, and that for any given SV-XNFA, up to isomorphism, at most another

|GL(n,Z2)| − 1 equivalent SV-XNFA can be found.

The rest of this paper is organised as follows: in Section 2, preliminary definitions

are given, while Section 3 gives the algebraic proofs necessary for the analysis of non-

unary self-verifying XNFA. The proofs for the bounds on non-unary self-verifying

XNFA are then considered in Section 4, followed by the conclusion.

2. Preliminaries

An NFA N is a five-tuple N = (Q,Σ, δ, Q0, F ), where Q is a finite set of states, Σ

is a finite alphabet, δ : Q×Σ→ 2Q is a transition function (where 2Q indicates the

power set of Q), Q0 ⊆ Q is a set of initial states, and F ⊆ Q is the set of final, or

acceptance, states.

The transition function can be extended to δ : 2Q × Σ → 2Q in the following

way:

δ(A, σ) =
⋃
q∈A

δ(q, σ) .

Note that δ can be extended to strings in the Kleene closure Σ∗ of the alphabet.

For w = σ0σ1 . . . σk and a ∈ Σ,

δ(q, ε) = q, and δ(q, wa) = δ(δ(w), a) .

An NFA N is said to accept a string w ∈ Σ∗ if δ(Q0, w) ∩ F 6= ∅, and the set

of all strings (also called words) accepted by N is the language L(N) accepted by

N . Any NFA has an equivalent DFA which accepts the same language. The DFA

ND = (QD,Σ, δD, Q0, FD) that is equivalent to a given NFA is found by performing

the subset construction [3], so that QD consists of sets of states from Q. In essence,

the subset construction keeps track of all the states that the NFA may be in at the

same time, and forms the states of the equivalent DFA by a grouping of the states

of the NFA. In short,

δD(A, σ) =
⋃
q∈A

δ(q, σ)

for any A ⊆ Q and σ ∈ Σ. Any A is a final state in the DFA if A ∩ F 6= ∅.
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2.1. Symmetric difference automata (XNFA)

A symmetric difference NFA (XNFA) is defined similarly to an NFA, except that

their behaviour is defined by the symmetric difference set operation. For any two

sets A and B, the symmetric difference is given by

A⊕B = (A ∪B) \ (A ∩B) .

More specifically, an XNFA N⊕ is a five-tuple N⊕ = (Q,Σ, δ, Q0, F ), with

each element defined as for NFA with the exception of δ, which is extended to

δ : 2Q × Σ→ 2Q in the following way:

δ(A, σ) =
⊕
q∈A

δ(q, σ) .

Just as for NFA, δ can be extended to strings in the Kleene closure Σ∗ of the

alphabet.

An XNFA N⊕ is said to accept a string w ∈ Σ∗ if |δ(Q0, w) ∩ F | is odd (also

known as parity acceptance), as an analogy to the symmetric difference set oper-

ation [12]. In other words, an odd number of paths labeled w must lead to final

states. The set of all words accepted by N⊕ is the language L(N⊕).

For a given XNFA, to determine the equivalent deterministic finite automaton,

which we denote with XDFA for clarity, the subset construction is applied as

δD(A, σ) =
⊕
q∈A

δ(q, σ)

for any A ⊆ Q and σ ∈ Σ.

The XDFA is denoted with ND,⊕ = (QD,Σ, δD, Q0, FD). An XDFA final state

contains an odd number of final XNFA states. For any given XNFA, an equivalent

deterministic finite automaton can be found for any given XNFA. Since the deter-

ministic finite automata accept the regular languages, it follows that the XNFA also

accept the class of regular languages [12]. For clarity, we indicate XDFA states with

square brackets and use curly brackets when referring specifically to sets of states

in the context of XNFA. However, we may still treat XDFA states as sets, by, for

example, using the standard notation for indicating the membership of elements,

i.e. q0 ∈ [q0, q1, q2].

We illustrate the concepts above with a short example.

Example 1. Consider the unary XNFA N and its equivalent XDFA below.
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When N is converted to the equivalent XDFA, one sees for example that

δ′({q1, q2, q3}, a) = {q2} ⊕ {q3} ⊕ {q0, q1, q2} = {q0, q1, q3}. With the final states

of N as {q1, q2}, it follows that in the XDFA, state [q1, q2, q3] is not a final state,

since it contains an even number of final states from N . On the other hand, state

[q0, q1, q3] is final in the XDFA, since it contains only one final state of N .

Given parity acceptance, XNFA have been shown to be equivalent to weighted

automata over the finite field of two elements, or GF(2) [9, 12]. For an XNFA N =

(Q,Σ, δ, Q0, F ), the transitions for each alphabet symbol σ can be represented as

a matrix over GF(2). Each row represents a mapping from a state q ∈ Q to a

set of states P ∈ 2Q. The set P is written as a vector with a one in position

i if qi ∈ P , and a zero in position i if qi 6∈ P . Hence, the transition table is

represented as a matrix Mσ of zeroes and ones (see Example 6). This is known

as the characteristic or transition matrix for σ of the XNFA. In the rest of this

paper, we consider only XNFA with non-singular matrices, whose cycle structures

do not include transient heads, i.e. states that are only reached once before a cycle

is reached. The cycle structure of n-state XNFA with singular matrices are not

interesting for our purposes, as it involves only short cycles with at most n states [8].

Initial and final states are similarly represented by vectors, and appropriate

vector and matrix multiplications over GF(2) represent the behaviour of the XNFAa.

For instance, in the unary case we would have a single matrix Ma that describes

the transitions on a for some XNFA with n states. We encode the initial states

Q0 as vector of length n over GF(2), namely v(Q0) = [q00
q01
· · · q0n−1

], where

q0i
= 1 if qi ∈ Q0 and 0 otherwise. Similarly, we encode the final states as a length

n vector v(F ) = [qF0 qF1 · · · qFn−1 ]. Then v(Q0)Ma is a vector that encodes the

states reached after reading the symbol a exactly once, and v(Q0)Mk
a encodes the

states reached after the symbol a was read k times. The weight of a word ak of

length k is given by

∆(ak) = v(Q0)Mk
a v(F )T .

aIn GF(2), 1 + 1 = 0.
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In Example 1 above, the initial state vector is v(Q0) = [1 0 0 0], the final state

vector is v(F ) = [0 1 1 0], and the matrix M is given by

M =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

 .

We can say that Ma represents the word a, and Mak = Mk
a represents the

word ak. In the binary case, there are two matrices, namely, Ma for transitions on

a and Mb for transitions on b. Reading an a corresponds to multiplying by Ma,

while reading a b corresponds to multiplying by Mb. Let Mw be the result of the

appropriate multiplications of Ma and Mb representing some w ∈ {a, b}∗, then the

weight of w is given by ∆(w) = v(Q0)Mwv(F )T .

We now show that, in the unary case, a so-called change of basis is possible,

where for some n×n transition matrix Ma of an XNFA and any non-singular n×n
matrix A, M ′a = A−1MaA is the transition matrix of an equivalent XNFA with

v(Q′0) = v(Q0)A and v(F ′)T = A−1v(F )T . For any word ak of length k, we have

the following:

∆′(ak) = v(Q′0)M ′ka v(F ′)T

= v(Q0)A(A−1MaA)kA−1v(F )T

= v(Q0)Mk
a v(F )T

= ∆(ak) .

This also applies to the binary case. For some XNFA N , let Mw =
∏k
i=1Mσi

represent a word w = σ1σ2 · · ·σk, where Mσi
= Ma if σi = a, and similarly for

b. Now, let N ′ be an XNFA whose transition matrices are M ′a = A−1MaA and

M ′b = A−1MbA for some non-singular A. Then w is represented by

M ′w =

k∏
i=1

M ′σi

= M ′σ1
M ′σ2

· · ·M ′σk

= (A−1Mσ1
A)(A−1Mσ2

A) · · · (A−1Mσk
A)

= A−1Mσ1
Mσ2

· · ·Mσk
A

= A−1MwA .

Therefore, the weight of any word w on N ′ is

∆′(w) = v(Q′0)M ′wv(F ′)T

= v(Q0)A(A−1MwA)A−1v(F )T

= v(Q0)Mwv(F )T

= ∆(w) .
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Note that the above discussion does not rely on the fact that there are only two

alphabet symbols, and so applies in general to the r-ary case as well.

The so-called characteristic polynomial c(X) of an XNFA is defined as the de-

terminant c(X) = det(XI−M) of the characteristic matrix, where I is the identitiy

matrix. It is often convenient to use the polynomial rather than the matrix, and the

polynomial fully captures the cycle structure of the XNFA. In Example 1 above,

the characteristic polynomial is c(X) = X4 +X2 +X + 1. The polynomial is called

reducible if it can be factorised; otherwise, it is irreducible. A primitive polynomial

in GF(2) is the minimum polynomial of a primitive element (a primitive element

generates the multiplicative group of the field) [8]. It is known that an n-state unary

XNFA with a primitive characteristic polynomial has an equivalent XDFA with a

single cycle of length 2n − 1 [9].

2.2. Self-verifying automata (SV-NFA)

Self-verifying NFA (SV-NFA) [1, 4, 5] are automata with two kinds of final states,

namely accept states and reject states, as well as neutral non-final states. It is

required that for any word, one or more of the paths for that word reach a single

kind of final state. That is, either accept states or reject states are reached, but not

both. Consequently, self-verifying automata reject words explicitly if they reach a

reject state, in contrast to NFA, where rejection is the result of a failure to reach

an accept state.

Definition 2. A self-verifying nondeterministic finite automaton (SV-NFA) is a

6-tuple N = (Q,Σ, δ, Q0, F
a, F r), where Q,Σ, δ and Q0 are defined as for standard

NFA. The sets F a ⊆ Q and F r ⊆ Q are the sets of accept and reject states,

respectively, and F a ∩F r = ∅. The remaining states, that is, the states belonging to

Q\ (F a∪F r), are called neutral states. For each input string w in Σ∗, it is required

that there exists at least one path ending in either an accept or a reject state; that

is, δ(q0, w) ∩ (F a ∪ F r) 6= ∅ for any q0 ∈ Q0, and there are no strings w such that

both δ(q0, w) ∩ F a and δ(q1, w) ∩ F r are nonempty, for any q0, q1 ∈ Q0.

Since any SV-NFA either accepts or rejects any string w ∈ Σ∗ explicitly, its

equivalent DFA must do so too. The path for each w in a DFA is unique, so each

state in the DFA is an accept or reject state. Hence, for any DFA state d, there is

some SV-NFA state qi ∈ d such that qi ∈ F a (and hence d ∈ F aD) or qi ∈ F r (and

hence d ∈ F rD). Since each state in the DFA is a subset of states of the SV-NFA,

accept and reject states cannot occur together in a DFA state. That is, if d is a

DFA state, then for any p, q ∈ d, if p ∈ F a then q /∈ F r and vice versa.

2.3. Self-verifying symmetric difference automata (SV-XNFA)

In [7], self-verifying symmetric difference automata (SV-XNFA) were defined as

a combination of the notions of symmetric difference automata and self-verifying
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automata, but only the unary case was examined. We now restate the definition

of SV-XNFA in order to present results on larger alphabets in Section 4. Note,

however, that the definition is slightly amended: in [7], the implicit assumption was

made that no SV-XNFA state could be both an accept state and a reject state.

This assumption is explored in detail for the unary case in [6], but for our current

purposes it suffices to say that such a requirement removes the equivalence between

XNFA and weighted automata over GF(2), which is essential for certain operations

on XNFA, such as minimisation [9]. This implies that parity acceptance applies to

SV-XNFA, where the condition for self-verification (SV-condition) is that for any

word, an odd number of paths end in either accept states or reject states, but not

both. In terms of the equivalent XDFA, this is equivalent to requiring that any

XDFA state contain either an odd number of accept states or an odd number of

reject states, but not both. If an XNFA state is both an accept state and a reject

state, it contributes to both counts.

Definition 3. A self-verifying symmetric difference finite automaton (SV-XNFA)

is a 6-tuple N = (Q,Σ, δ, Q0, F
a, F r), where Q,Σ, δ and Q0 are defined as for

XNFA, and F a and F r are defined as for SV-NFA, except that F a ∩F r need not be

empty. That is, each state in the SV-XDFA equivalent to N must contain an odd

number of states from either F a or F r, but not both, and some SV-XNFA states

may belong to both F a and F r.

We refer to the equivalent DFA of some SV-XNFA as its equivalent SV-XDFA to

indicate that every state must accept or reject and that parity acceptance holds

given the subset construction. Any SV-XDFA is equivalent to an XDFA, so SV-

XNFA accept the class of regular languages. The SV-condition for XNFA implies

that if a state in the SV-XDFA of an SV-XNFA N contains an odd number of states

from F a, it may also contain an even number of states from F r, and hence belong to

F aD, and vice versa. An SV-XDFA state may contain any number of neutral states

from N .

The choice of F a and F r for a given SV-XNFA N is called an SV-assignment

of N . An SV-assignment where either F a or F r is empty, is called a trivial SV-

assignment. Otherwise, if both F a and F r are nonempty, the SV-assignment is

non-trivial. We now restate a core result concerning unary SV-XNFA from [6].

Theorem 4. [6] Any matrix M has an SV-assignment, if and only if its charac-

teristic polynomial has X + 1 as a factor.

In order to ultimately prove state complexity bounds on SV-XNFA, it is neces-

sary to investigate the cycles that form in their equivalent XDFA. To that effect,

the next section describes the cyclic behaviour of XDFA.
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M =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 · · · 1

c0 c1 · · · cn−2 cn−1


Fig. 1. Normal form matrix for c(X) = Xn + cn−1Xn−1 + ...+ c1X + c0

3. XNFA as linear machines over GF(2)

In [11] it is shown that the cycle structure of unary XNFA are equivalent to that of

linear feedback shift registers (LFSRs), with their rich literature in circuit design,

cryptology, and other applications [8]. Specifically, a matrix M with characteristic

polynomial c(X) is associated with a certain cycle structure of sets of XNFA states

(that is, XDFA states), and the choice of Q0 determines which cycle represents the

behaviour of a specific unary XNFA. The cycle structure is induced by c(X), so any

matrix that has c(X) as its characteristic polynomial has the same cycle structure,

although the states ocurring in the cycles differ according to each specific matrix.

This allows us to use the theory underlying LFSRs in the analysis of XNFA (for

example, [2]).

For the r-ary case, the transition matrix for each symbol is associated with its

own cycle structure, and the choice of Q0 determines which cycle is realised in the

r-ary XNFA for each symbol. There are 2n − 1 possible choices for Q0 (we exclude

the empty set). Evidently, the cycles associated with each symbol might overlap,

and so the structure of the r-ary XNFA would not be cyclic itself, although the

transitions for each symbol would exhibit cyclic behaviour. Specifically, for an r-ary

XNFA N and some symbol σ ∈ Σ, we refer to the cycle structure of N on σ to

indicate the cycle structure resulting from considering only transitions on σ. Our

main results will be derived from examining the cycle structure induced by each

symbol of the alphabet of the automaton, as well as the ways in which the cycles

overlap.

For any c(X) = Xn + cn−1X
n−1 + · · ·+ c1X + c0 there is a normal form matrix

M of the form given in Fig. 1, such that c(X) = det(XI − M), where I is the

identity matrix. We say that M is in canonical form.

In the next lemma, it will be convenient to represent XDFA states ds ⊆ Q as

s = 〈sn−1, sn−2, ..., s1, s0〉, where si = 1 if qi ∈ ds and 0 otherwise. The lemma is

adapted from [8] on the basis of the equivalence between unary XNFA and LFSRs.

Lemma 5. Let Mσ be a transition matrix representing transitions on σ for some

XNFA N , with characteristic polynomial cσ(X), and let Mσ be in canonical form.

Let f be a bijection of the states of the equivalent XDFA ND onto polynomials

of degree n − 1, such that f maps the state s = 〈sn−1, sn−2, ..., s1, s0〉 into the
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Ma =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0


Fig. 2. Example 6, transition matrix for a

Mb =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1


Fig. 3. Example 6, transition matrix for b

Table 1. Transitions on δ correspond to multiplication by X

δD(s, σ) Xf(s) mod cσ(X)

δD({q0}, a) = {q1} X(1) = X

δD({q3}, a) = {q0, q1, q2} X(X3) = X4 mod ca(X)

= X2 +X + 1

δD({q0, q2, q3}, a) = {q0, q2, q3} X(X3 +X2 + 1) = X4 +X3 +X mod ca(X)

= X3 +X2 + 1

δD({q1}, b) = {q2} X(X) = X2

δD({q0, q1, q3}, b) = {q0, q2, q3} X(X3 +X + 1) = X4 +X2 +X mod cb(X)

= X3 +X2 + 1

δD({q1, q2, q3}, b) = {q0, q1, q2} X(X3 +X2 +X) = X4 +X3 +X2 mod cb(X)

= X2 +X + 1

polynomial f(s) = sn−1X
n−1 + sn−2X

n−2 + · · ·+ s1X + s0. Then f maps the state

s ·Mσ into the polynomial Xf(s) mod cσ(X).

Lemma 5 provides a mapping between polynomials over GF (2) and the states of

XDFA. The XDFA state arrived at after a transition from state s on σ corresponds to

the polynomial which results from multipying f(s) by X in the polynomial algebra

of GF (2)[X] modulo cσ(X).

Example 6. Let N be a binary XNFA (shown in Figure 4), where Ma is the normal

form matrix of ca(X) = X4 + X2 + X + 1 and Mb is the normal form matrix of

cb(X) = X4 + X3 + X + 1. The matrices Ma and Mb are given in Fig. 2 and 3.

The resulting XDFA is shown in Figure 5, while some examples comparing state

transitions and polynomial multiplication are shown in Table 1. Note that, for now,

the focus is on the cyclic behaviour of the equivalent XDFA, and so we do not refer

to any final states.

In addition to a normal form matrix, each polynomial is also associated with a

so-called companion matrix, as stated in the next theorem.

Theorem 7. [8] Every matrix M over GF (2) with characteristic polynomial c(X)
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q0start

q1

q2

q3

a,b a,b

a,ba,b

a,b
a

b

Fig. 4. Example 6, N

q0start

q1

q2

q3

q0, q1,

q2

q0, q2,

q3

q0, q1,

q3

q1, q2,

q3

a,b

a,b

a,b

a

b
a

b

a

b

a

b

a,b

Fig. 5. Example 6, ND

is similarb to a matrix M ′ of the form shown in Figure 6, where each of the subma-

trices Ai is a normal form matrix of a polynomial that is irreducible over GF (2) or a

power of a polynomial that is irreducible over GF (2), and the 0’s are 0-submatrices

of appropriate sizes. M ′ is said to be the companion matrix of c(X).

M ′ =


A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . Am


Fig. 6. Block diagonal companion matrix of normal form matrices

Each block in the companion matrix M of some c(X) represents a smaller au-

tomaton of which the characteristic polynomial is irreducible or is a power of an

bTwo n × n matrices A and A′ are similar if there exists some non-singular n × n matrix B so

that A′ = B−1AB.
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irreducible polynomial. If c(X) has different factors, so that M has more than one

block on the diagonal, the automaton can be thought of as a composite machine,

where M is divided into two or more blocks, and cycles from the different blocks

combine to form new cycles, as stated in Lemma 8.

In the discussion that follows, empty cycle refers to the cycle that contains the

“empty” XDFA state, or the empty subset of XNFA states, which corresponds to the

zero polynomial. Since 0 ·X = 0, according to Lemma 5, we would have δ(∅, a) = ∅.
The following lemma is taken from [8].

Lemma 8. [8] Let c(X) be a reducible polynomial of degree n over GF (2) that

does not have X as a factor. We consider its companion matrix as consisting of two

blocks, B1 and B2, which in turn may consist of blocks of normal form matrices

associated with the factors of c(X). For each cycle of length k1 induced by block B1

in the companion matrix and for each cycle of length k2 induced by block B2, c(X)

has gcd(k1, k2) cycles of length lcm(k1, k2).

The proof of the lemma considers an XNFA N as a composite machine whose

companion matrix contains the blocks B1 and B2 on the diagonal, where B1 and

B2 represent two XNFA, say N1 and N2. In the simplest case, B1 and B2 represent

normal form matrices associated with the factors of c(X), but they may also in turn

represent composite automata. Starting in some state belonging to N is equivalent

to simultaneously starting in a state belonging to N1 and a state belonging to N2.

The cycle belonging to N is complete, i.e. its start state reached again, when the

two start states from N1 and N2 are reached again simultaneously.

Theorem 9. Let N be a unary XNFA with its associated characteristic polynomial

c(X) = (X+1)φ(X), where X+1 is not a factor of φ(X). Then the cycle structure

associated with N consists of pairs of cycles of the same length, where one cycle in

each pair does not have an SV-assignment.

Proof. Let Mφ be the companion matrix of φ(X). Then the companion matrix Mc

of c(X) is given by

Mc =

[
Mφ 0

0 1

]
.

That is, Mc is a block diagonal matrix, with the companion matrix Mφ on the

diagonal, as well as the companion matrix for X + 1, which is the 1 × 1 matrix

containing a 1. The cycle structure associated with X + 1 consists of two cycles of

length one, namely the empty cycle and the cycle containing the XDFA state that

consists of only one XNFA state, namely [qn−1].

Now, by Lemma 8, the cycles of N are found by considering pairwise composite

cycles associated with Mφ and the companion matrix of X+ 1. Any cycle C associ-

ated with Mφ composed with the empty cycle is simply C, while C composed with

the cycle containing the state [qn−1] results in the following cycle: for every state s
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in C, the composite cycle, which we may term Cqn−1
, contains the state s ∪ [qn−1].

The resulting composite machine N therefore contains pairs of cycles of the same

length.

By Theorem 4, any cycle that is simply a copy of a cycle from the cycle structure

of Mφ does not have an SV-assignment, since X + 1 is not a factor of φ(X). Hence,

in each pair of cycles C and Cqn−1
belonging to N , the cycle C does not have an

SV-assignment.

Example 10. Let c(X) = X4 + X3 + X2 + 1 and φ(X) = X3 + X + 1. Then

c(X) = (X + 1)φ(X), and since φ(X) is a primitive irreducible polynomial, it does

not have X + 1 as a factor. The companion matrices for φ(X) and c(X) are given

in Figures 7 and 8, respectively. Figure 9 gives the cycle structure of Mc. However,

notice that the two cycles on the left are exactly those cycles that comprise the cycle

structure of Mφ, while the two cycles on the right are copies of the cycles on the

left, except that each state additionally includes q3. By Theorem 4, the two cycles

on the left have no SV-assignments, since X + 1 is not a factor of φ(X). We see,

however, that any choice of F a and F r where q0, q1 and q2 each belong to either

F a or F r, and where q3 ∈ F a and q3 ∈ F r, is an SV-assignment for the two cycles

on the right.

Mφ =

0 1 0

0 0 1

1 1 0


Fig. 7. Example 10, companion matrix of

φ(X)

Mc =


0 1 0 0

0 0 1 0

1 1 0 0

0 0 0 1


Fig. 8. Example 10, companion matrix for

c(X)

We now use Theorem 9 to investigate bounds on the state complexity of non-

unary SV-XNFA.

4. Bounds on the state complexity of non-unary SV-XNFA

For any n-state non-unary SV-XNFA, the equivalent minimal XDFA can have no

more than 2n − 1 states, since this is the number of non-empty subsets for any set

of n XNFA states. This represents the standard upper bound. In this section we

establish a lower bound on state complexity, namely 2n−1, and we identify a set of

non-unary SV-XNFA for which this is also an upper bound.

Consider a unary XNFA with c(X) = (X+1)φ(X). In this case, we show that in

its equivalent XDFA, any state with an odd number of XNFA states must necessarily

go to another state with an odd number of XNFA states.
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q0

q1

q2

q0, q1

q0, q2

q0, q1,

q2

q1, q2

q0, q2,

q3

q0, q3

q1, q3

q2, q3

q0, q1,

q3

q0, q1,

q2, q3

q1, q2,

q3

∅ q3

Fig. 9. Example 10, cycles

Lemma 11. Let M be the normal form matrix of some c(X) = (X + 1)φ(X). Let

δ : 2Q × Σ→ 2Q be the transition function encoded by M . Since δ describes unary

transitions, we let Σ = {a}. Then for any d ∈ 2Q, |δD(d, a)| is odd if and only if |d|
is odd.

Proof. Let |Q| = n. Then M is an n× n matrix that has the form given below:

M =



0 1 0 · · · · · · 0 0

0 0 1 0 0

0 0 0
. . . 0 0

...
...

...
. . .

...
...

0 0 0 1 0

0 0 0 · · · · · · 0 1

c0 c1 c2 · · · · · · cn−2 cn−1


.

We note that in GF (2), a− b = a+ b and hence, if X + 1 is a factor of c(X), then 1

is a root, i.e. (1)n + cn−1(1)n−1 + ...+ c1(1) + c0 = 0. Consequently, an odd number

among c0, c1, . . . , cn−2, cn−1 are 1’s. Therefore, we see that |δ(qn−1, a)| is odd by

inspecting the bottom row of M , while |δ(qi, a)| = 1 for 0 ≤ i ≤ n− 2. We consider

two cases regarding d.
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Case 1: qn−1 /∈ d. Let d = [qi1 , qi2 , . . . , qik ]. By the argument above, if qn−1 /∈ d,

then k must be odd. Then δD(d, a) = [qi1+1, qi2+1, . . . , qik+1], and hence

|d| = |δD(d, a)| = k, which is odd.

Case 2: qn−1 ∈ d. Let d = [qi1 , qi2 , . . . , qik , qn−1]. Again, since qn−1 ∈ d, it must

hold that k is even. Let D = [qi1 , qi2 , . . . , qik ]. Then δD(d, a) = δD(D, a)⊕
δD([qn−1], a).

We have δ(D, a) = [qi1+1, qi2+1, . . . , qik+1], and so |δD(D, a)| = |D| =

k, which is even. Also, |δD([qn−1], a)| is odd. Therefore, |δD(D, a)| +

|δD([qn−1], a)| is odd. The symmetric difference of two sets is the set of

elements that occur in exactly one of the two sets. If some element occurs

in both, then it is not in the symmetric difference. We can therefore “cancel

out” elements occuring in both δD(D, a) and δD([qn−1], a) in pairs, until

only those remain that occur in exactly one of the sets. But successively

removing pairs of elements from an odd number of elements leaves an odd

number of elements. So δD(D, a) ⊕ δD([qn−1], a) must be odd, and hence

|δD(d, a)| is odd.

Similarly, if |d| is even, then |δ(d, a)| is even.

Now extend Lemma 11 to an r-ary alphabet.

Theorem 12. Let Mσ1
, Mσ2

, ..., Mσr
be the normal form matrices of r polynomi-

als cσ1
(X) = (X+1)φσ1

(X), cσ2
(X) = (X+1)φσ2

(X), ..., cσr
(X) = (X+1)φσr

(X),

respectively, and let Mσ1 , Mσ2 , ..., Mσr be the transition matrices of some r-ary

XNFA N with Σ = {σ1, σ2, ..., σr} and Q0 = {q0}. Then the number of states in

the equivalent XDFA ND does not exceed 2n−1. Furthermore, any choice of F a and

F r such that F a ∪ F r = Q and F a ∩ F r = ∅ is an SV-assignment.

Proof. By Lemma 11, since Q0 = {q0} and |{q0}| is odd, and cσ1(X),

cσ2
(X),. . . ,cσr

(X) have X + 1 as a factor, only odd-sized states are reached on

any transition. The number of XDFA states d such that |d| is odd is 2n/2 = 2n−1,

and so ND can have at most 2n−1 states. Since every XDFA state contains an odd

number of XNFA states, any choice of F a and F r such that F a ∪ F r = Q and

F a ∩ F r = ∅ is an SV-assignment.

The following lemma provides further information on the cycle structure induced

by polynomials with X + 1 as a factor.

Lemma 13. Let cσ(X) = (X + 1)φ(X). Then, in the normal form matrix Mσ of

cσ(X), which is the transition matrix on some symbol σ for an XNFA, the state

mapped to φ(X) as described in Lemma 5, i.e. dφ, is contained in a cycle of length

one, when considering only transitions on σ.
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Proof. Consider the following:

(X + 1)φ(X) = cσ(X)

Xφ(X) + φ(X) = cσ(X)

Xφ(X) = φ(X) + cσ(X)

Therefore, Xφ(X) = φ(X) in the representation of GF (2n) as polynomials over

GF(2) modulo cσ(X). By Lemma 5, this corresponds to δD(dφ, σ) = dφ.

We now present a witness language for any n to show that 2n−1 is a lower bound

on the state complexity of SV-XNFA with non-unary alphabets. First, we restate

the following theorem from [7].

Theorem 14. For any n ≥ 2, there is an SV-XNFA N whose equivalent ND has

2n−1 − 1 states. For any n ≥ 2, this an SV-XNFA has characteristic polynomial

c(X) = (X + 1)φ(X), with φ(X) a primitive polynomial over GF(2).

Lemma 15. Let φ(X) = Xn−1 + φn−2X
n−2 + · · · + φ1X + φ0 be any primitive

polynomial of degree n− 1. Let N be a binary XNFA, and let the transition matrix

on a be the normal form matrix of ca(X) = (X + 1)φ(X) and the transition matrix

on b be the normal form matrix of cb(X) = Xn +φ(X). Then the equivalent XDFA

of the XNFA with Q0 = {q0} contains exactly 2n−1 odd-sized states.

Proof. We write ca(X) and cb(X) in the following way:

ca(X) = Xn + cn−1X
n−1 + · · ·+ c1X + c0

cb(X) = Xn + φn−1X
n−1 + φn−2X

n−2 + · · ·+ φ1X + φ0 .

Since φ(X) is primitive, it has no roots in GF(2), including 1, so it must have an

odd number of non-zero terms. Therefore, by Lemma 11, |dφ| is odd. Furthermore,

cb(X) has an even number of non-zero terms, and so has 1 as a root. Consequently,

cb(X) has X + 1 as a factor.

The transition matrices Ma and Mb are given in Fig. 10 and Fig. 11. Note

that they are both non-singular. Let Q0 = {q0}. Then by Theorem 14, the cycle

structure on a is equivalent to an XDFA cycle with 2n−1 − 1 states, all of which,

by Lemma 11, have odd size. Also, by Lemma 13, dφ is not contained in this cycle.

This means that on a, every odd-sized state in the XDFA is reached except for dφ.

Now, from Mb it follows directly that δD({qn−1}, b) = dφ. Furthermore, since X+1

is a factor of cb, every transition from an odd-sized state on b is to an odd-sized

state. Consequently, the binary XNFA N is equivalent to an XDFA that reaches all

2n−1 odd-sized states and none other.

Theorem 16. For any n ≥ 2, there is a language Ln so that some n-state binary

SV-XNFA accepts Ln and the minimal SV-XDFA that accepts Ln has 2n−1 states.
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Ma =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 · · · 1

c0 c1 · · · cn−2 cn−1


Fig. 10. Lemma 15, transition matrix for a

Mb =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 · · · 1

φ0 φ1 · · · φn−2 φn−1


Fig. 11. Lemma 15, transition matrix for b

Proof. Let ca(X) = (X + 1)φ(X) and cb = Xn + φ(X), where φ(X) is a primitive

polynomial and let ca(X) and cb(X) have degree n. We construct an SV-XNFA N

with n states whose equivalent XDFA ND has 2n−1 states as in Lemma 15, and let

F a = {q0} and F r = Q \ F a. Recall that for N , we have δ : Q × Σ → 2Q, and for

ND, we have δD : 2Q × Σ→ 2Q.

Let L1
n = a(2n−1−1)i+j for i ≥ 0 and j ∈ J , where J is some set of integers,

represent a subset of the language accepted by N that consists only of strings

containing a. Now, from the transition matrix of N it follows that 0, n ∈ J , while

1, 2, ..., n− 1 /∈ J , since q0 ∈ δ(q0, a
n), but q0 /∈ δ(q0, a

m) for m < n.

If there is an N ′D with fewer than 2n−1 − 1 states that accepts L1
n, then there

must be some dj ∈ QD such that {q0} ⊂ dj , q0 ∈ δD(dj , a
n) and there is no m < n

so that q0 ∈ δD(dj , a
m). That is, if N ′D exists, then on ND, δD({q0}, a) = δD(dj , a),

and δD({q1}, a) = δD(dj+1, a) etc.

Let dk be any state in ND such that dk 6= {q0}. Let max(dk) be the largest

subscript of any SV-XNFA state in dk. Then max(dk) > 0. Let m = n −max(dk),

so m < n. Then, from the transition matrix of N , it follows that q0 ∈ δD(dk, a
m).

That is, for any dk there is an m < n so that q0 ∈ δD(dk, a
m). Therefore, there is

no N ′D with fewer than 2n−1 − 1 states that accepts L1
n.

Now, let L2
n = bna∗, which is also a subset of the language accepted by N . In

order to accept this language, after reading bn, a state must have been reached

whereafter every transition on a must result in an accept state, i.e. an XDFA state

containing q0. But there is only one such state, and that is dφ, since δD(dφ, a) = dφ,

which is excluded from the cycle needed to accept L1
n. Therefore, all 2n−1 odd-sized

states are necessary to accept L1
n∪L2

n. Let Ln be the language accepted by N , then

since L1
n ∪ L2

n ⊂ Ln, at least 2n−1 states are necessary to accept Ln.

We illustrate Theorem 16 for n = 4.

Example 17. Let φ(X) = X3 +X + 1, which is a primitive polynomial. Now, let

N be an XNFA with transition matrices Ma and Mb. The matrix Ma is the normal

form matrix of ca(X) = (X + 1)φ(X) = X4 + X3 + X2 + 1 and Mb the normal

form matrix of cb(X) = X4 + φ(X) = X4 + X3 + X + 1. Let Q0 = {q0} and let

F a = {q0} and F r = {q1, q2, q3}. The matrices Ma and Mb are shown in Figures 12

and 13, while N and its equivalent XDFA ND are shown in Figures 14 and 15. We
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Ma =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 1


Fig. 12. Example 17, transition matrix for a

Mb =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1


Fig. 13. Example 17, transition matrix for b

q0start

q1

q2

q3

a,b a,b

a,ba,b

b
a

a,b

Fig. 14. Example 17, N

q0start

q1

q2

q3

q0, q1,

q3

q1, q2,

q3

q0, q1,

q2

q0, q2,

q3

a,b

a,b

a,b

b

a

a

b
a,b

a

b

b

a

Fig. 15. Example 17, ND

have L1 = a7i+j for i ≥ 0 and j ∈ {0, 4, 5} and L2 = bbbba∗.

The following is a simple corollary of Theorem 16.

Corollary 18. For any m,n ≥ 2, there is a language L′n so that some n-state

m-ary SV-XNFA accepts L′n and the minimal SV-XDFA that accepts L′n has 2n−1

states.

We now show that any given SV-XNFA can be used to obtain another one via

a so-called change of basis.



December 13, 2019 13:24 WSPC/INSTRUCTION FILE MaraisVanZijl

18 L. Marais and L. van Zijl

Theorem 19. Given any SV-XNFA N = (Q,Σ, δ, Q0, F
a, F r) with n states and

transition matrices Mσ1 , Mσ2 , ..., Mσr , and any non-singular n× n matrix A, we

encode Q0 as a vector v(Q0) of length n over GF(2) and F a and F r as vectors v(F a)

and v(F r), respectively. Then there is an SV-XNFA N ′ = (Q,Σ, δ′, Q′0, F
′a, F ′r)

where M ′σi
= A−1Mσi

A for 1 ≤ i ≤ r, v(Q′0) = v(Q0)A, v(F ′a)T = A−1v(F a)T

and v(F ′r)T = A−1v(F r)T , and N ′ accepts the same language as N .

Proof. In the discussion in Section 2.1 we showed that for XNFA, the change of

basis described on an XNFA N that results in N ′, ∆′(w) = ∆(w). We extend this to

SV-XNFA by defining two new functions. Recall that Mw represents the sequence

of matrix multiplications for some w of length k, and that M ′w = A−1MwA. Then,

let

accept(w) = v(Q0)Mwv(F a)T

reject(w) = v(Q0)Mwv(F r)T .

The SV-condition is that accept(w) 6= reject(w) for any w ∈ Σ∗. Similar to ∆(w),

we have

accept′(w) = v(Q′0)M ′wv(F ′a)T

= v(Q0)A(A−1MwA)A−1v(F a)

= v(Q0)Mwv(F a)

= accept(w)

and

reject′(w) = v(Q′0)M ′wv(F ′r)T

= v(Q0)A(A−1MwA)A−1v(F r)

= v(Q0)Mwv(F r)

= reject(w) .

Clearly, the SV-condition is met by accept′ and reject′, and so N ′ is an SV-XNFA

that accepts the same language as N .

The number of non-singular n × n matrices over GF(2) (including the identity

matrix) is |GL(n,Z2)| =
∏n−1
k=0(2n − 2k), and so, up to isomorphism, for any SV-

XNFA at most another |GL(n,Z2)| − 1 equivalent SV-XNFA can be found.

Theorem 20. Let N be an r-ary XNFA with transitions matrices Mσ1
,

Mσ2 ,...,Mσr , for which cσ1(X) = (X + 1)φσ1(X), and where cσi(X) = (X +

1)kiφσi
(X) for 1 < i ≤ r. Furthermore, for any 1 ≤ i ≤ r, X + 1 is not a factor

of φσi(X). Then for any choice of Q0 such that N is an SV-XNFA, the minimal

equivalent XDFA has at most 2n−1 states.

Proof. By Theorem 9, the cycle structure of cσ1
(X) consists of pairs of cycles of

the same length, where one cycle in each pair does not have an SV-assignment.
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Hence, at least 2n

2 = 2n−1 states belong to cycles on σ1 that do not have SV-

assignments. That is, 2n−1 belong to cycles where no choice of F a and F r satisfies

the SV-condition, and hence, any XDFA that reaches such cycles cannot have an

SV-assignment. Therefore, any r-ary SV-XNFA may only reach the remaining 2n−1

states.

5. Conclusion

We have given an upper bound of 2n− 1 on the state complexity of SV-XNFA with

alphabet size larger than one, and a lower bound of 2n−1. Furthermore, we identified

a set of non-unary SV-XNFA for which this is also an upper bound. We have also

shown that, given any SV-XNFA with n states, it is possible, up to isomorphism,

to find at most another |GL(n,Z2)|−1 equivalent SV-XNFA via a change of basis.
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Théorique et Applications 41(3) (2007) 261–265.

[2] L.-L. Dornhoff and F.-E. Hohn, Applied modern algebra. (Macmillan Publishing Co.,
Inc., Collier Macmillan Publishers, 1978).

[3] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, 1st edn. (Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1990).
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