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Abstract—The  increasing  application  of  ground  robots
requires  efficient  path  planning  algorithms  in  three-
dimensional  (3D)  environments  containing  non-spherical
topology. Path planning on surface meshes is possible, however,
expensive computation of geodesics is required. To reduce the
length and,  hence,  cost  of  the geodesics,  a  growing submesh
based  on  local  regions  is  used.  Rapidly-exploring  Random
Trees (RRT) with local regions are computed and compared
with the bi-directional variant, based on RRT-Connect. Results
show  that  RRT-Connect  with  local  regions  reduces  the
computational burden for mesh-based path planning.
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I. INTRODUCTION

With the advancement  of  technology and research,  the
application of mobile robots has spanned into a wide range of
fields including computational biology, computer animation
and verification [1, 20]. As part of the navigation tasks, path
planning is one of the fundamental tasks that a robot has to
perform in order to move from one point to another and it is
essential  for  a  robot  to  perform  this  task  effectively.
Autonomous  mobile  robot  path  planning  is  not  only  a
fundamental  problem  in  robotics,  but  it  is  also  a  highly
studied  area  because  of  its  wide  application  in  industries.
Given a map, a starting position and a goal position, the path
planning problem seeks to find an optimal collision-free path
from  the  starting  position  to  the  goal  position  in
configuration space.

A  number  of  path  planning  algorithms  have  been
developed  in  the  past  decades  and  these  algorithms  are
usually  categorised  into  groups  based  on  how  the
environment  is  represented  and  explored.  The  two  most
known path planning categories are the grid-based algorithms
and sampling-based algorithms. A* [13] and Dijkstra's [10]
are both grid-based algorithms. These algorithms have been
successfully  used  to  find  the  shortest  path  in  fairly  flat
environments,  where  the  uncertainty  associated  with  the
environment is normally not considered. However, with the
increasing  application of  robots  in  industries,  robots  share
space  with  humans  in  real  life,  operating  in  uneven  and
unstructured  environments.  Thus,  full  3D path planning is
needed.

Path  planning  for  ground  robots  has  been  extensively
done in 2D environments and most 3D path planning studies
have focused on aerial and underwater robots which are not
constrained to the ground surface [29, 30]. Both aerial and
underwater  robots  do  not  operate  on  the  ground  surface,
hence there is no need to consider traversability on a surface.
However, ground robots operate in uneven 3D environments
with different running costs for the uphill, downhill and flat
surfaces.  The discretization  of  the workspace  to  a  simpler
version, such as a 2D environment, can result in the loss of

important aspects about the robot's workspace leading to the
robot's  inability  to  successfully  traverse  complex  cluttered
environments.

Another  approach  that  has  been  used in  an attempt  to
solve 3D path planning for ground robots is adding elevation
to get 2.5D, but still 2.5D is not a fully 3D environment and
it  is  not  sufficient  for  a  robot  to  be  able  to  operate  in
environments  containing  nonspherical  topology,  such  as
bridges or tunnels. Carsten et al. [5] solved path planning in
3D environments,  by extending the Field D* algorithm to
operate in 3D occupancy grids. The approach of Carsten et
al. [5] was able to compute less costly and less jagged paths
in  the  3D  grid.  However,  Carsten  et  al.  [5]  method  was
intended for aerial and underwater robots. Using D*, Colas et
al.  [7]  developed  a  3D  path  planning  system  for  ground
robots.  Their  method uses  point  cloud data for  workspace
representation; however, it uses a 3D grid representation for
the environment, rather than a mesh.

As the dimensions of the workspace of the robot increase,
the  computation  of  the  path  becomes  more  challenging.
Thus, using grid-based methods in high dimensional spaces
can become computationally expensive and will take long to
find  a  solution.  These  methods  require  grid-based
discretization of the workspace which could lead to loss of
important  aspects  about  the  environment  leading  to
unrealistic  solutions.  Meanwhile,  Sampling-based
algorithms,  such  as  RRT,  have  shown  significant
improvements  in  providing  solutions  in  high  dimensional
spaces  containing constraints,  and can be faster  than grid-
based methods,  in  high-dimensional contexts.  Lavalle  [20]
introduced  RRT specifically  for  holonomic,  nonholonomic
and kinodynamic constraints in path planning problems. RRT
discretely samples the configuration space [11] to find robot
configurations  within  the  free  space  with  no  need  for
workspace discretization. RRT was proven to work well in
high dimensional spaces [16]; however,  RRT tends to take
much time to find a solution, if a solution exists, in heavily
cluttered environments [28]. To improve the performance of
RRT in cluttered  environments,  a  bi-directional  version of
RRT, namely RRT-Connect, was introduced by Kuffner and
LaValle [18]. RRT-Connect grows two RRT trees, one from
the  start  and  the  other  from  the  goal  using  the  connect
heuristic  approach.  RRT-Connect  showed  improvement  in
running time in uncluttered  environments  [18].  Both RRT
and RRT-Connect do not pay any attention to the quality of
the  path  produced.  The  path  produced  by  them  is  sub-
optimal.  As  an  attempt  to  improve  the  path  produced  by
RRT,  Karaman  and  Frazzoli  [16]  introduced  the  first
asymptotically-optimal  sampling-based  algorithm,  RRT*,
which produces less jagged and shorter paths when compared
to RRT [23].  RRT* guarantees to return an asymptotically
optimal path, if one exists, and it is one of the most used
algorithms  when  dealing  with  optimal  path  planning
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problems  [23].  However,  with  its  unique  operations,  tree
rewiring  and  best  neighbour  search,  RRT*  takes  more
execution time than RRT.

3D  surface  meshes  have  become  useful  in  the
representation of  large and cluttered environments  that  are
not easy to represent using simple grids [15]. Surface meshes
are popular in gaming, as they aid pathfinding in complex
and cluttered environments. However, in computer gaming,
2D meshes with polygonal obstacles are mostly used [15].
Triangle  meshes  enable  efficient  computation  for  several
navigation  procedures  [14].  A  3D  mesh  surface  allows
navigating  through nonspherical  topology such  as  tunnels.
Moreover, 3D spaces can be directly represented on a mesh
and  that  makes  it  easy  to  identify  obstacles  and  the
traversable spaces. Breitenmoser and Siegwart [3] presented
a  mesh  construction  approach  for  path  planning  for  a
climbing robot. The work of [3] uses only the triangle strips
to implement a graph-based planner limiting the robot to only
traverse through the edges of the triangle.

In this  paper we will  be using a 3D surface  mesh for
ground  robot  planning.  These  robots  are  known  to  be
operating on the surface and, for a mesh, this requires the
computation  of  discrete  geodesic  paths  which  can  be
computationally  expensive  in  large  meshes.  A  discrete
geodesic path can be seen as a straight line connecting the set
of points on the unfolded mesh. Finding the shortest paths in
3D  surfaces  is  a  well-known  problem  in  computational
geometry and arises naturally in applications such as robotics
and geographic information systems.

RRT was implemented on a mesh in [22]. This method
explores the entire mesh to find nodes that are leading to the
goal configuration and, since it is computing geodesic paths,
this  becomes  computationally  demanding.  Mthabela  et  al.
[22] also introduced the local region method for mesh-based
planning,  which  limits  new  nodes  for  tree  expansion  to
within the local regions. This reduces the length of geodesic
paths to be computed, leading to reduced computational time
to find the desired path. This method is referred to as, RRT
on a mesh with local regions (RRT-ML). To further improve
the  speed  of  RRT  on  a  mesh,  this  paper  adapts  the  bi-
directional  RRT method,  RRT-Connect  [19],  for  use on a
mesh,  and  then  compares  it  with  RRT-ML,  the  best
performing method from [22]. The RRT-Connect version is
referred to as, RRT-CML. RRT-CML is based on the RRT-
Connect of [18] and uses local regions to limit new nodes for
the tree expansion to within the area of local regions. RRT-
CML shows significant improvements in total runtime when
compared to the single tree RRT-ML.

The contributions of this research paper are summarized
as follows:

 An  improved  run-time  of  the  mesh-based  RRT
planner  by  introducing a local  region  procedure
which reduces the exploration space of the planner.

 Reducing the length and the number of geodesics to
be computed in the mesh-based planner.

 Applicability  of  the  proposed  method in  different
3D Mesh surfaces without being affected by the size
of the mesh or the obstacles present in the Mesh.

The  remainder  of  this  paper  is  organised  as  follows:
section  II  introduces  RRT  on  a  mesh  surface  with  local
regions (RRT-ML), geodesic distances,  RRT-Connect on a
mesh surface with local regions (RRT-CML). In section III,
the  simulation  results  of  the  RRT-ML  algorithm  and  the
RRT-CML are presented and discussed. The conclusion and
future work are given in section IV.

II. METHODS

RRT's are amongst other sampling-based algorithms that
have been used to solve path finding problems due to their
ability to quickly explore the robot's workspace. Given the
start  configuration  and  the  goal  configuration,  RRT
incrementally grows the tree simply by randomly sampling
the workspace to find feasible configurations and connecting
the  closest  node  into  the  randomly  selected  node.  Fig. 1
adapted from [21] shows the tree expansion process, where
qnew is being added into the tree. The random node qrand is
sampled at each iteration. The random node is only added
into the tree if the distance between the random node and the
nearest node qnear is obstacle free and is within the specified

step size, ϵ . Otherwise, a new node qnew to be added in the
tree is derived using a steering function. 

A. Discrete geodesic paths on mesh surfaces

A discrete geodesic path can be seen as a straight line
connecting  the  set  of  points  on  the  unfolded  mesh  that
determines the local  shortest  path between the points.  The
computation  of  discrete  geodesic  paths  is  a  well-known
problem in computational geometry, and it arises naturally in
fields such as robotics and geographic information systems
[28]. Computing shortest paths in a 3D mesh surface with
obstacles is generally an NP-hard problem [4]. Computation
of  paths  for  ground  robots  on  3D  surface  meshes  is  an
application of discrete geodesics. Depending on the number
of  source  points  and  target  points,  the  computation  of
geodesic  paths  and  distances  can  be  done  differently.  A
geodesic  path  can  be  computed  between  two  given  mesh
points, i.e. only one source point, and one target point, or it
can be between a single point and many points. The latter is
commonly known as a single-source shortest path problem.
The geodesic paths can also be computed between all pairs of
points 

With the aid of the Triangulated Surface Mesh Shortest
Paths  package  [17] in  the  Computational  Geometry
Algorithms Library (CGAL) [12], this paper solves a single
point to many points geodesic problem on a mesh surface.
Based on the  algorithm introduced by Xin and Wang [26],
the  Triangulated  Surface  Mesh  Shortest  Paths  package
computes  the  geodesic  paths  from  any  source  point  in  a
triangle  mesh  to  a  selected  target  point  in  the  mesh  by
constructing  a  sequence  tree  (T)  which  contains
nodes/vertices and edges of the mesh. Thus, locally shortest
paths between nodes can be computed. Given a mesh surface
M ,  the  algorithm  of  Xin  and  Wang  [26]  finds  an  exact
shortest path  λs, which is constrained to the surface of  M ,
between the target point t  and a source point s∈ S, where S
is the set of all source points.

Fig. 1. RRT tree expansion.

B. RRT on a mesh surface with local regions (RRT-ML)

A local region-based RRT on a mesh (RRT-ML), which
allows for the reduction of geodesic length and number of
paths was introduced in Mthabela et al. [22] as an attempt to
reduce  the overall  computational  time of  RRT on a mesh
surface.  This method uses  local  regions as the exploration
area for RRT. Initially the random points are selected within
the local region of the first tree node, which is the area of
radius  r  around the tree node. A local region of a point  p
consists of triangles/faces that are within the area less than

πr2, centred at p. As the tree grows, local regions around
each node in the tree are combined to form a subset of the
mesh called sub-mesh. An example of a sub-mesh embedded
in the original mesh is depicted in Fig. 2, where the original
mesh is the gray area and the sub-mesh is the pink area.



The start and the goal configurations are within the sub-
mesh. The sampling of random point qrand is done within the
sub-mesh which reduces the length of shortest  paths to be
computed  and  when  searching  for  the  nearest  neighbour
qnear only the tree nodes that are found within a local region

around  qrand which  is  the  area  of  radius  randr are
considered. As a result the number of shortest paths to be
computed  is  reduced.  RRT-ML  pseudocode  is  given  by
Algorithm 1. To speed up the performance of RRT-ML, the
goal biasing factor [25], which replaces qrand by qgoal with a

probability pgoal is used, to draw samples towards the goal.
The  steering  function  determines  an  obstacle-free  path
segment between qnear and qrand which is one step size ϵ  or

less  from  qnear.  Any  triangle  face  with  a  normal  vector
orientation  that  is  greater  than  or  equal  to  30°  from  the
vertical is considered as an obstacle, and, therefore, the path
cannot pass through that face.

Planning  on  a  mesh  surface  is  more  challenging  than
planning in 2D, all tree nodes and edges must lie on the mesh
surface. Triangulated Surface Mesh Shortest Paths package
[17] from CGAL ensures that all paths and tree nodes are
fixed on the surface of the mesh while computing the exact
geodesic paths. Computation of geodesic path in RRT-ML is
performed often, thus causing RRT-ML to take long to find
the path since  the  process  of  finding geodesic  paths  on a
mesh is computationally expensive [22].

Fig. 2. A union of local regions.

C. RRT-Connect on a mesh surface with local regions 
(RRT-CML)

RRT-Connect  on  a  mesh  can  speed  up  the  process  of
finding the solution. The underlying classical RRT in RRT-
Connect  still  has  the tendency to explore  a  vast  area  in  a
robot's  workspace,  thus  resulting  in  a  large  number  of
possibly  long  geodesic  paths  to  be  computed.  The
performance of RRT-Connect  on a mesh can be improved
through  the  introduction  of  local  regions  to  restrict  the
sampling space into a subset of the mesh, which reduces the
exploration space for the planner into a growing sub-mesh
instead  of  the  entire  mesh  surface.  In  this  section,  RRT-
Connect with local regions (RRT-CML) is discussed. Since
this approach grows two trees alternately, one rooted at  the
initial configuration and the other at the goal configuration,
both initial and goal configurations are initialized with local
regions of radius,  r . As each tree grows towards the other,
two subsets of local regions are created and later intersect. As
soon as these local regions intersect,  the connection point,
which belongs to both trees will be found and the path from
the  initial  configuration  to  the  goal  configuration  will  be
obtained. Depending on which tree is being expanded in each
iteration, these subsets are interchanged when sampling for a
random point. The nearest neighbour search is done through
the  computation  of  shortest  geodesic  paths  between  tree
nodes and the random point. Again this is done in each tree
expansion, everything that was done for a single tree in RRT-
ML in the previous section is done twice for the RRT-CML.

The EXTEND and REACHED procedure  used for  the
RRT-CML are given by the pseudocode in Algorithm 3 and
Algorithm 4,  respectively.  The  function  NEWCONFIG
(Algorithm 2) used in this method is slightly different from
the one used in the basic RRT-Connect [18]. The pseudocode
for  RRT-CML is  given  in  Algorithm 5.  This  is  the  main
algorithm taking in a mesh  M={R ,T } as input, with  t 1

and  t 2 being proper subsets of  T . Since growing two trees

alternately,  two  unions  of  local  regions  are  also  grown
alternately.  Two lists are created for this purpose,  list 1 in
line 3 of Algorithm 5 initially contains nodes that are within
the  local  region  of  the  starting  configuration  q init and  is

grown simultaneously with the first tree (t 1 ), list 2 in line 4 of
Algorithm 5 initially contains nodes that are within the local
region  of  the  goal  configuration  qgoal is  also  grown

simultaneously with the second tree (t 2 ). By combining list 1

and  list 2 a  SubMesh  is  obtained,  since  list 1 is  a  set

difference of SubMesh and list 2; and list 2 is a set difference

of SubMesh and list 1. In line 7, REACHED function checks
if the connection point is found or not found while searching
in  list 1's local region area. If the connection point is found

(line 8), the local region of the point qmid is added into list 1

(line 9) then the path is extracted in line 10 and returned in
line 11. The planner will stop at this point. Otherwise, if line
9 returned false, the process is repeated from line 12 with t 1

replaced by t 2 and vice-versa and  list 1 replaced with list 2.
REACHED function is  called again in line 13 to check if the
connection  point  is  found  now  searching  in  list 2's  local
region area.  If  the connection point is found (line 14),  the
local region of the point  qmid is added into  list 2 (line 15)
then the path is extracted in line 16 and returned (line 17) and
the planner stops. Otherwise, the process is repeated and if
the  connection  point  is  not  found  after  N  iterations, the
empty path is returned in line 21.

III. RESULTS

All  experiments  were  computed  using  C++ on  a  Dell
OptiPlex-7050 computer with Intel® CoreTM i7-7700 CPU @
3.60GHz processor and 8 GB memory.

For  simulations  a  synthetic  mesh  which  consists  of  a
tunnel and a bridge, representing an environment with non-
spherical topology, was initially created using Blender v2.82
[8] and processed in MeshLab  [6]. This synthetic mesh has
18362 triangles and 9330 vertices and two different slopes of
angles  16° and  35° respectively.  To  evaluate  the methods
presented in this paper,  we used a set of starting and goal
positions.  This  is  motivated  by  the  application  of  path
planning in mobile robots where multiple paths have to be
computed as part of navigation. The path for each different
starting and goal position pair could have the same distance
but the time taken for the planner to find the path may differ,
due to the fact that the planner might encounter obstacles in
one route that are not necessarily on the other route. For all
simulations, the step size ϵ=1m and the maximum number
of iterations is 1500. For the RRT-ML the goal biasing factor
is 0.2, representing the probability of using the goal in place
of qrand, for new point selection. For the local region method
the radius r=1 is used for all tree nodes and r=2 for each
random  point  qrand.  Any  face  having a  normal  vector
orientation with angle θ from the vertical of 30° or above is
considered as an obstacle, therefore the planner cannot pass
through that face.

Table I shows the result of RRT-ML and RRT-CML for
different sets of starting and ending positions, where average
iterations is the total number of iterations that each of these
planners took to find the path, averaged over five trials. To
evaluate the performance of these methods on a mesh, the
total number of iterations taken by each method to find the
path  is  also  considered.  In  Table I the  average  time  per
iteration is  the time taken  by RRT-ML and RRT-CML to
complete  one  iteration  and  the  average  time  is  the  total
runtime of the planner,  each averaged over five trials. The



average path length indicates the average distance of the path
produced by each  of  the  planners  for  each  case  over five
trials.  Both  RRT-ML  and  RRT-CML  were  tested  on  the
synthetic mesh described above with the same parameter set
up. RRT-CML was also evaluated on a real mesh containing
67263  vertices  and  133822  faces.  The  mesh  was  created
using the colourised 3D LiDAR SLAM point cloud selection
collected by Cox et al. [9]. The original dataset has 3521563
vertices. For this simulation, a section of this data containing
a ramp with a slope of approximately 5.9° was used.

Fig. 3, shows the tree (orange) grown by RRT-ML. RRT-
ML  is  able  find  a  feasible  path  in  a  3D  environment
containing nonspherical topology. For the case 2 in Table I,
RRT-ML was able to find the path after 40 iterations in 8.61
seconds, on average. However, the average execution time is
higher than that for RRT-CML, since goal biasing requires
computation of shortest paths to all RRT nodes. The tree is
grown  on  traversable  parts  of  the  mesh  and  growing  on
obstacles, such as walls, is intentionally avoided.

Fig. 3. RRT-ML tree for Case 4 with a starting point in green and the goal
point in red. The orange lines are the RRT tree.

Fig. 4. Path produced by RRT-ML for Case 4 with a starting point in green
and the goal point in red.

Growing  two  trees  alternately  has  had  a  tremendous
result  in  improving  the  performance  of  RRT  [18].  Fig.  6

shows the tree produced by RRT-CML on a mesh. Since this
method grow two trees alternately at each iteration, the need
for goal biasing was removed. Looking at the results in Table
I, it is quite clear that the bi-directional RRT version quickly
completes its search. Taking case 2, for example, RRT-CML
reached the goal point in almost half the iterations required
by RRT-ML and in less than half the time, required by RRT-
ML.  As  shown  in  the  table,  in  all  cases,  RRT-CML
completed the planning tasks in less time than that required
by RRT-ML.

RRT-CML  was  also  tested  on  a  real  mesh  which  is
different  from  the  synthetic  mesh  in  terms  of  the  total
number of faces and vertices it has and the density of points.
Fig. 7 shows RRT-CML on a real mesh.

IV. CONCLUSION

Path planning in 3D environments for ground robots is a
challenging  task  since  the  path  must  lie  on  the  surface.
Planning on  a  mesh  requires  the  computation of  geodesic
paths to ensure that all paths lie on the surface of the mesh.
Through the use of CGAL, computation of geodesic paths on
a mesh was enabled; however, determining geodesic paths is
computationally expensive. By introducing local regions, the
exploration space  for  RRT is  reduced  to  a   growing sub-
mesh, thus reducing the length and number of geodesics to be
computed.  As  a  result, the  runtime  of  the  algorithm  is
reduced. 

Fig. 5. RRT-CML tree for Case 4 with a starting point in green and the
goal point in red. The first tree is orange and the second tree is green.

Fig. 6. Path produced by RRT-CML for Case 4 with a starting point in
green and the goal point in red. The point connecting the two trees, one
orange and the other green, is in yellow.

Fig. 7. RRT-CML on a real mesh. The starting point is in green and the
goal point is in red. The point where the first tree (orange) and the second
tree (green) connect is shown in yellow.

To further reduce the runtime of the planner on a mesh
surface, RRT-CML,  which  grows  two  trees  alternately,
removing  the  need  for  goal  biasing,  was  developed  and
demonstrated on a synthetic and on a real mesh. RRT-CML
outperformed  the  RRT-ML  method  by  finding  a  path  in
fewer iterations and in less time, on a synthetic mesh. RRT-

CML operation was also shown in the context of a real 3D
surface mesh, showing capabilities to work well in real world
problems.

In  future  research  the  local  region  approach  could  be
applied  in  the  asymptotically  optimal  planner,  RRT*, to
obtain optimal solutions. The local regions concept  may aid
the  near  neighbour  search  and  rewiring  processes  of  the
RRT* since it can be used to create the ball of radius k used
by RRT*. This will allow nodes to be selected for the nearest
neighbour  and  rewiring  processes,  allowing  the  RRT*
algorithm to iteratively minimize path cost.
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