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Abstract: The elbow technique is a well-known method for estimating the number of clusters required
as a starting parameter in the K-means algorithm and certain other unsupervised machine-learning
algorithms. However, due to the graphical output nature of the method, human assessment is
necessary to determine the location of the elbow and, consequently, the number of data clusters.
This article presents a simple method for estimating the elbow point, thus, enabling the K-means
algorithm to be readily automated. First, the elbow-based graph is normalized using the graph’s
minimum and maximum values along the ordinate and abscissa coordinates. Then, the distance
between each point on the graph to the minimum (i.e., the origin) and maximum reference points,
and the “heel” of the graph are calculated. The estimated elbow location is, thus, the point that
maximizes the ratio of these distances, which corresponds to an approximate number of clusters in
the dataset. We demonstrate that the strategy is effective, stable, and adaptable over different types of
datasets characterized by small and large clusters, different cluster shapes, high dimensionality, and
unbalanced distributions. We provide the clustering community with a description of the method
and present comparative results against other well-known methods in the prior state of the art.

Keywords: automatic; clustering; elbow method; K-means; unsupervised

1. Introduction

Clustering is an important activity in many application areas, including image pro-
cessing [1], smart grids [2], life sciences [3], molecular analysis [4], market and customer
segmentation [5], pattern recognition [6], social network analysis [7], to mention a few. It
entails the process of discovering groupings in data without prior training and is therefore
classified as an unsupervised machine-learning approach. Estimating the appropriate
number of clusters in any specified dataset is often the primary challenge in cluster analysis.
This is due to the fact that many clustering methods, particularly the well-known K-means
algorithm, require prior information about the appropriate number of clusters as a starting
parameter. Consequently, the estimation of the ideal number of clusters in a given dataset
has spawned an entire field of research devoted to the development of various approaches
for resolving this challenge.

In this regard, there are a variety of well-known approaches for determining the ideal
number of clusters in a dataset. The silhouette and elbow techniques are two noteworthy
instances of direct approaches, while the gap statistic approach comes across as a statistical
testing method. The silhouette technique assesses the quality of a clustering outcome by
calculating the average silhouette of the data for varying k values [8]. The ideal number of
clusters, k∗, is one that maximizes the average silhouette across a range of feasible k values.

A large average silhouette width is indicative of a dense population. Although successful
and having a score confined between −1 (incorrect clustering) and +1 (very dense clustering),
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the silhouette method produces a coefficient that is typically greater for convex clusters than
other cluster concepts, thus, making it unreliable in such instances. In contrast, the gap statistic
compares the total within-cluster variation for different values of k to their anticipated values
under a null reference distribution of the data (normally the uniform distribution) [9]. The
ideal cluster estimate will, thus, be the value that maximizes the gap statistic. This indicates
that the clustering structure is significantly distinct from the uniform random distribution of
points. The fact that the gap statistic is not always a convex or monotonic function makes
it more difficult to determine the best point. In addition, as a “relative” statistic, it may not
determine whether or not there are meaningful clusters in the data.

The elbow, or “knee of a curve,” approach is the most common and simplest means of
determining the appropriate cluster number prior to running clustering algorithms, suc
has the K-means algorithm. The elbow method entails running the clustering algorithm
(often the K-means algorithm) on the dataset repeatedly across a range of k values, i.e.,
k = 1, 2, . . . , K, where K is the total number of clusters to be iterated. For each value of k,
the average score for all clusters is calculated.

This score, called the within-cluster dispersion (WCD) is typically calculated by adding
the squared distance between each point and its related centroid. We note that, apart from
the WCD, there are other metrics that may be used to assess the number of clusters in a
dataset, such as the Calinski–Harabasz score, Davies–Bouldin, and Dunn value [10]. The
best k value, i.e., k∗, may then be discovered by graphing any of these scores against each
cluster number; k∗ is often located where the graph resembles an arm (i.e., the “elbow”—the
point of inflection of the curve) as will be shown in Section 3.

The primary problem with the elbow approach is that it is interpretation is dependent
on the visual analysis of an elbow-based graph, which necessitates manual human inspec-
tion in order to determine the elbow point and, as a result, can produce very subjective
results. Furthermore, when the approach produces a graph with a smooth curve, then
estimating the value of k∗ becomes difficult since the actual elbow point becomes harder to
distinguish. Most notably, the outcome of the elbow graph is typically a function of the
number of K iterations.

Consequently, the elbow point would often vary dependent on the value of K, a
circumstance for which many approaches are not readily adaptable. Nonetheless, there
are a number of notable methods for automating the identification of the elbow point in
the pursuit of building automated K-means or other K-dependent clustering algorithms,
such as the elbow strength approach (ESA) [11], knee-point algorithm (KPA) [12], Kneedle
algorithm [13], slope changing ratio method (SCRM) [14], and the angle-based discriminant
method (ADM) [15].

A closer examination reveals that both the KPA and the SCRM work upon an identical
concept of computing the intersection point that minimizes the error point of both best
lines of fit. They are both similarly comparable to the L-method of Salvador et al. [16].
The ADM technique, on the other hand, is considered to be comparable to the angle-based
approach of Zhao et al. [17].

While the aforementioned methods have yielded satisfactory results in a variety of
application areas; nevertheless, they can be limited in situations where an elbow-based
graph returns as a smooth curve [15]. Furthermore, a few of their algorithmic procedures,
such as in the KPA and its variants, can be computationally costly. In addition, several of
these methods, such as the KPA, ADM, and ESA methods, require a minimum of three
graph points in order to estimate the elbow point, which limits their use in the case of
sparse graphs.

Consequently, in this article, we present a simple yet effective method for automatically
estimating the elbow point and, as a result, the approximate number of clusters in the
dataset. The proposed approach yields a convex function based on the ratio of the squared
Euclidean distance between each point on the graph and three reference points, namely the
origin (minimum), the furthest (maximum) point, and the “heel” of the normalized graph.

The maximum value of this function inherently returns the optimum elbow point,
and consequently the approximate number of clusters in the dataset. We note that the
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current method does not inform users whether or not the K-means algorithm is the best
tool to use for clustering. Instead, it only helps to automate the elbow method towards
determining the appropriate number of clusters in the dataset to be clustered. As a result,
we present clustering researchers with a description of the suggested approach as well as
the pseudocode that implements the solution.

Therefore, the contributions of the present article are highlighted as follows:

1. Based on the elbow graph, we propose a new method for automatically determining
the potential number of clusters in a data set. The AutoElbow method provides an
accurate estimation of the elbow for different K values and is stable compared to other
approaches across different datasets having small and large clusters, different cluster
shapes, high dimensionality, and unbalanced distributions.

2. The proposed method can be used to easily automate the K-means algorithm or any
other unsupervised clustering algorithm that requires the selection of K beforehand.

The rest of the article is structured as follows: Section 2 presents a summary of the
related work, Section 3 details the AutoElbow method and its corresponding pseudocodes,
Section 4 presents and discusses the results obtained, and our conclusions are drawn in
Section 5.

2. Related Work

In this section, we discuss notable methods from the prior art for automatically de-
termining the ideal elbow point of an elbow-based graph. We classify these approaches
according to the properties of the elbow-based graph from which they were derived, namely
the line fitting methods [12,14,16], the angle-based [15,17], derivative-based [11], and the
distance-based methods [13].

The L-method is an early line fitting method that was proposed in [16] to detect the
elbow-point automatically. It works by fitting two best lines to the graph points on either
side of the point of interest. Then, the best lines that produce the smallest root mean square
error (RMSE) are fitted to the graph, and the point where the two lines intersect is deemed
to be the optimal knee point. On a wide variety of datasets, the L-method outperformed
the gap statistics and permutation tests approaches.

Additionally, the L-method has inspired other variations, such as the MATLAB imple-
mentation version in [12] and the modified method in [14]. In particular, the research in
Diao et al. [14] applied the method of line fitting for elbow point detection to the capacity fade
curves of lithium-ion cells. All of these implementations have demonstrated the line-fitting
method’s efficacy and its capacity to improve performance in various application domains.

The angle-based technique of Zhao et al. [17] computes the Bayesian Information
Criterion (BIC) measure of any clustering algorithm under consideration and then computes
the first order difference of the BIC measure. The point with the greatest BIC angle is
estimated to be the knee point. By conducting experiments with the K-means algorithm,
the authors demonstrated that their technique outperformed other existing index metrics
as well as using the BIC measure alone.

Similarly, the authors of the more recent article in [15] developed an angle-based
discriminant technique. Unlike the method of Zhao et al. [17], the discriminant method
computes the angles created by each point of the elbow-based graph instead of the BIC
graph. Multiple datasets were then used to demonstrate that the discriminant method
outperformed the gap statistics approach.

On the other hand, due to the variances that may occur along the elbow-based graph,
derivative-based approaches are not widely utilized in the literature. Nonetheless, one
notable example was proposed in [11] using an elbow strength algorithm (ESA). Here,
the ESA determines the elbow point by computing the difference between the first- and
second-order differences of the elbow-based graph.

The algorithm then considers the point with the largest difference (referred to as the
elbow strength) to be the ideal location of the elbow. In contrast, the Kneedle algorithm
proposed in [13] was used to implement a distance-based strategy. In this instance, the
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Kneedle algorithm computes the squared Euclidean distance between each point of the
elbow-based graph and a straight line that encloses the graph’s endpoints. The point with
the largest distance is considered to be the ideal elbow point.

Despite the fact that the approaches described above have yielded significant results in
a variety of application areas, there is always room for improvement or a better approach.
Improved approaches are needed, for example, when the elbow graph returns as a smooth
and extremely curved graph, when the graph is significantly perturbed, or when the tail of
the graph is either too short or too long. These are some of the challenging circumstances
that prompted our proposed approach, which we will describe in the next section.

3. AutoElbow Method

This section presents the basic concept of the proposed method including a pseudocode
of the algorithm. Figure 1 depicts a typical elbow-based graph with a smooth curve, and
our objective is to find the “elbow” or “knee” point P of the graph. To achieve this
objective, we first define the elbow-based graph as G ∈ R2, which is represented as
G = [g1, g2, . . . , gk, . . . , gK]

T , where gk = (xk, yk) is a single point along G with coordinates
(x, y), and G is a collection of these points describing the graph. Here, x represents the
abscissa denoting the total number of clusters used to execute the clustering method (i.e.,
the K-means algorithm), whereas y corresponds to the evaluation measure plotted along
the ordinate.

Figure 1. Representation of the parameters of the AutoElbow method.

3.1. Description of the Algorithm

In the AutoElbow method, we adopt the total WSD (TWSD) as the evaluation measure,
which is obtained as the sum of the squared Euclidean distances between each point in
a cluster and its representative centroid. After each run of the K-means algorithm, the
value of TWSD is computed for different cluster numbers k = 1, 2, . . . , K, where K is the
maximum number of clusters anticipated in the dataset. The method for determining the
TWSD using K-means is described in [15]. Next, we present a detailed explanation of how
the AutoElbow technique operates:

1. Let the input data to be clustered be Z = {zi}N
i=1, where N is the total number of data

points in Z ∈ RD, and D is dimension of Z.
2. The K-means algorithm is executed repeatedly for different cluster values k ranging

from 1 to K. The K-means algorithm can be implemented as described in [18].
3. The TWSD, i.e., y for K clusters is computed as

yk =
K

∑
k=1

Nk

∑
i=1
||z(k)i − ck||2, (1)

for k = 1, 2, . . . , K, where k represents a single cluster, K is the maximum number of
clusters to be iterated upon, i is the index of a single data point zi within a single
cluster k, Nk is the total number of data points in cluster k and ck represents each
cluster’s centroid.
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4. The elbow-based graph G is obtained as G = {(xk, yk)}K
k=1, where {x1 = 1,x2 = 2,

. . . , xk = K} are the actual total number of clusters considered in the iteration process.
5. The graph G is then inputted to the AutoElbow algorithm, which proceeds to compute

the elbow or knee point P (i.e., gk∗ ), where k∗ is the optimal cluster number, as follows:

a. First, G is normalized to the interval [0,1]. This is done to ensure that the
computed squared Euclidean distances between graph points are same in
magnitude. Therefore, the normalized values are denoted as

Gnorm = {(xnorm
k , ynorm

k )}K
k=1. (2)

where

xnorm
k =

xk −min{xk}K
k=1

max{xk}K
k=1 −min{xk}K

k=1
, for k = 1, 2, . . . , K (3)

ynorm
k =

yk −min{yk}K
k=1

max{yk}K
k=1 −min{yk}K

k=1
, for k = 1, 2, . . . , K. (4)

b. As illustrated in Figure 2, the algorithm then checks for the concavity structure
of the graph G in order to identify the proper locations of O, R, and Q. Figure 2
depicts the relative positions of O and Q for each of the four forms of concavity,
whereas R is determined as the equivalent xnorm

k value per graph point along
the abscissa. The AutoElbow algorithm is designed to identify these distinct
graph topologies, thus, making it applicable to both elbow- and knee-based
graphs. We introduce a simple test for the concavity form of Gnorm as follows:

(i) First, we compute the slope of the straight line L that connects the first
and last element in Gnorm as

m =
ynorm

1 − ynorm
K

xnorm
1 − xnorm

K
(5)

where xnorm
1 , xnorm

K , ynorm
1 , and ynorm

K are the first and last elements in
xnorm and ynorm, respectively.

(ii) Then, a check point lK/2 is computed at the mid-point of L (i.e., at K/2)
using

lK/2 = ynorm
1 −m× (xnorm

1 − xnorm
2 ) (6)

The midpoint (i.e., K/2) was selected as the checkpoint for the concavity
test since it is the point furthest from the boundary line L. This choice
ensures that the concavity test detects no misleading variations at the
edges of the elbow- or knee-based graph G.

(iii) Consequently, the concavity test C of Gnorm is established as follows

C =


1 (i.e., Left elbow) if m < 0 and l2 − ynorm

2 > 0
2 (i.e., Right elbow) if m > 0 and l2 − ynorm

2 > 0
3 (i.e., Left knee) if m > 0 and l2 − ynorm

2 < 0
4 (i.e., Right knee) if m < 0 and l2 − ynorm

2 < 0

(7)

c. In this article, the TWSD is used as the evaluation metric, and thus the graph
G is inevitably a left elbow-based graph, i.e., concave up with a decreasing
slope. This is due to the fact that the TWSD decreases as the number of clusters
increases [10]. Thus, under this condition, the AutoElbow algorithm proceeds
by ensuring that the slope of the normalized graph is kept continuously de-
creasing via a graph cleaning process. This is done in order to ensure that all
misleading variations are smoothed out from G as follows:
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(a) For either a right knee- or left elbow-based graph, smoothing is achieved via

ynorm
k =

{
ynorm

k+1 if ynorm
k > ynorm

k−1
ynorm

k if ynorm
k ≤ ynorm

k−1

(8)

for k = 1, 2, . . . , K.
(b) For either left knee- or right elbow-based graph, smoothing is achieved via

ynorm
k =

{
ynorm

k+1 if ynorm
k < ynorm

k−1
ynorm

k if ynorm
k ≥ ynorm

k−1

(9)

for k = 1, 2, . . . , K.

O

Q

Rk

gk

(a) Left knee

Q

ORk

gk

(b) Right knee

O

Q

Rk

gk

(c) Left elbow

Q

ORk

gk

(d) Right elbow

Figure 2. Types of concave graphs corresponding to either elbow- or knee-based graphs: (a) Left knee:
Concave down with increasing slope, (b) Right knee: Concave down with decreasing slope, (c) Left
elbow: Concave up with decreasing slope, and (d) Right elbow: Concave up with increasing slope.

6. Then, by considering both Figures 1 and 2, we propose the AutoElbow function f as

fk =
bk

ak + ck
, for k = 1, 2, . . . , K (10)

where bk is the squared Euclidean distance between any point gk on the graph and
Q (which is the maximum reference distance), ak represents the squared Euclidean
distance between point O (minimum reference distance) and gk along the graph, and
ck represents the squared Euclidean distance between points gk and Rk. Furthermore,
the coordinates of O, Q, and R for computing (10) are defined as follows:

(a) For a left knee-based graph (i.e., Figure 2a): The coordinates for O, Q, and R
are given as O = (0, 1), Q = (1, 0), whereas R = (xnorm

k , 1), and the squared
Euclidean distances ak, bk, and ck are computed as

ak = (xnorm
k )2 + (ynorm

k − 1)2, for k = 1, 2, . . . , K (11)

bk = (xnorm
k − 1)2 + (ynorm

k )2, for k = 1, 2, . . . , K (12)

ck = (ynorm
k − 1)2, for k = 1, 2, . . . , K (13)
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(b) For a right knee-based graph (i.e., Figure 2b): O = (1, 1), Q = (0, 0), whereas
R = (xnorm

k , 1), and the squared Euclidean distances ak, bk, and ck are com-
puted as

ak = (xnorm
k − 1)2 + (ynorm

k − 1)2, for k = 1, 2, . . . , K (14)

bk = (xnorm
k )2 + (ynorm

k )2, for k = 1, 2, . . . , K (15)

ck = (ynorm
k − 1)2, for k = 1, 2, . . . , K (16)

(c) For a left elbow-based graph (i.e., Figure 2c): O = (0, 0), Q = (1, 1), whereas
R = (xnorm

k , 0), and the squared Euclidean distances ak, bk, and ck are com-
puted as

ak = (xnorm
k )2 + (ynorm

k )2, for k = 1, 2, . . . , K (17)

bk = (xnorm
k − 1)2 + (ynorm

k − 1)2, for k = 1, 2, . . . , K (18)

ck = (ynorm
k )2, for k = 1, 2, . . . , K (19)

(d) For a right elbow-based graph (i.e., Figure 2d): O = (1, 0), Q = (0, 1), whereas
R = (xnorm

k , 0), and the squared Euclidean distances ak, bk, and ck are com-
puted as

ak = (xnorm
k − 1)2 + (ynorm

k )2, for k = 1, 2, . . . , K (20)

bk = (xnorm
k )2 + (ynorm

k − 1)2, for k = 1, 2, . . . , K (21)

ck = (ynorm
k )2, for k = 1, 2, . . . , K (22)

7. After computing ak, bk, and ck for any concavity form C of Gnorm, the optimal elbow
point k∗ corresponding to the optimal cluster number is obtained as

k∗ = arg max
1≤k≤K

( fk), (23)

In light of the preceding steps, the AutoElbow algorithm yields k∗, which is the
proposed optimal number of clusters obtained based on the elbow or knee-based graph
G. The method is summarized in the pseudocodes of Algorithms 1 and 2. Algorithm 1 is
used to build the elbow- or knee-based graph G, whereas Algorithm 2 is used to estimate
k∗ based on G.

3.2. Time Complexity

In this section, we provide the time complexity (TC) of both the AutoElbow algorithm
and the iterated K-means algorithm, based on the pseudocodes of Algorithms 1 and 2,
respectively. First, it should be noted that Algorithm 1 implements the iteration of the
K-means algorithm towards computing the elbow-based graph. In order to accomplish
this, Algorithm 1 calls a single for-loop between steps 2 and 7, thus, yielding a TC of O(K),
where K is the total number of anticipated clusters in the dataset. However, because the
basic K-means algorithm has a TC of O(N2) [19], where N is the total number of data
points, the overall TC of Algorithm 1, thus, reduces to O(KN2).

The AutoElbow method in Algorithm 2 also adopts a single for-loop based on the
outcome of the conditional concavity test of step 3. As a result, the single for-loop is
executed towards computing the parameters of Equation (10) as seen in steps 7–10, 15–18,
23–26, and 31–34 of Algorithm 2. Hence, the TC of the AutoElbow algorithm approaches
O(K) asymptotically. Consequently, when considered independently of Algorithm 1, the
AutoElbow method is indeed a fast algorithm, as K is often considered a small number
(K < 100) based on the application area. However, when both the iteration of the K-means
algorithm and the AutoElbow technique are executed sequentially, we obtain an overall TC
of O(KN2) + O(K).
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Algorithm 1 Generate elbow graph G

Input Data Z, The maximum number of potential clusters K;
Output Elbow graph, G;

1: G← [ ] Initialize G as an empty set
2: for k = 1 to K do
3: [z(k)i , ck]← K-means(Z, k) Run K-means algorithm with k as number of clusters
4: Compute yk (i.e., TWSD) using (1)
5: xk = k
6: gk ← [xk, yk]
7: G← [G, gk] Append (i.e., save) graph points gk into G
8: end for
9: Return G

Algorithm 2 AutoElbow method

Input Graph G;
Output Estimated number of clusters k∗;

1: K← length(G)
2: Normalize G as Gnorm (see (2)) using (3) and (4)
3: Check for the concavity C of Gnorm using (7)
4: if C == 1 then
5: — left elbow graph —
6: Clean up Gnorm using (8)
7: for k = 1 to K do
8: Compute ak, bk, and ck using (17), (18), and (19), respectively
9: Compute fk using (10)

10: end for
11: Obtain k∗ using (23)
12: else if C == 2 then
13: — right elbow graph —
14: Clean up Gnorm using (9)
15: for k = 1 to K do
16: Compute ak, bk, and ck using (20), (21), and (22), respectively
17: Compute fk using (10)
18: end for
19: Obtain k∗ using (23)
20: else if C == 3 then
21: — left knee graph —
22: Clean up Gnorm using (9)
23: for k = 1 to K do
24: Compute ak, bk, and ck using (11), (12), and (13), respectively
25: Compute fk using (10)
26: end for
27: Obtain k∗ using (23)
28: else if C == 4 then
29: — right knee graph —
30: Clean up Gnorm using (8)
31: for k = 1 to K do
32: Compute ak, bk, and ck using (14), (15), and (16), respectively
33: Compute fk using (10)
34: end for
35: Obtain k∗ using (23)
36: end if
37: Return k∗
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4. Results and Discussion

We considered four notable case studies to evaluate the performance of the proposed
method: the iris (real) dataset (with three clusters), a seven-cluster [20], a forty-cluster
synthetic dataset [21], and the Cleveland heart disease dataset [22]. The iris dataset with
three clusters was considered suitable for assessing the different approaches for a small
cluster number, whereas the seven- and forty-cluster datasets were considered for analyzing
datasets with both medium and high cluster numbers, while the Cleveland dataset sufficed
for a high dimensional and unbalanced dataset.

The idea of experimenting with different K values to generate the elbow graph was
motivated by the fact that K typically determines the shape of the elbow graph and also
because the actual number of clusters in the dataset is not always known in advance.
Consequently, small K values typically generate graphs with short tails and may not
correspond to the actual number of clusters in datasets, particularly datasets with many
clusters. Large K values, on the other hand, may account for datasets with many actual
cluster numbers but will generate long-tailed graphs, which will ultimately shift the
potential location of the elbow k∗.

Hence, it is essential to evaluate the performance of the various methods for varying
K values. As a result, we evaluated the different approaches with K = 10 and K = 40
for the various datasets, and the results are discussed in the following subsections. In
addition, because the K-means algorithm is based on statistics, 1000 independent Monte
Carlo simulations were conducted for each dataset. The average results for each method
are displayed in the graphs below. We should also mention that, because the essence of
each method is to determine k∗ along the x-axis of the graph, each method, thus, produces
different magnitudes along the y-axis based on their specific measure of interest. To ensure
consistency of interpretation, we normalized these measures between 0 and 1 as can be
seen in the different performance graphs.

4.1. Three-Cluster Dataset

Figure 3a depicts a 2D representation of the Iris dataset based on the petal width and
petal length. This dataset consists of three ideal (i.e., groundtruth) clusters (i.e., the Iris
Setosa, Iris Versicolour, and Iris Virginia species). Nevertheless, without prior knowledge
of these clusters, it is common to consider the dataset as containing either two clusters
(with the Setosa and Virginia species constituting one cluster) or four clusters (i.e., the Iris
Setosa and Iris Versicolour as separate clusters, whereas the Iris Virginia as comprising
two clusters). Consequently, the automation of this subjective process should result in
some errors. However, these errors must fall within reasonable bounds, which we consider
for the Iris dataset as between two and four clusters.

Figure 3b,c shows the corresponding elbow-based graphs for K = 10 and K = 40,
respectively. By comparing the two graphs, it is clear that the elbow in Figure 3b is more
pronounced than the smoother and longer-tailed graph in Figure 3c. Such variations in
the structure of these elbow graphs are deemed useful in evaluating the performance of
the various approaches even for the same dataset. As a result, Figure 3b–i shows the
corresponding performance graphs for both K = 10 and K = 40 for the various approaches.
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Figure 3. Small cluster number case study: three clusters.

Figure 3d depicts the results of the KPA method. Typically, the KPA method computes
an error (i.e., the RMSE) between two best lines that fit the graph, and the minimum value
over a range of k is considered the optimal k∗ value. In this case, the KPA returns the
same value (i.e., k∗ = 2) for the K = 10 and K = 40 graphs. Although this may appear
appropriate for the small cluster Iris dataset, visual analysis shows that the elbow point in
Figure 3c shifted slightly due to the longer tail effect of the graph.

Despite missing this shift, the KPA’s performance falls within the expected bounds,
and it is, thus, deemed adequate. A similar argument to the KPA can be made for the ESA
and L-methods as can be seen from their results depicted in Figure 3e,h, respectively. This
is due to the fact that both the KPA and the L-method utilize two best lines of fit for the
elbow graph.

Figure 3f,g,i, on the other hand, show that the ADM, Kneedle, and the proposed
AutoElbow methods were able to detect the actual cluster number as k∗ = 3 for K = 10. For
K = 40, the proposed AutoElbow and Kneedle methods also demonstrated a shift in the
detected elbow point (i.e., k∗ = 4), which is expected due to the long tail effect of the graph.
However, for K = 40, the ADM detected a lower elbow point (i.e., k∗ = 2), demonstrating
that the method may not necessarily adapt to the graph length and elbow position but
rather to variations along the curve.

the For instance, because the K = 40 graph was more circularly curved and smoother
than anticipated, the ADM and ESA approaches did not adjust as expected, because the
ADM method seeks to detect graph points with acute angles, which was absent in this case
at the ideal elbow point (i.e., k∗ = 3). It can, thus, be concluded that the proposed method
and other competing methods typically performed well for datasets with small clusters and
for smaller K values used to generate the elbow graph (e.g., K = 10). However, this may



Appl. Sci. 2022, 12, 7515 11 of 17

not always be the case, and the consequences of other potential conditions are discussed in
the following subsections.

4.2. Seven-Cluster Dataset

The various methods were tested on a synthetic dataset with seven clusters, as shown
in Figure 4a. The dataset was deemed instructive because it included a mix of small and
large, convex-shaped, and connected clusters. As a result, any clustering algorithm may
be susceptible to subjective errors, which may be reflected in the apparent elbow position
within the elbow-based graph. Consequently, we ran the K-means algorithm repeatedly for
K = 10 and K = 40.

We note that using K = 10 for a dataset with a groundtruth of seven clusters may
obstruct the precise location of the true elbow because it will be close to the graph’s edge.
As a result, instead of an ideal sharp elbow, the graph may suffice as a curve, as shown
in Figure 4b. This exemplifies why a large K value is frequently preferred, particularly in
applications where the expected cluster number in the dataset is unknown. As a result, we
attempted K = 40, which introduces the long-tail effect, as shown in Figure 4c and which
may eventually influence the ideal elbow position.

In addition, since it is well-known that the K-means algorithm performs better with
spherical clusters and poorly with irregularly shaped clusters [9], we specified the error
bound to be between six and eight clusters in this instance. This error bound was chosen
because the K-means algorithm may estimate the convex-shaped cluster in the dataset as
two separate clusters, whereas the connected clusters may be viewed as a single cluster.

The KPA method detected its elbow point at k∗ = 3 for K = 10 and k∗ = 4 for K = 40,
as shown in Figure 4d. In essence, the KPA, ESA, and L-method all estimated k∗ values that
were outside of the error bound for both K = 10 and K = 40, while the poor performance
for K = 10 can be explained by the groundtruth’s proximity to the graph edge (i.e., k∗ = 7
being close to K = 10); nevertheless, it is expected that when the tail was extended to
K = 40, these algorithms would have adapted. However, this was not the case because
both curves (i.e., for K = 10 and K = 40) had a high curvature, thus, making the true
estimate of the elbow point difficult for these methods.

Although the ADM, Kneedle, and proposed AutoElbow method all underestimated
the true k∗ value as k∗ = 3 for the K = 10 graph, as shown in Figure 4f,g,i; nevertheless,
they all adapted appropriately when K was increased to K = 40. As a result, our proposed
algorithm, along with the ADM and Kneedle methods, achieved an accuracy of k∗ = 6,
which was within the error bounds. These results are consistent with what a human
observer might have estimated in the absence of prior knowledge of the true cluster
number. By visually examining Figure 4a, for instance, an expert may localize the elbow
point k∗ to be between 4 and 6, thus, justifying the low k∗ value estimated by the various
algorithms for K = 10.

To summarize, all of the algorithms failed to identify the correct cluster number, owing
to the poor structure of the elbow graph, which was caused by the low iteration value used
in this case. As a result, this experiment validates the need for large K iteration values to be
used, for which our proposed algorithm performed well and within appropriate bounds.
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Figure 4. Medium cluster number case study: seven clusters.

4.3. Forty-Cluster Dataset

We tested the algorithms using a dataset with 40 clusters, as shown in Figure 5a,
demonstrating the need for larger K values. As a result, we considered the case of K = 80,
resulting in the elbow graph shown in Figure 5b. This experiment was valuable because it
presented the algorithms with an elbow graph with fluctuating graph points. This allowed
us to examine the concepts of the various methods using such a perturbed graph. The red
graph in Figure 5a represents the original fluctuating elbow graph obtained after executing
Algorithm 1, whereas the blue graph was obtained after applying the cleaning function
(i.e., Equation (8)) in the AutoElbow method. Furthermore, because we previously used
a 10% error bound around the groundtruth as the accuracy limit, we considered an error
bound of 36 to 44 for the current 40-cluster dataset.
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Figure 5. Large cluster number case study: 40 clusters.

As illustrated in Figure 5d,e, the ESA and ADM methods failed to locate the correct
elbow point due to the disturbances in the initial elbow graph of Figure 5b. We note that
the ADM technique works by computing the angles formed at each graph point. However,
as a result of the oscillations in the original graph, and thus many acute angles were created,
which resulted in the chaotic nature of the ADM’s output function as depicted in Figure 5e.

The ESA method, on the other hand, works by calculating the difference between the
graph’s second- and first-order differences. However, because of the steep slope at the
beginning of the graph, the ESA’s output function resulted in a high elbow strength, which
misled the algorithm’s judgment of the elbow point. Therefore, neither technique can be
guaranteed to yield consistent results unless some smoothing or approximation functions
are applied to the graph prior to using these methods.

On the other hand, Figure 5c,f–h shows that the KPA, Kneedle, L-method, and our
proposed AutoElbow method all produced estimates that fell within the error bounds
for this dataset. However, the KPA method overestimated the number of clusters given
k∗ = 44, which can be permitted based on the fact that the minimum point, as depicted in
Figure 5c, falls within a broad minimum range spanning k = 40 to 48. This can be further
verified visually in Figure 5b, where the elbow appears to be between k∗ = 40 and 44.
We note that Figure 5c,g shows that the L-method works similarly to the KPA method, as
evidenced by the similar function shapes of their respective graphs. Consequently, the
explanation provided for the KPA also applies to the L-method.

For the Kneedle algorithm, although it can be observed that the maximum point of
the graph in Figure 5h is at k∗ = 40; nevertheless, the Kneedle algorithm outputted the
elbow point as k∗ = 75. This is due to the fact that the Kneedle algorithm uses a threshold
method to determine the true elbow point (see [13] p. 4), and when the threshold function
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was used, the Kneedle algorithm incorrectly outputted k∗ = 75 as the elbow point. This
can be explained noting that the Kneedle algorithm’s threshold function looks for the last
local peak in the output function to determine the elbow point. However, due to the noisy
nature of the function in Figure 5f, the algorithm detected an erroneous value of k∗ = 75.

Our AutoElbow algorithm, on the other hand, estimated an accurate elbow point, as
shown in Figure 5h. This can be explained by the fact that the AutoElbow method produces
a smoother function than the Kneedle algorithm (see Figure 5h), which demonstrates the
AutoElbow method’s advantage. Furthermore, we note that even though the AutoElbow
method correctly identifies the elbow point as the maximum value, which could have been
applied to the Kneedle algorithm as well, nevertheless we can see that the AutoElbow’s
final peak localizes at k∗ = 44, which, if taken, would still fall within the error bounds
established for this dataset.

We demonstrated the stability of the AutoElbow approach by analyzing its perfor-
mance across a range of K values for small, medium, and large cluster datasets. Stability is
demonstrated by the method’s accurate estimations of the ideal elbow location for graphs
with smooth, strongly curved, and acute elbows. In addition, it displays adaptability by
conforming to the length of the elbow graph, i.e., by following both short- and long-tailed
graphs. The AutoElbow method’s output is a smoother and convex-based function, which
further ensures its stability in locating a single distinct elbow point in elbow-based graphs.
These results have, thus, demonstrated the viability of the AutoElbow approach.

4.4. The Cleveland (Heart Disease) Dataset

The performance of our method was evaluated for the case of a high dimensional and
unbalanced real dataset based on the well-known Cleveland heart disease dataset [22]. The
Cleveland dataset is well-known and widely used as a benchmark for systems that detect
heart disease [22]. The dataset is divided into five classes (i.e., five clusters in our case),
each represented by an integer value ranging from 0 (no presence of heart disease) to 4
(presence of heart disease).

We used the processed file (i.e., “processed.cleveland.data”) from the database, which
contains 303 instances with 13 medical attributes (i.e., the dimensions). The class attribute,
which is the 14th dimension, was removed since it only serves as the groundtruth for
the number of clusters. Figure 6 depicts a summary of the dataset, which provides the
number of attributes, their respective terms, and the class (i.e., cluster) bar chart showing
the unbalanced distribution of the dataset.

Since the dataset consists of five clusters (groundtruth); thus, we tested each algorithm
using K = 10. We note that, using K = 10 permits for some allowance in the tail of the
elbow graph, which we considered sufficient to detect the elbow point. The obtained results
are depicted in Figure 7a–g. The AutoElbow and L-method both correctly detected the
presence of five clusters in the Cleveland dataset. The KPA method detected four clusters,
which falls within the error tolerance range of four to six clusters; however, the Kneedle,
ESA, and ADM methods fell outside of this range, making them the lowest performers.

Although the maximum point of the Kneedle response graph (see Figure 7e) corre-
sponds to the actual cluster number; nevertheless, the use of the inbuilt threshold approach
of the Kneedle algorithm resulted in an erroneous value of k∗ = 8. Nonetheless, it is worth
noting that the elbow graph in Figure 7a shows that an elbow appears at both K = 5
and K = 8, which may explain why the ESA, ADM, and Kneedle algorithms detected the
cluster number at k∗ = 8 for the Cleveland dataset. On the other hand, our AutoElbow
algorithm clearly produced a smoother response curve than the Kneedle algorithm, thus,
demonstrating its stability.

Another noteworthy feature of our proposed AutoElbow method is its ability to
effectively smoothen the perturbed elbow graph, as illustrated in Figure 7a. By smoothing
the curve, the AutoElbow algorithm is able to accurately find the elbow point and, by
extension, the exact number of clusters in the dataset.
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Figure 6. The Cleveland dataset characteristics: number, name of attributes, and distribution
per cluster.
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Figure 7. Performance on the high dimension Cleveland data with five clusters.
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Summarily, we demonstrated that the AutoElbow method can be used to automatically
determine the optimal cluster number from an elbow graph generated by iterating the
K-means algorithm over a high-dimensional, unbalanced dataset. However, we note that
the effects of higher dimensional and cluster imbalanced datasets may indeed have an effect
on the K-means performance; nevertheless, as long as an elbow point exists in the elbow
graph, our method is capable of detecting it accurately. Thus, prior to actually employing
the K-means method or any other unsupervised clustering approach for the purposes of
clustering, the AutoElbow method can be utilized to automatically obtain an estimate of
the number of clusters in a dataset.

5. Conclusions

In this paper, we presented a new method for determining the optimal number of
clusters in a dataset by accurately detecting the elbow point of an elbow-based graph.
Our AutoElbow method, which works for both elbow- and knee-based graphs, can be
used to easily automate the K-means algorithm and any other unsupervised clustering
approach. The AutoElbow algorithm produced a more convex and smoother function
than the Kneedle algorithm, thus, allowing it to be used on highly perturbed elbow- or
knee-based graphs.

By comparing the AutoElbow method to other well-known methods in the prior
art, we demonstrated the relative accuracy, stability, and adaptability of the AutoElbow
method for different K values as well as for small, medium, and large cluster datasets. The
performance of the AutoElbow method, thus, contributes towards improving the accuracy
of clustering methods in determining the ideal number of clusters in a dataset. This will
also allow clustering methods to be deployed more efficiently and effectively in a wide
range of application areas.

However, because the proposed method is based on the generated elbow-based graph,
it is limited by how accurately the graph depicts a sharp elbow point and, thus, the number
of clusters in the dataset. In future works, the AutoElbow method may yet be further
improved by examining other evaluation metrics and making better use of the output
characteristics of the AutoElbow algorithm.
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