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Abstract. Channel Assignment (CA) in wireless mesh networks (WMNs)
has not been well studied in scenarios where the network uses Dynamic
Spectrum Access (DSA). This work aims to fill some of this gap. We
compare metaheuristic algorithms for optimising the CA in a WMN that
has both Wi-Fi and DSA radios (where DSA could be Television White
Spaces or 6 GHz). We also present a novel algorithm used alongside these
metaheuristic algorithms to ensure that the CA solutions are feasible.
Feasible solutions meet the interface constraint, i.e. only as many chan-
nels are allocated to a node as it has radios. The algorithm also allows
the topology to be preserved by maintaining links. Many previous stud-
ies tried to ensure feasibility and/or topology preservation by using two
separate steps. The first step optimised without checking feasibility and
the second step fixed infeasible solutions. This second step often negated
the benefits of the previous step and degraded performance. Other CA
algorithms tend to use simple on/off interference models, instead of mod-
els that more realistically reflect the physical layer environment, such as
the Signal and Interference to Noise Ratio (SINR). We present our more
realistic SINR-based model and optimisation objective. Simulated An-
nealing (SA) and Genetic Algorithm (GA) are applied to the problem.
Performance is evaluated and verified through simulation. We find that
GA outperforms SA, finding higher quality solutions faster, although
both metaheuristics are better than random allocations. GA can be used
daily to find good CAs in changing conditions.

Keywords: Channel Assignment · Dynamic Spectrum Access · DSA ·
Wireless Mesh Networks · WMN · Channel Assignment · CBRS · Wi-Fi
6E · TVWS · Genetic Algorithm · Simulated Annealing
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1 Introduction

Recently, Dynamic Spectrum Access (DSA) has been gaining traction again.
This is as regulatory bodies around the world have been opening up the spec-
trum bands that were formerly reserved for licensed users, for opportunistic use
by other users. Examples are Citizens Broadband Radio Service (CBRS) Spec-
trum Access System (SAS) [1] and Automated Frequency Coordination in Wi-Fi
6E [2]. Most of the associated spectrum bands require (or will require) the use of
databases to acquire access to channels within the bands. Another technology,
Wireless Mesh Networks (WMNs), has proven its usefulness in extending Inter-
net access from a gateway node to a wider area [3–6]. This is especially useful
in rural areas or informal settlements where Internet connectivity infrastructure
is not reliable. Bringing together DSA and WMN technologies can be very ad-
vantageous, especially in bringing connectivity to the unconnected, unreliably
connected, or underserved.

This novel type of network comes with new challenges and avenues for re-
search. Channel Assignment in such DSA WMNs is especially challenging. The
limited channel availability, the fact that different nodes may have different al-
lowed channels, interference within the network, as well as the possibility of
other secondary users causing interference, all add to the complexity of an al-
ready NP-complete problem [7].

This work will present two metaheuristic algorithms (Simulated Annealing
and Genetic Algorithm) to address the Channel Assignment problem in a WMN
that uses DSA. We introduce a novel algorithm that ensures both the radio
interface constraint and the connectivity or topology preservation constraint are
met. This algorithm is used in conjunction with either Simulated Annealing
or Genetic Algorithm. We optimise on Signal to Noise and Interference Ratio
(SINR), rather than unrealistic binary interference models.

We continue this section with some brief background information on DSA
technologies, as well as the metaheuristic optimisation techniques used in this
work. An overview of related work is given in Section 2. Then, in Section 3, we
present and formulate models for the problem. The methodology is detailed in
Section 4. Simulation results are presented and discussed in Section 5, before
concluding.

1.1 Dynamic Spectrum Access

Dynamic Spectrum Access has emerged as a way for the radio frequency spec-
trum to be used more efficiently. DSA became more important after it had been
found that large parts of the radio spectrum remain unused while being licensed
to certain users, creating an artificial spectrum scarcity. DSA refers to any of a
number of techniques whereby wireless frequency bands can be shared oppor-
tunistically between the primary (licensed) users of the spectrum and secondary
(unlicensed) users (SUs). It is enabled by cognitive radio, through spectrum
sensing and/or the use of Geolocation Spectrum Databases (GLSDs). While
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practical spectrum sensing still remains in the research stage, GLSD based ap-
proaches have received wide acceptance and practical use. Using DSA methods,
radios can adjust their spectrum use according to current environmental con-
ditions while ensuring that Primary Users (PUs) or incumbents are protected
from harmful interference.

Television White Spaces (TVWS) is one band in which DSA is used. TVWS
refers to the unused portions of the spectrum in the 470-694 MHz range tra-
ditionally licensed to TV transmitters. SUs have been allowed to access this
spectrum by a number of national regulatory bodies, including the FCC in the
United States of America, Ofcom in the United Kingdom, and ICASA in South
Africa. Most regulations require the use of a GLSD to ensure compliance and
protection of TV broadcast services.

Citizens Broadband Radio Service (CBRS) is a band of spectrum in the
3.5 GHz range that was recently opened for sharing with incumbents for com-
mercial use in the United States [1]. Service providers can deploy networks in
this band without requiring spectrum licenses. Access is divided into three tiers:
incumbent access, priority access, and general authorised access. CBRS uses a
Spectrum Access System (SAS), which grants requests by SUs to access channels
in the band, using a database of CBRS radio base stations, similar to the GLSD
in TVWS.

To minimise interference with satellite links, Wi-Fi 6E is set to use Auto-
mated Frequency Selection (AFC), as the 6 GHz band has been opened up for
unlicensed use by either low power indoor Access Points (APs), or standard
power outdoor Wi-Fi APs [2]. This will also use a database to coordinate spec-
trum use among all users. To obtain available channels and request access, APs
must consult an AFC provider before starting to transmit.

Our work can be extended to any and all of these DSA technologies and so
we expect it to become increasingly useful in time.

1.2 Metaheuristic algorithms for optimisation

We give some brief background on the metaheuristic stochastic optimisation
algorithms employed in this work. We have selected these algorithms because
they are some of the most well-known and readily available algorithms, which
are widely applied and verified. This means they would be easier to implement
in a real network. It also means that our experiments can be replicated readily
using the same algorithms, perhaps in other coding languages or with other
simulation frameworks. For these reasons, we have also chosen to implement the
most common “vanilla” versions of these algorithms. Variations are left as future
work.

Simulated Annealing Simulated Annealing (SA) is a probabilistic search
heuristic used in optimisation problems with complex, often discrete, search
spaces. It is based on, and analogous to, the physical process of annealing (of
a metal, for example) in statistical mechanics, whereby atoms are cooled in a
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specific slow way until reaching the state of minimum energy [8]. The aim is
always to find the lowest “energy” solution. That is the solution with the lowest
cost. The algorithm starts with the system in a certain arbitrary configuration
or state, i.e. a solution, and then it computes the “energy”, which is the value
of the objective function or cost of that solution at that iteration. From there, a
new neighbour solution is generated by applying a slight alteration to the system
state and its cost value computed and compared to the previous cost. The new
solution is either accepted or rejected based on whether it has a lower “energy”
value than the first solution and according to the temperature parameter. The
new candidate solution is always accepted if the cost value has improved, and
accepted probabilistically if the new solution is worse. The probability of ac-
ceptance is based on the difference in cost between the new candidate solution
and the old solution, as well as on the current temperature value. The accepted
solution is then the starting point for the next iteration.

The temperature parameter relates to how likely the algorithm is to choose
a worse solution than the current one, which can prevent it from stagnating on
a local minimum. The temperature must initially be set to a certain high value
and decreased every iteration according to a defined cooling function, the choice
of which is up to the implementer. Some examples are exponential multiplicative
cooling, logarithmic multiplicative cooling, and linear multiplicative cooling [9].
The process of generating a new neighbour solution and accepting or rejecting
the solution continues until the termination conditions are met. These could be a
specified number of iterations or when an acceptable running time is reached, or
an acceptably low solution has been settled on. Certain tests and rules-of-thumb
can be followed to determine whether to stop or continue with the algorithm or
estimate the convergence time, e.g., the Geweke test [10].

Genetic Algorithm The Genetic Algorithm is a well-known metaheuristic
algorithm based on the evolution of genes through generations, whereby the
fittest individuals are selected as parents, they reproduce, and genes occasionally
mutate. The quantities required are:

– a fitness function (optimisation objective function);
– a population of chromosomes, also called genomes (an encoding for solutions

in the solution search space);
– a selection method by which parents for the next generation are selected;
– a crossover or reproduction method to produce the next generation; and
– a mutation method by which random changes are introduced to chromo-

somes, preventing convergence to local minima.

The algorithm aims to find the solution with the maximum fitness. It continues
until a) the fitness value of the chromosome with the best value thus far stays the
same for a certain number of iterations, or b) after an acceptable predetermined
total number of generations is reached. One of several parent selection meth-
ods may be used. A popular method is Roulette Wheel selection, where each
chromosome in the current generation is given a probability of being selected
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that is proportional to its fitness. This method is vulnerable to causing prema-
ture convergence. Linear Rank selection tries to prevent a single solution from
dominating and causing premature convergence in Roulette Wheel selection by
instead ranking individuals according to their inverse fitness and then basing
the probability of selection on the rank rather than the actual fitness value. The
highest fitness solutions are given the highest value rank. For example, out of
ten solutions, the highest fitness will have rank position 10 (not 1).

2 Related Work

While the channel selection and assignment problems may appear to be well
studied, there is no other work that presents an algorithm for a WMN using
DSA methods, such as a GLSD, along with spectrum sensing. To the best of
our knowledge, this paper is also one of the first works to use the SINR per-
ceived by the mesh nodes for CA in a WMN. It is common in the literature to
use simplistic binary conflict-based objectives, using unrealistic interference and
channel models, and neglecting the requirement to maintain connectivity in the
network.

Simulated Annealing is evaluated by Chen and Chen [11] for CA in WMNs,
while considering the interface constraint. The interface constraint states that the
number of channels assigned to a node cannot exceed the number of interfaces or
radios it has. In one method of Chen’s work, the interface constraint is modelled
with a penalty function for candidate solutions. In the other method, solutions
that violate the interface constraint are not allowed, and infeasible solutions are
converted to feasible solutions by merge operations. A weakness of this work is
that this merge operation once again introduces the interference the first step
aimed to minimise. Interference is considered binary, either present or not, and
connectivity is ensured by assigning every link a channel.

Sridhar et al. present a CA methodology for multi-radio WMNs that use only
Wi-Fi spectrum [12]. The optimisation goal is minimising interference. However,
they also introduce a constraint to ensure that each link is assigned a channel
for topology preservation. They weight the interference objective by the link
traffic, which is predicted from previous averages. Lagrangian relaxation is used
to find lower bounds. They also present a GA-based metaheuristic for solving
the problem. A distributed algorithm is also presented, but this requires that all
radios maintain a channel assignment matrix as well as a radio usage matrix for
all nodes in the network, both of which are difficult to realise. Pal and Nasipuri
also present a GA, but for joint routing and channel assignment [13]. They op-
timise on route quality. Balusu et al. combine GAs with learning automata to
minimise interference in WMN CA for multicast tree topologies [14]. Multicast
tree networks are also investigated by Cheng and Yang, who present GA, SA
and Tabu search solutions for joint Quality of Service (QoS) routing and chan-
nel assignment in multi-radio multi-channel WMNs [15]. A GA is employed by
Ding et al. for minimising total interference and maximum link interference in
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WMNs with partially overlapping channels [16]. They also model interference
simplistically. All these works have differences from ours.

A number of works use Particle Swarm Optimisation (PSO) e.g., [17–19].
Subramanian et al. use Tabu search to minimise binary interference, first ignoring
the radio constraint and then merging channel assignments to comply with the
interface constraint [20]. This two-step method has the same weakness as [11],
where the second step negates the first. Finally, the case of a multi-radio multi-
channel network as SUs coexisting with PUs is addressed by Qin et al., using
Lyapunov optimisation of throughput and average delay [21].

In view of the existing literature, we bring novelty to this field by tackling
CA in WMNs in situations where the networks use the licensed spectrum op-
portunistically as SUs, in the presence of other SUs. Our approach uses Wi-Fi
as an additional option, rather than using only Wi-Fi channels. We also take
into account that different nodes may have different allowed channels, since the
network is geographically spread out. Furthermore, we bring a realistic SINR
model instead of a simple on/off interference model. Ours is the first work to
compare metaheuristic optimisation algorithms for such a network and scenario,
giving consideration to all these factors. We also present a novel algorithm for
ensuring that both the connectivity constraint and the interface constraint are
met at once.

3 Problem formulation

3.1 Network model

The scenario we consider is a WMN consisting of nodes equipped with both Wi-
Fi radios and radios capable of accessing alternative spectrum, such as TVWS
or CBRS, as unlicensed or Secondary Users. These mesh nodes also act as APs
to clients on another radio interface (this could be 2.4 GHz or 5 GHz Wi-Fi,
for example). There are also Primary Users of the alternative spectrum band,
which need to be protected from interference. Thus, it is required that devices
use a GLSD to get a list of channels that are allowed at a device’s location. This
is the case for TVWS as well as Wi-Fi 6E 6 GHz AFC. A single node is the
gateway to the Internet from the mesh network and also acts as the gateway
to the GLSD. Mesh nodes may not all have direct access to the Internet and
hence to the GLSD, but all nodes will have a connection path to the gateway
node (and thus to the GLSD), which may not be optimal. The gateway node will
gather the list of allowed channels and powers for all the nodes in the network.

Ensuring that all the nodes have an initial connection to the GLSD in a way
that complies with regulation could be done using the method of Maliwatu [22].
In this method, nodes begin in passive scanning mode, listening for beacons,
while one node (the gateway in our case) has Internet access. The node with
Internet and GLSD access picks a channel and broadcasts beacon frames on this
channel, along with an ordered list of alternative channels. One-hop neighbours
receive this beacon frame, tune to that channel, and query the GLSD through
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the first node. The one-hop neighbour then selects a channel from the list of
alternative channels. It can now join the network and start broadcasting beacons
for the next-hop neighbour. This then allows second-hop neighbours to repeat
the process and join the network, through the one-hop neighbour. This process
continues until reaching the outermost set of nodes. We also assume that the
gateway node will act as a controller, gathering the average SINR readings from
all the nodes and performing any channel assignment optimisation algorithm.

In addition, the network may be in the presence of devices external to the
network, which are also making use of the alternate spectrum band and so may
cause interference. An example of this scenario is shown in Fig. 1.

Fig. 1. An infrastructure WMN using both DSA alternative spectrum and Wi-Fi

3.2 Problem statement and motivation

Given this scenario, the question arises, “how to allocate channels to the mesh
node radio interfaces optimally, according to certain metrics?”. The main issues
are minimising interference within the network and from external interference
sources, while ensuring connectivity is guaranteed. Connectivity must at least
be maintained along the most important paths, and between as many nodes as
possible. Different channels may be allowed for use by different nodes in the
network because they are placed in different geographic locations. In addition,
different channels may experience different levels of external interference, loss,
fading, and utilisation. Hence, the problem of assigning channels optimally is an
important and difficult one in this scenario.

The CA problem is well known to be NP-hard since it is, in essence, a graph-
colouring problem [7]. In the context of a WMN, it is even more difficult and
goes beyond a basic graph colouring problem. Firstly, this is because the links
are not the same, as mentioned, and would require a model of a weighted graph.
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Secondly, this is because, while interference must be avoided, it is also necessary
to maintain connectivity and meet the interface constraint. We have determined
that the problem is also not convex, by plotting the objective function for a
scaled-down three-node (A, B, C) three-link (A-B, B-C, A-C) version of the
problem, shown in Fig. 2. Each of the three axes represents the channels as-
signed to a link. The sawtooth shape in the one plane, and presence of higher
values within the low-value regions (shown by purple, red and orange values
inside the black region) make this problem non-convex, even in low dimensions.
This justifies our use of metaheuristic optimisation algorithms and not convex
optimisation algorithms.

Fig. 2. Map of the objective function value of CA problem in a three-node WMN

3.3 Assumptions

The goal of the CA algorithm is to assign channels to a set of links.

Definition 1. A link is defined as a pair of radio interfaces between which traffic
could potentially flow directly if tuned to the same channel.

In a network, over the course of a day, the routing algorithm will select and
use various paths. Therefore, the set of links used for relaying traffic over the
course of a day will vary. The selected paths are dependent on the capacity of
the links, which is affected by the channel allocation. On the other hand, channel
allocation should consider the links used, especially those with the highest traffic
load. So there is a circular dependency between the two problems of routing and
CA. While these two issues are very much interlinked, our channel assignment
will be quasi-static (or semi-dynamic) and not change according to routing in
near real-time.

This is a practical and advantageous decision, rather than a limitation. Sup-
pose the CA attempts to keep up with the rapidly changing routes, and routing
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is, in turn, trying to keep up with changing channel allocations. This would
cause network instability, which leads to a bad user experience, which is not
desirable. Channel switching causes loss of network connectivity during the time
the Network Interface Card (NIC) switches its channel and tries to re-establish
connectivity, and this can be on the order of seconds in reality. Optimisation al-
gorithms, such as those we present here, are time-consuming to run and resource-
intensive. This is especially true on commodity mesh radios, which are resource-
constrained, even if a dedicated controller node is used with more power. The
distribution of the final channel assignment to the nodes in the network also
requires time. These factors all point to the fact that we would not want the
CA to change, or the optimisation algorithm to run, too often. A reasonable
trade-off would thus be to run the optimisation once a day, for example. This
could be run at a time when the network is not busy, such as in the middle of
the night. A 24-hour schedule such as this is already employed by other systems
for resource management (e.g., Aruba Airmatch [23]) so it is practical and can
be accepted in the industry.

Some other assumptions that apply are:

– Nodes are stationary, and the gateway node knows their locations. The mech-
anism for obtaining and distributing location information is out of the scope
of this work.

– The nodes are mostly in the same geographical area. However, some nodes
on the edges may be in different geographical areas, where the GLSD defines
the boundaries. If they are not, the WMN can be partitioned into clusters
with largely overlapping allowed channel lists. For this reason, we also do not
present results for larger WMNs, as a large network would be partitionable
into clusters. There are also practical limitations on performance in the case
of large WMNs. We consider a network of 50 or more nodes as large.

– If the nodes at the cusp of two clusters do not share a sufficient number
of overlapping allowed channels in the DSA band, they can be linked by a
Wi-Fi channel.

– Channel widths are fixed to the same value for all channels at all nodes.

– We use average SINR measurements per node in the optimisation. This is
because, if the average SINR over the network is large, a high throughput
can be expected. SINR is a direct measure of the result of changing channel
assignments on the signal reception and interference experienced by nodes.
These measurements will be gathered on all the channels by all nodes for
different possible channel assignments. An average of all the samples for a
particular CA will be used in the optimisation. Either the samples, or the
overall averages will be sent to the controller/gateway node to perform the
optimisation. The method by which nodes obtain SINR samples could be
using acknowledgement (ACK) frames, similarly to Cho et al. [24].

– All links are saturated with traffic, so the total SINR across the network is
also a fair objective, and no other fairness criteria is necessary.
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3.4 Mathematical model

In the usual way, we model the network as a graph G = (V,E) where V is
the set of nodes (vertices) and edges E are the links between nodes. Edges are
potential links and not necessarily carrying traffic at this stage. Each edge e ∈ E
could be tuned to a particular channel at any time, i.e. E 7→ C, where C is the
full set of considered allowed channels for the whole network. C is the union
of channels allowed in different locations of the WMN according to the GLSD.
Each node v has a set C(v) of channels it is allowed to use. For two nodes v1
and v2, C(v1) ̸= C(v2) in general, although they could be equal and should have
channels in common (C(v1)∩C(v2) ̸= ∅), especially if v1 and v2 are neighbours.
A channel is specified by a channel number, a centre frequency and a channel
bandwidth. There might also be other transmitting devices (other SUs) that can
influence the reception of nodes in G if they are transmitting with power in the
same channel that one of the links E is tuned to. These are added to the conflict
graph. Connectivity graph G maps to a conflict graph Gc.

Definition 2. Conflict graph Gc = (Vc, Ec), where the vertices of the conflict
graph are the edges in G i.e. Vc = E. An edge e′ ∈ Ec exists between two vertices
in Vc if the two links could interfere if tuned to an overlapping channel. This
could occur when the interfering signal power is above the receiver sensitivity.

We add vertices and edges representing outside sources of interference to
form Ĝc, but note that these are fixed as their channels cannot be switched and
their transmit power cannot be controlled.

An edge e′ exists if a transmission in link 2 causes power to leak into, or
be transmitted in, the channel on which link 1 is operating. This can occur if
the two links are tuned to the same channel. This can also happen if the links
are tuned to different channels while the spectrum mask of the transmitter node
is wide or the receive filtering is poor, so that power leaks into the channel on
which link 1 is operating. We can model this as a weighted conflict graph denoted
⟨Gc(Vc, Ec), w⟩, where the weight w represents the interference power per link.

Considering this conflict graph, we aim to minimise the conflict but maximise
the wanted signal power received by each node and so maintain connectivity in
G. We can satisfy both these requirements simply by considering SINR. This
measure encapsulates the goals of having the highest desired received signal level
throughout the network, while also minimising conflict (interference). The opti-
misation objective is thus to find the channel assignment A, which is a mapping
of E 7→ C that maximises the average SINR, i.e.

max
A=E 7→C

∑
v∈V

Pwanted,v(A)∑
i∈I Pi(A) +N

=⇒ min
A

∑
v∈V

∑
i∈I Pi(A) +N

Pwanted,v(A)

= min
A

∑
v∈V

∑
x∈V \u Px,v(A) +N

Pu,v(A)

= min
A

|V |∑
v∈V SINRv(A)

(1)
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over all possible channel assignments, subject to the radio interface constraint:

|A(v)| ≤ Rv ∀ v ∈ V (2)

where:
A(v) is the channel assignment of node v and | · | indicates the size (number of
channels assigned to the node);
Rv is the number of radios at node v;
Pu,v is the power received at node v from transmitting node u;
Pi is interfering power received at node v from an interfering transmission i over
the whole channel width of channel c to which node v is tuned.
N is the noise power, which in ns3 is modelled as the product of the thermal
noise (Nt) and the noise figure (FN ), as shown in equation (3).

N = Nt × FN = kTB × FN (3)

where k is Boltzmann’s constant (= 1.380649× 10−23JK−1), T is the tempera-
ture in Kelvin and B is the channel width.

A transmitting node is considered interfering with v if it is in the set of
nodes V minus the node u, the node transmitting the desired signal to v. We
only consider there to be one wanted receive signal per time slot.

Each transmitted signal is subject to propagation loss as well as frequency-
selective fading. As usual, the received signal power at node v from node u’s
transmitted power Pu,v (in W) before receive filtering is related by the propaga-
tion loss L according to the chosen loss model. We apply the basic Friis trans-
mission loss model in equation (4). This also implies that we assume an isotropic
antenna model, but this can also be changed in the simulation for future work.
We note, however, that our method is easily extensible to other propagation loss
models and is not limited to work on any particular propagation loss model only.
This model is used without loss of generality.

Pu,v = Pu
GvGuλ

2

(4πd)2
=

Pu

Lu,v
(4)

where
Gu is the transmission gain of node u’s antenna (unitless)
Gv is the receive gain of node v’s antenna (unitless)
λ is the wavelength (in m), inversely proportional to the frequency, so is affected
by the channel assignment
d is the distance between the nodes (in m)
or, in dB,

Pu,v(dB) = Pu(dB)− Lu,v(dB) (5)

where path loss L(dB) is the absolute value of the loss in dB.

Before considering interference, a link only exists if the effective received
signal power on that link is above the receive sensitivity sv of the receiver node
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v. That is, the link will be pruned unless

Pu,v(dB) ≥ sv

SNRv ×N ≥ sv

SNR ≥ sv/N

(6)

SNR can only be measured if it is above the receiver sensitivity/noise. This
constraint reduces the number of links that require channel assignment and
reduces the edges in the conflict graph that need to be considered. We also
have to ensure that in the CA, constraint (6) is met, so that connectivity is
maintained. Additionally, interference is only considered if the interference power
at the receiver is above the energy detection threshold of the receiver.

In the simulation framework of Network Simulator 3 (ns3), frames are split
into constant SINR chunks and overlapping frame chunks are considered as
additional contributions to the overall noise. Interfering signals are only consid-
ered as interference when the frame chunks actually overlap with those of the
wanted frame at each considered receiving node in time. Preamble and payload
parts of frames are treated separately because the payload might have a higher
modulation and coding rate than the BPSK-encoded preamble.

4 Methodology

The optimisation methods all generate candidate solutions from the CA solu-
tion space and obtain SINRmeasurements from all nodes based on that solution
(CA), in order to optimise on that measurement. In a real implementation, over
the course of a day, SINR samples for some of these solutions will be taken. For
those solutions with insufficient SINR samples, such samples must be gathered
during the running of the optimisation algorithm, possibly by generating traffic
between nodes for this purpose. The algorithm will start with a randomly gen-
erated feasible candidate CA and iteratively improve on that solution. For the
results presented here, we have used simulation in ns3 for evaluation purposes,
because this provides a controlled environment for ease, efficiency, clarity and
cost-effectiveness of experimentation.

4.1 Generating feasible candidate solutions

While we have used the graph analogy for this problem, it is not a simple graph
colouring problem. One of the added complexities that distinguishes this prob-
lem from normal graph colouring is the interface constraint in equation (2). An-
other is that connectivity must be maintained between links through ensuring
equation (6) is true and having common channels assigned to link nodes, while
collisions should be avoided. In all of the metaheuristic optimisation methods
we need to generate a set of possible solutions, that is, the solution space. We
can either generate each solution and check for feasibility afterwards, or ensure
feasibility within the generation procedure. Our method does the latter. We have
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developed a simple novel algorithm to generate candidate solutions that are fea-
sible. A feasible solution is one that satisfies the interface constraint while using
only allowed channels at each node. In this algorithm, we attempt to allocate
channels to all links in the network. However, this might not be possible. There-
fore, we allocate DSA channels to as many links as possible out of the full set.
To ensure connectivity on the remaining links, Wi-Fi is used. This algorithm is
outlined in Algorithm 1.

4.2 Optimisation

The objective is to find a link→channel mapping (A) that maximises the total
average SINR in the network. For each considered solution, all nodes scan the
environment for a period of time and obtain a large set of sample SINR values
for traffic flow through a particular link→channel mapping for a particular in-
terference environment. We then use the average of these values in the cost. In
Simulated Annealing, we desire that the objective function (so-called “energy”
value E) incorporates these SINR samples in a way that the desired result is
the lowest cost. Hence, the selected cost is based on 1/SINR. For Genetic Al-
gorithm, where we use a fitness value, this is the normalised average of SINR.
All results are shown as the scaled inverse SINR for direct comparison between
optimisation methods.

Simulated Annealing The cost per iteration j is shown in equation (7), where
V is the number of nodes, n is the number of SINR samples per node, and SINR
is the average of the SINR measurements per node.

Ej =
1

V

V∑
v=1

[
1

n

n∑
i=1

1

SINRj(i)
(v)

]
=

1

V

V∑
v=1

1

SINRj(v)
(7)

In SA, the change in cost every iteration is used to decide whether to accept or
reject the particular CA solution. If the new solution is better than the previous
solution, i.e., has a lower cost, the new solution is always accepted. However, if
the new CA has a higher cost, this worse solution is accepted with a probability
h given by equation (8). This is realised by selecting a random value a between
0 and 1 and evaluating if a < h.

h = exp(−∆E

kT
) = exp(−Ej − Ej−1

k · Tj
) (8)

where
Ej is the “energy” or cost at iteration j, given by equation (7)
k is Boltzmann’s constant (1.380649× 10−23JK−1)
Tj is the temperature at iteration j

If a < h, the solution is accepted. If not, the solution is rejected. If equa-
tion (8) always evaluates close to 1, higher cost solutions will always be accepted
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Algorithm 1: Initial channel allocation

Data: C = allowed channel set, c = single channel in C, ni = node number i,
L = set of links, l = link in L, A = channels assigned = ∅, r = number
of interfaces per node=2

Result: complete A(l) ∀ l ∈ L
for l = (ni, nj) ∈ L do

if A(ni) < r and A(nj) < r then
c = random channel ∈ C(ni) ∩ C(nj);
A(ni) = c;
A(nj) = c;

end
else if A(ni) == r and A(nj) < r then

{c} = A(ni)
⋃

C(nj);
if {c} ̸= ∅ then

c = {c} [0];
end
else

c=choose one of A(ni);
A(nj) = c;

end

end
else if A(ni) < r and A(nj) == r then

{c} = A(nj)
⋃

C(ni);
if {c} ̸= ∅ then

c = {c} [0];
end
else

c=choose one of C(nj);
A(ni) = c;

end

end
else

both interfaces already assigned channels;
{c} = A(ni)

⋃
A(nj);

if {c} ̸= ∅ then
c = {c} [0];

end
else

continue;
end

end
A(l) = c;

end
∀ l unassigned, assign a 5 GHz Wi-Fi channel

and the SA algorithm will not converge. Conversely, if equation (8) always eval-
uates to a value very close to 0, almost no “worse” solutions will be accepted
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and the algorithm will converge prematurely on a local minimum that may be
much worse than the true optimum.

A careful balance of temperature ranges and ∆E ranges as well as k-value
must be formulated to tune the algorithm appropriately. Boltzmann’s constant
k could be omitted from this relation (or set to 1) in practice if it makes the
probability of accepting a point extremely low, leading to converging on a local
minimum. Including or leaving this constant out, is part of the parameter tuning
required to ensure the algorithm behaves well. We have omitted k but added
another constant to scale the 1/SINR values appropriately.

The other parameter tuning required is the selection of the starting tem-
perature and the temperature cooling function. A starting temperature that is
too high or a cooling function that decreases too slowly will cause much slower
convergence. On the other hand, starting with a temperature that is too low or a
cooling function that reduces too quickly may result in converging prematurely.
Starting temperature and the temperature cooling function must be adjusted in
consideration of the number of iterations the algorithm is expected to run for,
or that is considered acceptable. We ran experiments with various cooling func-
tions (e.g., logarithmic and exponential functions) in this work before finding a
suitable one: the linear temperature cooling function shown in equation (9).

Tj = Tstart − α · j (9)

where j is iteration count and α is a constant set to 0.02. We selected this value
for α by reversing the calculation (9) for appropriate starting temperature (20)
and final temperature (0.1) and the desired number of iterations (1000), and
confirming by experimentation that it works well. We start with a lower temper-
ature value of 20, selected by observation of the ∆E values for our problem, and
scale the 1/SINR values appropriately. With these adjustments, the algorithm
is able to converge sufficiently within 1000 iterations.

The neighbour generation procedure whereby a new solution is generated is
to shuffle the links randomly and perform Algorithm 1.

Genetic Algorithm For the GA, we encode a genome also as a link→channel
mapping, where the links are all node pairs possible in the mesh and where the
condition of equation (6) is met. To generate a genome, we randomly shuffle the
set of links, randomly shuffle the set of allowed channels, and use Algorithm 1
to generate a feasible genome. We then generate a population by generating a
number of genomes. We determined from experimentation that a population size
of 20 functions well without excessive computational burden. This population is
confirmed as a good choice by [25], who find that a population size of 20 presents
less structural bias than populations of 5 or 100 individuals in general.

Both Roulette Wheel selection and Linear Rank selection were implemented.
For the Roulette Wheel selection, we generated a piecewise constant probability
distribution, where the intervals are 1 + the population size and the weights
are the fitness values of the chromosomes in the population. For Linear Rank
selection, we sort the chromosomes by their inverse fitness value so that the
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genome with the highest fitness has the lowest rank (highest number). We then
create a piecewise constant probability distribution of the ranks and select two
parent chromosomes randomly according to that distribution. It was found that
Linear Rank selection outperforms Roulette Wheel selection, so only the results
for Linear Rank selection are shown. We select as many parents as the current
population and each pair of parents generates two children. The previous gen-
eration is eliminated once they reproduce, so the size of the population remains
stable.

Once two parents have been selected, the next operator is crossover. The
crossover operator randomly selects an index in the genome (a link) greater
than the first and smaller than the last, as the crossover point. We then split
both parents at this crossover point and generate two new children by joining the
first section of the first parent with the second section of the second parent, and
the first section of the second parent with the second section of the first parent.
Mutation is done with a probability of 0.5, by randomly selecting one link and
randomly selecting a new channel for that link, and replacing the currently
assigned channel with the new one. The 0.5 probability was found to provide a
suitable trade-off between exploration and exploitation for the population size
and problem. This follows the findings of [26].

5 Results and Discussion

To evaluate the performance of the algorithms, we have simulated the network
using ns3. We have built on top of the existing ns3 classes and created a mod-
ule for the multi-radio multi-channel WMN simulation with interference, which
models the spectrum sensing part of the DSA. Additionally, we created new ns3
modules for each of the optimisation techniques. This code can be reused by
others wishing to build on this work or replicate these results [27].

Simulations were run on a T2 large Amazon Web Services EC2 instance
with 8 GiB of memory and 2 virtual CPUs, both with Ubuntu 16.04 Operating
System, and using ns3-dev version [27] forked from the ns3 GitHub [28].

In each iteration of all the optimisation algorithms, the WMN simulation is
run for a period of 5 s. This was found to yield sufficient SINR samples for
the average to be meaningful. In the mesh simulation, nodes are set up in an
equally spaced grid. Each node has two DSA interfaces (representing the DSA
band interface). Constant bitrate UDP traffic is generated at the transmit node
for every possible link in the network so as to saturate the links. Packets will
be received on the other side if there is a common channel between the two
nodes and the received signal is above the receive sensitivity. The interference
is included in the SINR measurement using ns3’s InterferenceHelper class, and
interference is counted only if the overlapping packet chunk is above the sensi-
tivity of the receiver. The simulation parameters are given in Table 1. Table 2
compares the mean and standard deviation of CA final costs for 10 runs of SA
and GA, and random CAs. We can see that for all presented WMN sizes, SA is
significantly better than random allocations (between 120% and 620% better).
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Table 1. Parameters used in simulations

Parameter Value

Mesh network size 9-49 nodes
Number of interfaces 2
Distance between grid nodes 100 m (vertical and horizontal)
Channel bandwidth 10 MHz
Propagation loss model Friis
Propagation delay model ConstantSpeed
Packet interval 0.01 s
Packet size 1024 bytes
Error rate model NistErrorRateModel
Mesh routing algorithm OLSR

In comparison, GA is significantly better than both random allocations (between
380% and 1268%) and SA (between 16% and 54% better). While the averages
improve significantly, the standard deviation also reduces significantly so that
the chances of SA or GA producing a substantially worse solution than those
shown here are very low.

The deviations from the average cost values get smaller over time as the
algorithms converge. Regardless of the starting point, different runs start to
converge on similar values, especially in the GA case. Fig. 3 shows the cost
of the solutions found by both SA and GA at each iteration averaged over 10
different runs, for different network sizes. For GA the average population costs
for the different runs are averaged. We can observe clearly that GA converges
much quicker than SA. Different runs of GA also converge on solutions that
are closer than SA (as seen by the smaller standard deviations in Table 2. We
can obtain a reasonably good solution using GA within 25 iterations (or even
less) for a 9-node WMN. Even for the larger 16 and 49-node mesh networks,
the solutions within 50 iterations are better than SA after the same number of
iterations. We note, however, that for one iteration of GA, we need to perform
20 runs of the WMN simulation (or perform sampling windows for 20 different
CAs), since there are 20 individuals per population. This sampling window is
the most time-intensive portion of the optimisation. Hence, 1 iteration of GA
is roughly equivalent in time to 20 iterations of SA; so 50 iterations of GA are
equivalent to 1000 iterations of SA in time. Still, within the same amount of
time, we are able to achieve significantly better results with GA than with SA,
although both achieve much better results than CAs.

6 Conclusion

We have presented new methods for channel assignment in wireless mesh net-
works using DSA. Our work is unique in that it considers the realistic measure
of average SINR over the mesh to represent the performance of the channel as-
signment in the network, and includes a new method for ensuring the feasibility
of the solutions according to each node’s allowed channels and number of radio
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Table 2. Average and standard deviation of cost values for random channel allocations,
SA and GA for 10 runs of each

Random SA GA

nodes mean (SD) mean (SD) mean (SD)

9 26.0 (±35.8) 3.6 (±1.6) 1.9 (±0.25)

16 28.1 (±35.7) 4.3 (±2.7) 3.6 (±1.0)

49 56.0 (±51.7) 25.4 (±4.9) 11.6 (±5.2)

interfaces. This method is necessary because different nodes may have differ-
ent allowed channels. A comparison of different channel allocation algorithms,
i.e., random allocations, Simulated Annealing and Genetic Algorithm, was done
using simulations in ns3. It was found that the metaheuristic algorithms signifi-
cantly improve results over random CAs. In our implementation of the problem,
we observed that GA performs significantly better than SA, with both lower
average cost values, and less variation among final solutions for different runs
with the same parameters.

We plan on extending this study to include other metaheuristic optimisation
methods. Future work will also include extending our study to include aspects
specific to the chosen frequency bands, consider different channel bandwidths
and include other propagation and antenna models.
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(a) 9 nodes

(b) 16 nodes

(c) 49 nodes

Fig. 3. Average cost of all runs of SA and GA (average cost of population) per iteration
compared


