New journal of chemistry

Co-existence of Pd, Bi2O3 and CuO supported on porous activated biocarbon for electrochemical conversion and energy storage

Xolile Fuku^{, *ab} Mmalewane Modibedi^{,a} Andile Mkhohlakali^{ac} and Mkhulu Mathe^a

^a CSIR Energy Centre, PO Box 395, Pretoria, 0001, South Africa. E-mail:

fukuxg@unisa.ac.za; Tel: +27 21 843 3443

- ^b Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
- ^c Department of Mechanical Engineering, B3 lab 103, University of Johannesburg, Auckland Park Campus, 2006, 0001, South Africa
- [†] Electronic supplementary information (ESI) available. See DOI: 10.1039/d1nj02184b

https://pubs.rsc.org/en/content/articlelanding/2021/nj/d1nj02184b#fn1

Abstract

The co-existence of metal oxides (MO) and activated carbon (AC) causes changes in the catalytic behaviour and activity which would contribute greatly to a number of applications. Pd-AC/Bi2O3/CuO synthesized via the green process was used as a catalyst for electrooxidation of ethanol and energy storage. Carbonization at 800 °C and hydrothermal treatment in a microwave oven yielded biocarbon (BC) from banana peels with mesoporous and high surface area (690.42 m2 g-1). Cyclic voltammetry (CV), galvanostatic chargedischarge, electrochemical impedance spectroscopy, and chronoamperometry were used to assess the electroactivity of the catalyst (CA). CV of Pd-AC/Bi2O3/CuO revealed 40% enhanced current densities (j) in ethanol electro-oxidation compared to that of the prepared Pd/AC, while the j determined at 20 min of CA measurements was 60% higher than those of the other prepared catalysts. Among the other catalysts, Pd-AC/Bi2O3/CuO revealed high capacitive j and confirmed the near ideal capacitive behaviour with good electrochemical reversibility while the calculated Csp of the electrode system was found to be 369.1 F g-1 at 0.95 mA cm-2. The calculated time constant (t0) value for Pd-AC/Bi2O3/CuO was higher. 390 ms, implying that the catalyst performs better with quick delivery of stored charges indicating better energy delivery capability.