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Abstract
Agriculture accounts for approximately 10%of global greenhouse gas emissions and is simultaneously
associatedwith impacts on human health through food consumption, and agricultural air pollutant
emissions. These impacts are often quantified separately, and there is a lack ofmodelling tools to
facilitate integrated assessments. This work presents a newmodel that integrates assessment of
agricultural systems on (i)human health indirectly through dietary, obesity andmalnutrition health
risks from food consumption, (ii)human health directly through exposure to air pollutants from
agricultural emissions, and (iii) greenhouse gas emissions. In themodel, national food demand is the
starting point fromwhich the livestock and crop production systems thatmeet this are represented.
Themodel is applied for 2014–2018 to assess the robustness of theGHGemissions and health burden
results that this integratedmodelling framework produces compared to previous studies that have
quantified these variables independently.Methane and nitrous oxide emissions globally in 2018were
estimated to be 129 and 4.4million tonnes, respectively, consistent with previous estimates.
Agricultural systemswere also estimated to emit 44million tonnes of ammonia. An estimated 4.1
million deaths were associatedwith dietary health risks, 6.0millionwith overweight/obesity, and 730
thousand infant deaths frommalnutrition, consistent with previous studies. Agricultural air pollutant
emissions were estimated to be associatedwith 537 thousand premature deaths attributable tofine
particulatematter (PM2.5) exposure, and 184 thousand premature deaths frommethane-induced
ground-level ozone. These health impacts provide substantial opportunities to design integrated
strategies thatmitigate climate change, and improve human health, and also highlight possible trade-
offs that the expansion of agricultural production could have due to increased emissions. Themodel
presented here provides for the consistent evaluation of the implications of different agricultural
strategies tomeet food demandwhileminimising human health and climate change impacts.

1. Introduction

Agriculture contributes 10%–12%of global greenhouse gas (GHG) emissions, excluding land-use change
Myhre et al (IPCC2013). In national commitments tomitigate climate change, 89%of countries included the
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agriculture sector as part of theirmitigation component (FAO2016). However, themajority did not elaborate on
specific actions to achieve agricultural GHGemission reductions (FAO2016). Therefore, as countries update
their commitments, there is a substantial opportunity to clarify and strengthen climate changemitigation
through an increased focus onmitigation actions to limit agricultural GHGemissions (Ross et al 2019). One
approach to increasing climate changemitigation ambition is to link to key sustainable development goals
(SDGs) (Linnér et al 2012, Shindell et al 2017). Food consumption and production are linked to awide range of
SDGs, including indirect impacts on humanhealth through food consumption, e.g. frommalnutrition, obesity,
and dietary risk factors (Willett et al 2019, Zagmutt et al 2019), which relate to SDG2: ZeroHunger and SDG3:
GoodHealth andWellbeing, on human health from air pollutants from agricultural emissions (also SDG3)
(Lelieveld et al 2015), nitrogen pollution (Fowler et al 2015, SanMartín 2020) and deforestation (IPCC2019a),
which relate to SDG15: Life on Land.

Previous studies havemodelled different impacts of food production and consumption individually. For
example,Murray et al (2020) estimates global health impacts ofmalnutrition, high body-mass index, and dietary
risk factors. Separately, Lelieveld et al (2015) estimated that 20%of global premature deaths (660 thousand
premature deaths) attributable to ambient air pollution exposurewere due to agriculture. However,
methodological differences in the representation of agricultural systemsmake direct comparisons of the impacts
quantified challenging. Other studies have developedmodels that integratemultiple impacts of agricultural
systems, such as diets, health and greenhouse gas emissions. For example, studies have investigated the optimal
average dietary intakes tominimiseGHGemissions from agriculture (Willett et al 2019), or have quantified
health benefits fromdietary changes, alongside impacts onGHG emissions (Tilman andClark 2014,
Springmann et al 2016a, 2016b, 2017, 2018). Other studies, such asClark et al (2019) have assessed a broader set
of environmental impacts of agricultural systems (greenhouse gas emissions, eutrophication, land use, water
resources), alongside the dietary health impacts. These studies have assessed changes in agricultural systems and
their impacts on health and environmental impacts, in addition toGHGemissions. However, these earlier
integrated agriculturalmodels do not consider some key impacts, specifically, the health impacts associatedwith
air pollutants from agricultural emissions, which have been shown to be effective in helping to raise climate
changemitigation ambition (CCACSNAP2019).

Due to the benefits of designing integrated strategies thatmitigate climate change and improve humanhealth,
and the lackofmodelling tools to facilitate the assessment of these strategies, the aimof this paper is to describe an
agricultural systemmodel that for thefirst time integrates assessment ofGHGemissions, and air pollution-
associatedhealth impacts, and themalnutrition (infantmortality associatedwith child stunting and lowbirth
weight due tomaternalmalnutrition), highbody-mass index (BMI), anddietary health impacts associatedwith
food consumption. Thesehealth outcomeswere includedbecause they couldbedirectly linked towidely available
food consumption andproduction statistics.Other health outcomes associatedwith food consumption, such as
those attributable to food-borne diseases (WHO2015), couldnot be included in themodel. Themodel is applied
to quantify the global health impacts of agricultural production systems and impacts of agricultural production on
climate change throughemissions ofGHGsand short-lived climate forcers between2014 and2018. Theobjective
of this paper is to develop an integratedmodelling framework forGHGemissions, air pollution anddietary,
malnutrition andobesity health impacts fromagriculture, and to validate themodel by comparing against previous
studies estimating these impacts separately and independently.However, it has the potential to evaluate future
projections of fooddemand, and thehumanhealth and environmental consequences of that production,
facilitating thedevelopment of integrated strategies to benefit humanhealth,mitigate climate change and
minimise the environmental impacts of agricultural systems.Demonstrating the consistency of results from the
modelling frameworkwithprevious studieswill provide the basis for its future application to assess how these
variables could change for different socioeconomicdevelopment, and policy trajectories.

2.Methods

2.1.Modelling framework
The overallmodelling framework for assessing food consumption and production is shown infigure 1. The
model is designed for national scale application, and comprises fourmainmodules that characterise different
aspects of agricultural systems, and the emissions associatedwith them, aswell as a health impact assessment
module. Agricultural Demand (section 2.2) quantifies the domestic production of different crops,meat and
dairy products based on the calorific intake of the average population, and the proportion of that intake that is
met by different products. The Livestock (section 2.3)module characterises the livestock production systems,
herd structure, feed andmanure systems tomeet demand formeat and dairy products. TheCrop Production
(section 2.4) and Pastureland (section 2.5)modulesmodel the crop yield and pastureland productivity based on
the demand for crops, silage and grass, and the nitrogen inputs to crop and pastureland based frommanure,
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synthetic fertilisers, deposition and nitrogen fixation. Thesemodules also quantify the emissions associatedwith
fuel consumption for agriculturalmachinery (section 2.6). Themodel is open-source, and the source code
available at: https://github.com/chmalle41/aghealth.

Within the fourmodules characterising agricultural demand, and production, different impacts of the
agricultural systems are characterised. These impacts specifically include (i) emissions of air pollutants and
greenhouse gases, (ii) human health impacts associatedwithmalnutrition for the proportion of the population
estimated to be undernourished, (iii)human health impacts associatedwith diets low in fruits, vegetables,
legumes, whole grains,fibre, nuts and seeds, and calcium, and high in redmeat, and trans fatty acids, (iv)human
health impacts associatedwith high body-mass index, and (v) human health impacts associatedwith air
pollutants from agricultural emissions resulting from agricultural air pollution emissions. Themethods
associatedwith these human health impacts are described in section 2.7.

In this study, themodel is used to characterise agricultural health and environmental impacts for historical
years between 2014 and2018. The years 2014–2018were selected as themost recent years forwhich themajority of
variables (described in the following sub-sections) required for themodellingwere available, and to provide an
indication of inter-annual variability in theGHGand air pollutant emissions andhealth impacts. Themodel has
national-scale resolution, and, consistentwith international emission inventory guidelines (IPCC2006, EMEP/
EEA2019), emissions assigned to countries are those occurringwithinnational boundaries. Similarly, thehealth
impacts reported for each country are those health impacts occurring to thepopulation of the country. Themodel
includes impacts related to emissions and agricultural products produced in the country of interest and other
countries via international trade and the transboundarymovement of pollution. For example, forCountryX, the
health impacts quantified include those associatedwith food consumption (diet,malnutrition, andoverweight/
obesity)occurring to the populationwithinCountryX (and includinghealth impacts associatedwith food
consumed inCountryX thatwas produced inCountryX, and thatwas imported toCountryX fromCountry Y).
Thehealth impacts inCountryX also include those that result from the exposure of thepopulation ofCountryX to
air pollutants fromagricultural emissions. This exposure, and attributable health burden, includes exposure
resulting fromagriculture emissions inCountryX, aswell as agricultural emissions inCountryY, the latterwhich
leads to air pollution that is transported via the atmosphere toCountryX.Thedata used in eachof themodules for
this application is described in the sub-sections below.Themodel can also be applied to assess future changes in
agricultural health and environmental impacts through the creationof scenarios that project calorie intake and
demand for agricultural products, and changes in the agricultural production systemsover time.

2.2. Agricultural Demand
The agricultural demandmodule has been adapted from themodelling framework outlined in the Polestar
model (Electris et al 2009). The starting point formodelling demand for different agricultural products (crops,

Figure 1. Schematic ofmodelling framework of agricultural demand, and domestic crop and livestock production systems.
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meat and dairy) is the average calorific intake of the population (calories per day). The product of average
calorific intake and the population provides the total energy demand for food for the target country (equation 1).
The proportion of these food (energy) requirements that aremet fromdifferent crops,meat and dairy products
is then used to calculate the total number of calories of these products that are required tomeet the calorific
demand (equation 2). The disaggregation of crop,meat and dairy products was based on the breakdown
outlined in the FAOStat food balances (faostat.org), and is listed in table 1.

( )= ´ ´Cal Cal Pop. 365 1tot daily

WhereCaltot (kCal y
−1) is the total annual calorie intake for a given Population (Pop.) andCaldaily (kCal

person−1 day−1) is the per capita daily calorie consumption.

( )= ´Cal Cal Frac 2p tot cal

WhereCalp (kCal y
−1) is the total annual calorie intake for a given Population (Pop.) that is consumed as product

P and Fraccal is the fraction of the average person’s diet that is consumed as Product P.
In order for the total food requirements of a particular product to be translated into the domestic production

of that product (to feed in to the livestock, crop and pasturemodules described below), the total calories that are
met by a product were converted into the tonnes required of the product based on the ratio of calories per tonne
of product (equation 3). This domestic consumption of a particular food product was then converted into the
domestic production, accounting for imports of the product, losses, and exports of the product (equation 4). For
crops specifically, the tonnes of crop required for animal feed (in addition to human consumption) is added to
the domestic production requirements, as an output from the livestockmodule (see section 2.3 formore details).
The outputs from thismodule are the tonnes of crop,meat and dairy products required tomeet the diet of the
population of the target country.

( )= ´Cons Cal R. 3p tot p

WhereCons.p (tonnes y
-1) is the total tonnes of Product P consumed in a country annually, andRprod is the ratio

of calories per tonne of Product P.

( )= + + + -Prod Cons Ex Loss Feed Im. . . . .. 4p P P P P P

Where Prod.p (tonnes y
-1) is the domestic production of Product P, and Ex.p (tonnes y

-1), Loss.p (tonnes y
-1),

Feed.p (tonnes y
-1), and Im.p (tonnes y

-1), are the annual exports, losses, feed requirements and imports of
Product P, respectively.

For the years 2014–2018, the FAO food balances were used to obtain the inputs variables for the agricultural
demandmodel, specifically per capita daily calorie consumption, and calories to tonne ratio, exports, imports,
and losses for each agricultural product (http://www.fao.org/faostat/en/#data/FBS). Animal feed
requirements for cropswere obtained from the livestockmodule described in section 2.3 below.

2.3. Livestock production systems
The livestockmodule is adapted from the FAOGlobal Livestock Environmental AssessmentModel (GLEAM)
(FAO2018). GLEAM is amodel that is designed to quantify the greenhouse gas emissions from livestock
production systems, and has beenwidely used for greenhouse gasmitigation assessments. However, GLEAM is
designed only to assess the livestock system, including the herd structure, feed requirements andmanure
management for different species and livestock systems. Therefore, themodelling framework described in
GLEAMwas adapted andmodified to be integratedwith the agricultural demandmodule, and the crop and
pasturelandmodules included here.

The livestockmodule includes four animal categories, cattle, sheep/goats, pigs and chickens. The primary
input to the livestockmodule is the tonnes ofmeat, dairy and eggs that are required and output from the
agricultural demandmodule. These inputs are then converted into the total number of animals in each herd
based on the average carcass weight, and offtake rate formeat (equation 5), and the averagemilk production per
head for dairy (equation 6).

( )=Animals

Prod

CW
OR

5s

P

where Animalss is the total number of animals of species S in the herd, CW is the carcass weight (tonnes), andOR
is the offtake rate (fraction of total herd culled per year).
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( )=Animals

Prod

Frac

MP
6d s

d

d s

s
,

,

Table 1.Breakdown of crop,meat and dairy products used tomodel
demand and production taken from food energy balance.

Crops Meat/Dairy

Cereals Barley and Products Bovinemeat (Cattle)
Maize and Products

Millet and Products

Oats

Rice

Rye and Products

SorghumandProducts

Wheat and Products

Other Cereals

Fruits Apples and Products Dairy (Cattle)
Bananas

OtherCitrus

Dates

Other Fruits

Grapefruits and

Products

Grapes

Lemons, Limes and

Products

Oranges,Mandarines

Pineapples and

products

Plantains

Nuts Nuts and Products Mutton&GoatMeat

(Sheep/goat)
Oilcrops Coconuts Other dairy (Sheep/goat)

Groundnuts

Oilcrops, other

Olives

Rape andMustard Seed

Sesame Seed

Soyabeans

Pulses Beans Pigmeat (Pigs)
Peas

Pulses

Roots Cassava and Products PoultryMeat (Chickens
and other poultry birds)

Potatoes and Products

Other Roots

Sweet Potatoes

Yams

Stimulants Cocoa Beans and

products

Eggs (Chickens and other
poultry birds)

Coffee and Products

Tea

Sugar Sugar cane

Sugar beet

Vegetables Onions

Tomatoes and

Products

Other vegetables

Vegoils PalmOil

Palmkernel Oil

Rape andMustardOil

SesameseedOil

SoyabeanOil

SunflowerseedOil
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WhereAnimalsd,s is the number of dairy live animals for species S in the herd, Prodd is the total annual domestic
milk production, Fracd,s is the fraction of totalmilk production produced by species S, andMPs is the annual per
headmilk production for species S.

2.3.1. Herd structure
The number of live animals is then combinedwith other input variables to characterise the structure of the herd
for cattle, sheep/goats, pigs and chickens. The disaggregation of the herd into differentmanagement systems,
and cohorts is specified in table 2, and follows theGLEAMmodelling framework. Additional inputs include the
fraction of livestock that aremanaged in different livestockmanagement systems,male to female ratios, themass
of animals at different life stages, and death, fertility and replacement rates for each species in the target country.
The fraction of livestockmanaged fromdifferent livestock production systems for each country was calculated
by combining the griddedGlobal Livestock Production Systemdatabasewhich characterises the type of livestock
production system in 0.083 degree grids globally, with gridded global livestock numbers, to estimate the total
number of animals beingmanaged in different livestock systems (Robinson et al 2011). All other input
parameters were regional defaults specified in theGLEAMmodelling documentation (FAO2018). The outputs
from the herdmodule are the number of animals in a given year in each cohort for each livestockmanagement
system shown in table 2. Additional outputs include live weights and daily weight gains for replacement animals.

2.3.2. Energy intake and feed
The herdmodule then feeds into the characterisation of the energy intake and feed requirements of a given
animal herd. The energy intake is calculated separately by cohort, and livestockmanagement system for each
species, following themethodology outlined inGLEAM (FAO2018). Energy requirements are calculated based
on the net energy required formaintenance (dependent on live weight of animal of particular cohort), activity
(dependent on time spent grazing versus in housing), growth (for replacement and fattening animals), milk
production (for adult female dairy cattle and sheep/goats), pregnancy, and fibre production (sheep/goats). The
total energy required for a particular animal cohort is then converted into the drymatter intake (DMI, kg dry
matter head-1 day-1) based on the digestibility of the feed that the animal cohort is fed.

The composition of the animal feed is the percentage ofDMI that is provided as roughages, cereals, by
products, concentrates, or swill (pigs only). InGLEAM, 29 and 42 categories of feedmaterials are specified for
cattle/sheep/goats and pigs/chickens, respectively, and the composition of the animal feed is determined based
on crop yield and pasture productivity data. In this study, themodel retains the same feed categories. However,
the aimof thismodel is to explore crop yield and pasture productivity based on demand for crops and grasses
(for human and animal feed). Therefore, the composition of the feed is directly entered in the livestockmodel as
the percentage of the feed composition that ismet by a particular feed product, so the outputs (tonnes of feed
required for each category) can feed in to the crop and pasturemodules (sections 2.4 and 2.5).

The composition of the feed for a particular cohort in a particularmanagement system is usedfirst to
calculate the average digestibility (%), and gross energy (GE) content of the overall feed (MJ kgDM-1), based on
the individual digestibility and gross energy contents of the individual feed components. These variables are then
used to calculate theDMI of animals in a particular cohort andmanagement system, as described inGLEAM
(FAO2018). Once theDMI has been determined, the total drymatter feed requirements for each feed groupwas
calculated as the product of theDMI, number of animals in a cohort andmanagement system, and the fraction

Table 2.Breakdown of livestockmanagement categories and cohorts that livestock are disaggregated into.

Parameter Cattle Sheep/goats Pigs Chickens

LivestockManagement

systems

Mixed Mixed Backyard Backyard

Grassland Grassland Intermediate Layers

Feedlot Feedlot Industrial Broilers

Animals Dairy Beef Dairy Beef

Cohort Adult Females Adult Females Adult Females Adult Females

AdultMales AdultMales AdultMales AdultMales

Replacement Females Replacement Females Replacement Females Replacement Females

ReplacementMales ReplacementMales ReplacementMales ReplacementMales

Meat Females Meat Females Meat Animals Adult laying females (layers)
MeatMales MeatMales Surplusmales (backyard)

FeedlotMeat Females Surplus females (backyard,
layers)

FeedlotMeatMales Meat animals (broilers)
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of the overall feed that comes from a particular feed group. For the feed groups that are particular crops/feed
crops, or roughages (grass, legumes etc), the total drymatter requiredwas used as an input to the agricultural
demand, and pasturelandmodules, respectively (described in sections 2.2 and 2.5). For the feed groups that are
crop residues, the total crop residue requirements were used as input to determine the use of crop residue
produced in the crop productionmodule, and is subtracted from the total residue generated to give the
remaining residue to be allocated between being used for other productive purposes, reintegrated into the soil,
or burned (see section 2.4 formore details).

TheDMIwas further used to quantifymethane emissions from enteric fermentation for cattle, sheep/goats
and pigs based on the IPCCTier 2 approach outlined in IPCC (2006), and shown in equation 7.

( )= ´ ´ ´ ´CH N GE DMI

Y

365 100
55.65

7s c m s c m s c m

m s c m

4 , , , , , ,

, , ,

EF s c m, , ,

WhereCH4, EF,s,c,m is themethane emissions from enteric fermentation for species S, cohort C, inmanagement
systemM,Ns,c,m is the number of animals of species S, cohort C, inmanagement systemM, andYm,s,c,m is the
percentage of energy in feed converted tomethane (calculated from the digestibility of the feed for cattle and
sheep/goats).

2.3.3.Manure production andmanagement
TheDMI is then used to determine themass ofmanure generated by each animal species, cohort and
management system. In themanuremodule,first,methane emissions are estimated based on the volatile solids
(VS, kg head-1 day-1) excreted by each animal in a particular cohort andmanagement system, which is
determined by theDMI and digestibility of the animal feed. Themethane emissions are the estimated using
equation 8, based onTier 2methods in IPCC (2006).

( )
( )

= ´ ´ ´ ´

´å ´

CH N VS B

mcf Frac

365 0.67
8

s c m s c m o
mms

mms s c m

4 , , , ,

, , ,

Man s c m, , ,

whereCH4, Man,s,c,m is themethane emissions frommanuremanagement for species S, cohort C, inmanagement
systemM, Bo (m

3CH4 kgVS
-1) is themaximummethane producing capacity for species S, cohort C, in

management system,mcf is themethane correction factor (fraction) for eachmanuremanagement system, and
Fracmms is the fraction ofmanure handledwithin eachmanuremanagement system for species S, cohort C, in
management systemM.Themanuremanagement systems are disaggregated based on themanuremanagement
systems included inGLEAM (FAO2018), and include pasture/grazing, daily spread, solid storage, dry lot, liquid
slurry, anaerobic lagoon, anaerobic digestor, pit storage, composting, burned for fuel, and poultrymanurewith
litter. Themethane correction factors for eachmanuremanagement systemwere estimated based on the
methodology outlined inGLEAM (FAO2018).

Themanuremodulewas also used to estimate the nitrogen excreted from animals in each cohort and
management system, to be used as an input to the crop production and pasturelandmodules described below,
and to estimate the emissions of nitrous oxide (N2O), ammonia (NH3) and nitrogen oxide (NO). The nitrogen
excreted by animals in each cohort andmanagement systemwas calculated using themethodology outlined in
GLEAM (FAO2018). First, the nitrogen content of theDMI is calculated based on the nitrogen content of each
feed group, and the contribution of that feed group to the overall DMI. The nitrogen excreted is then calculated
based on the total nitrogen content of the drymatter intake, subtracting the nitrogen that is retained by an
animal in each cohort andmanagement system. The nitrogen retention varies by animal and cohort, and is a
function ofmilk/egg production, weight gain, and reproduction, and is calculated as outlined inGLEAM
(FAO2018), and IPCC (2006).

TheGLEAMmodel only estimatesmethane andN2O emissions frommanuremanagement, and does not
quantify air pollutant emissions (NH3,NO), or themanure nitrogen available for application to crop and
pasturelands as fertiliser. To account for these additional aspects of the nitrogen flowswithin the livestock
manure systems, an alternativemethodology based on EMEP/EEA (2019) emission inventory guidebook Tier 2
methodwas used instead. The total nitrogen excreted for each animal, by cohort andmanagement is used as
input tomodel the fate of the nitrogen excreted. Themodel tracks the nitrogen that is excreted andwhat fraction
is emitted to the atmosphere asN2O,NH3 andNO,what fraction is leached from the system as nitrate (NO3),
andwhat fraction is available for application onfields, and used as inputs to the crop production and
pasturelandmodels described below. The nitrogen is tracked as total nitrogen, and as total ammoniacal nitrogen
(TAN)which is used to calculate ammonia emissions frommanuremanagement (by default, the fraction of total
Nwhich is TAN is set to 0.6 (EMEP/EEA 2019)). The output from thismodule used as input to the crop and
pasturelandmodules described below is the nitrogen available for application tofields (Napplic, tonnesN y-1),
which is calculated as shown in equation 9.
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( )
= + - -

- - -
N N N N N

N N N
9

applic direct stored NH storage NO storage

N storage N O direct leach

3

2 2

WhereNdirect is the nitrogen directly applied tofields (i.e. not stored), Nstored is nitrogen stored,NNH3 storage,
NNO storage, NN2 storage, andNN2O storage are theNH3,NO,N2 and directN2O emissions from storage ofmanure,
andNleach is themass of nitrogen leached. Equation 9 is applied separately for solid and slurrymanure
management systems, and is applied to total nitrogen, and to TAN separately. In addition to theNH3,NO,N2

and directN2O emissions from solid and slurry storage ofmanure included in equation 9, themanuremodule
also quantifiesNH3 emissions fromhandling ofmanure excreted in yards and housing, and indirect N2O
emissions associatedwith (i) theNH3 andNOemissions frommanure, and (ii)nitrogen leached from the
manuremanagement systems.

As outlined in EMEP/EEA (2019),first, the nitrogen excreted in housing, open yards, andwhile grazing is
calculated, based on user-defined percentages of time that animals in a particular cohort and system spend in
housing, yards and on pasture. For the nitrogen excreted during housing, this is split into the nitrogen (and
TAN)handled as slurry, and as solid, based on the samemanuremanagement system fractions used in
equation 8 above). Ammonia emissions fromnitrogen excreted on yards and housing (slurry and solid) are then
estimated bymultiplying the TANby ammonia specific emission factors, as outlined in EMEP/EEA (2019). For
manure excreted in housing that is handled as solid, theN included in bedding is added to theN excreted by
animals, according to EMEP/EEA (2019)methodologies that estimates theN added from straw bedding, based
on the number of animals, the proportion of time spent in housing, and theN content of bedding.

TheN (andTAN) that is handled as slurry and solid is then separated based on the proportion of themanure
that is stored before application tofields (which givesNstored in equation 9), used to produce biogas, applied
directly ontofields without storage (Ndirect in equation 9), and burned for fuel (solid only). The fraction of
manure apportioned to each of these uses is input by the user. Emissions ofNH3,NOandN2 (NNH3 storage,
NNO storage, NN2 storage) from solid and slurry storage are then calculated bymultiplying the TAN stored as slurry/
solid bymanagement specific emission factors (EMEP/EEA 2019). DirectN2O emissions (NN2O direct) are
calculated bymultiplying the total N stored using differentmanuremanagement systems (those defined for
methanemanure emissions above) andmanagement specific emission factors.

Finally, indirect N2O emissions from volatilisationwere calculated bymultiplying theN emitted asNH3 and
NO frommanure storage by anN2O specific emission factor. Indirect N2O emissions fromN leached from each
manuremanagement systemwere calculated bymultiplying theN stored under eachmanuremanagement
systemby the fraction ofN leached from each system, and aN2O-specific emission factor.

2.4. Crop production
The crop productionmodule takes as input the domestic production of different crops (Prodcrop, shown in
table 1) from the agricultural demandmodule, and estimates the crop yield (Ycrop, tonnes ha

-1) required to
produce the domestic quantify of crop demanded, based on the area harvested for each crop obtained from the
FAOSTATdatabase (equation 10). The crop productionmodule includes crops for direct human consumption,
as well as feed crops used for animal feed (figure 1).

( )=Y
Prod

Land
10crop

crop

crop

In addition to the yield, the outputs from thismodule include the nitrogen use efficiency (NUE, the fraction of
the nitrogen input into the system that is taken up and used by the plant), and the crop residue that is generated.
TomodelNUE,five sources of nitrogen inputs are combined to estimate the total nitrogen inputs
(Ninputs, kgNha-1 y-1), i) biological nitrogen fixation, ii)nitrogen deposition, iii)manure nitrogen, iv) inorganic
nitrogen fertiliser, and v) crop residues from the previous harvest that remain in the field andwhich are
incorporated back into the soil (equation 11).

( )= + + + +N N N N N N 11inputs fix dep manure inorg cr

The inputs of nitrogen frombiologicalfixation (Nfix)was set to 5 kgNha-1 y-1 for all crops except rice, where
25 kgNha-1 y-1 was used, based on values assigned in Lassaletta et al (2016). Nitrogen deposition inputs (Ndep)
valueswere estimated by calculating national crop production-weighted total nitrogen deposition using
2×2.5° global gridded total nitrogen deposition fromGeddes et al (2017), whichwas available for the years
2014–2016, and gridded crop productionmaps from the Spatial ProductionAllocationModel (SPAM,
(International FoodPolicy Research Institute 2019, 2020)). Inputs of nitrogen frommanure (Nmanure)were
based on the nitrogen available for application estimated using equation 9. The totalmanureN (andTAN)
available for application (disaggregated by solid and slurry)was split between the proportion applied to crop
lands, and proportion applied to grasslands (by default 90%was assumed to be applied to crop lands, based on
Lassaletta et al 2016), and divided by the total crop land in the target country to estimate the kgN applied per

8

Environ. Res. Commun. 3 (2021) 075001 Christopher SMalley et al



hectare per year (assuming the same application rate ofmanure across all crops). The application rate of
inorganic fertiliser was also calculated by splitting the total inorganic fertiliser applied in each country (obtained
fromFAOStat) between crop lands and pasturelands as described in Lassaletta et al (2014). The total inorganic
fertiliser nitrogen applied to crop landswas then divided by the total cropland area to give the synthetic fertiliser
application rate (kgNha-1 y-1, again assuming the same application rate for all crops). Finally, theN applied
from the incorporation of crop residues back into the soil was based on theN containedwithin the crop residues
produced during the previous years, subtracting the crop residues thatwere removed for feed or fuel, or burned
(see below for description ofmethods for estimating crop residue use).

Ycropwas converted to the crop yield in terms of nitrogen contained in the crop (YNcrop, kgNha-1 y-1), based
on the proportion of nitrogen contained in each crop (Ncrop) using equations 12, and 13was used to estimate
NUE.

( )=Y
Y

N
12Ncrop

crop

crop

( )=NUE
Y

N
13crop

Ncrop

inputs

For themodel to be able to assess how crop yields could change in response to changes in overall N inputs, the
theoreticalmaximumyield (ymax, kgNha-1 y-1) is also calculated using themethodology outlined in Lassaletta
et al (2016, 2014), and shown in equation 14. For futuremodel applications that assess future scenarios with
changing nitrogen inputs equation 14 is rearranged to estimate future crop yields based on a given ymax and
nitrogen input.

( )=
-

y
Y N

N Y
14max

Ncrop inputs

inputs Ncrop

*

The application ofmanure nitrogen is associatedwith emissions ofNH3,NOandN2O,which are estimated
based on EMEP/EEA (2019) and IPCC (2006)methodologies. For each pollutant, the tonnes ofN (for direct
N2O andNO) andTAN (forNH3) applied as solid and slurry aremultiplied by pollutant andmanagement-
specific emission factors (EMEP/EEA (2019) (Tier 2 emission factors by default forNOandNH3, IPCC2006
Tier 1 default emission factors forN2O). IndirectN2O emissions associatedwith emissions ofNH3 andNO, and
through leachingwere also calculated using the samemethods as described in section 2.3 formanure storage.
Similarly, for inorganic fertilisers, fertiliser-specific emission factors forNH3,NOand directN2O emissions
were combinedwith the tonnesN applied for each inorganic fertiliser to estimates the quantity of emissions.
IndirectN2O emissionswere estimated using the same approach as formanure application.

For each crop, the tonnes of crop residues produced from its productionwas calculated using the IPCC
(2006)Tier 2methodology. The tonnes of crop drymatter produced arefirstmultiplied by a crop-specific factor
that converts tonnes crop production to tonnes of above-ground residue biomass. Crop-specific ratios of above-
to-below ground biomasswere used to estimate the tonnes below-ground residue biomass produced. The
tonnes of crop residue producedwere then apportioned between different categories, (i) removal for fuel, (ii)
removal for feed, (iii) openly burned infield, and (iv) remains infield. The tonnes of crop residue removed for
fuel is determined by a user-defined proportion of above-ground residue used for fuel. The tonnes of crop
residue used for feed is obtained directly from the livestockmodule, as described in section 2.3. The proportion
of the remaining residue (i.e. not removed)which is burned is a user-defined parameter, andwas set to 25%of
crop residue remaining in thefield for regions in LatinAmerica, Africa andAsia, and 0% for Europe andNorth
America, based on IPCC (2006) and consistent with Yevich et al (2003). Any residue not burned is assumed to be
incorporated back into the soil, and constitutes theNcr variable in equation 11. For the tonnes of residue
estimated to be burned, emissions of air pollutants (carbonmonoxide, nitrogen oxides, sulphur dioxide, volatile
organic compounds, ammonia, PM10, PM2.5, black carbon, organic carbon, andmethane) are estimated using
default emission factors outlined in EMEP/EEA (2019).

Methane emissions from rice productionwere calculated using the IPCC (2019b)Tier 1methodology,
shown in equation 15, accounting for different water regimes used to produce rice in the target country.

( ) ( )å=Emis EF t A 15CH w w w4 * *

WhereEFw is the dailymethane emission factor for rice production, t is the cultivation period (days), andA is the
area under cultivation using a particular watermanagement regimew. The emission factor for eachwater
management regime is calculated by scaling a baseline emission factor by a series of factor representing the type
of water regime before and during the cultivation period, as well as accounting for any organic amendments, as
shown in equation 16.

( )=EF EF SF SF SF 16w c w p o* * *
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Where EFc is the baseline emission factor for continuously flooded fields, SFw is the scaling factor for different
watermanagement regimes during the cultivation period, SFp is the scaling factor for thewatermanagement
regime before the cultivation period, and SFo is the scaling factor for the organic amendments applied. For EFc,
default regional values from IPCC (2019b)were used, and the default scaling factors for different water regimes
from IPCC (2019b)were also used. For t, the rice growing seasons described in Laborte et al (2017) for different
rice growing areas globally were used. For each country, the average cultivation periodwas calculated as an area-
weighted average of all data points for that country included in Laborte et al (2017). In addition, an area-weighted
average number of growing seasonswas calculated for each country from the Laborte et al (2017) rice growing
calendars, andmultiplied by the land area used for rice production to reflect the total area cultivated across the
year. For those countries not covered in Laborte et al (2017), IPCC (2019b) regional default values of twere used.
The total land areawas divided between different water regimes to estimate Aw. Due to limitations in the
availability of global information on thewater regimes used for rice production, the total land area used for rice
productionwas disaggregated into twowater regimes, (i) irrigated, and (ii) rainfed and deepwater. The Spatial
ProductionAllocationModel (SPAM) provides globally gridded data on the land area used for the production of
different types of crops (Yu et al 2020). For each country, the total land area used for rice production categorised
as irrigated and as rainfed in the SPAMdataset were summed and used to calculate the percentage of irrigated
and rainfed land used for rice production in each country. This percentage is then applied to Landrice from
equation 10 to estimate theAw for irrigated and rainfed crops.

2.5. Pasturelands
The productivity of pasturelands was calculated using a similar approach as outlined above for crop production.
First, N inputs to grasslandswere estimated using equation 11 (withNcr set to zero). Biologically fixedNwas set
to 5 kgNha-1 y-1, andNdepositionwas obtained from the same griddedNdeposition dataset as for crop
production. As outlined in section 2.4, for bothmanureN applied, and inorganicN applied, the total N available
for application frommanure and inorganic fertiliser are split based on the user-defined proportion ofmanure
and inorganic fertiliser applied to crop land and pastures. For the proportion ofmanureN and inorganic
fertiliser applied to pastureland, these totals were divided by the total pastureland for each country (obtained
fromFAOStat). For pasturelands, an additional N input is themanureN applied by animals during grazing. This
is added to themanureN applied to pastureland from storage, and divided by the total pastureland to obtain the
overall kgNha-1 y-1 frommanure applied to pasturelands.

Emissions from the application ofmanure (applied after storage, and through grazing)were estimated using
the same approach as described in section 2.4. The totalN (or TAN forNH3) applied to pasturelands was
multiplied by pollutant (NH3,NO, directN2O) andmanagement (slurry, solid and grazing)-specific emission
factors, fromEMEP/EEA (2019) and IPCC (2006). For inorganic fertiliser application, the same approach as for
croplandswas applied to estimateNH3,NO, direct and indirect N2O emissions from inorganic fertiliser
application to pastures.

TheNUE for pastures was then estimated using equation 15, whereNinputs are the tonnesN input, estimated
as described above, andNoutputs are the tonnesN that are produced from the pastureland.

( )=NUE
N

N
17pasture

outputs

inputs

Noutputs are estimated based on the requirements for grass and other roughages frompastureland from the
livestockmodule described in section 2.3. The tonnes of grass and other roughages required as feed in the
livestockmodel ismultiplied by the nitrogen content to estimateNoutputs.

2.6.On-farm energy consumption
In addition to the emissions described above, on-farm ‘direct’ energy consumption associatedwith livestock and
crop production is also associatedwith emissions of greenhouse gases and air pollutants. Sources of energy
consumption on farm include the use ofmachinery (tractors, harvesters, threshers etc), mechanical pumps for
irrigation, as well as infrastructure development, drying crops, heating and lighting, transport etc In this study,
the emissions associatedwith fuel (diesel) consumption associatedwith farmmachinerywas estimated
according to equation 18, where FCmach is the total diesel consumption formachinery (GJ), LAcrop is the land area
for crop production derived in equation 13, and FH is the per hectare fuel consumption formachinery.

( )=FC LA FH 18mach crop *

FHwas derived for each country byfirst summing the number of agricultural tractors, and harvesters/threshers
included in the FAOStat database for themost recent year available. This numberwas thenmultiplied by
regional per unit fuel consumption values for agriculturalmachinery used in Pellegrini and Fernández (2018).
The total fuel consumption for agriculturalmachinery for themost recent year in the FAOStat databasewas then
divided by the total crop area in that year (also fromFAOStat), and used in equation 18 to estimate the total fuel
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consumption from agriculturalmachinery that is consistent with the crop productionmodel described in
section 2.4. The total diesel consumedwas thenmultiplied by IPCC (2006), and EMEP/EEA (2019)Tier 1
emission factors for diesel combustion to estimate greenhouse gas and air pollutant emissions from agricultural
machinery, respectively. Other direct, on-farm emissions associatedwith energy consumptionwere not
quantified, such asmechanised irrigation, electricity consumption for heating and lighting, due to lack of data
globally on the energymixes for different on-farm activities. Arizpe et al (2011) estimated that for themajority of
countries evaluated,machinery fuel consumptionwas the largest sources of direct on-farm energy consumption
(21 countries were evaluated).

In addition, agricultural activities also demand substantial indirect off-farm energy consumption, that
exceed the on-farm consumption, e.g. for fertiliser production and the processing and distribution of products
(Arizpe et al 2011, FAO2011, Pellegrini and Fernández 2018). There are substantial sources of emissions
associatedwith these processes, but are outside the scope of this current work.

2.7.Health impact assessment
Characterising the demand for food, the agricultural systemwhich produces this food, and the emissions of air
pollutants and greenhouse gases that are produced from the livestock, crop and pasturelands in the agricultural
system allows the different impacts that result fromboth food consumption and impacts from the particular
agricultural systems producing it to be quantified. The impacts of food consumption that are quantified using
thismodelling framework include the health impacts fromparticular levels of calorific intake (i.e.malnutrition
and high body-mass index), described in section 2.7.1, and fromparticular levels of intake of different types of
foods (section 2.7.2). For the agricultural systems producing this food, the impacts quantified include the health
impacts attributable to ambient air pollution exposure resulting from agricultural emissions (section 2.7.3).

For the health impacts from all risk factors (malnutrition, high BMI, dietary risks, and air pollution), the
health endpoint quantified in themodel is the number of premature deaths associatedwith a particular level of
exposure to that risk. The number of premature deaths was calculated by age (a), sex (s), and disease (d) using
equation 19.

⎛
⎝

⎞
⎠

( )åD =
-

Mort y
RR

RR
pop

1
19

a s d
o a s

, ,
,a s d, ,

* *

WhereΔMort is the change in the number of premature deaths, yo is the baselinemortality rate for disease d, for
sex s, and age group a, pop is the population of sex s, and age group a exposed to a given level of the risk factor,
andRR is the relative risk associatedwith a particular level of exposure to a risk factor above theminimum risk
exposure level. The population of each sex and age groupswere taking from theUNPopulationDivision 2019
revision (UnitedNationsDepartment of Economic and Social Affairs PopulationDivision, 2019), and the
baselinemortality rates for each disease for each sex and age groupwere taken from theGlobal Burden ofDisease
2019 study (Abbafati et al 2020). The subsections belowdetail the specific diseases, relative risks, and assessment
of exposure to each of the risk factors considered in the health impact assessment.

2.7.1. Health impacts frommalnutrition and high body-mass index
The health impacts associatedwithmalnutritionwere infantmortality associatedwith child stunting, and infant
mortality associatedwith the proportion of low birthweight births that were estimated to be due to intrauterine
growth restriction (IUGR) associatedwithmaternalmalnutrition. The average calorie intakewas converted into
the proportion of the population undernourished using themethod outlined in FAO (2003). Using thismethod,
a frequency distribution of daily calorific intakes is developed based on the population average daily calorific
intake (in FAO (2003) this is defined as the food availability, i.e. food available for consumption, including food
waste), and a coefficient of variationwhich accounts for variation in household income, and variation in energy
requirements. The component of the coefficient of variation due to household income is calculated as a function
of per capita GDP andGini coefficient (to represent income inequality), both of whichwere obtained from
World Bank statistics. The component of the coefficient of variation due to energy requirements wasfixed at 0.2,
as outlined in FAO (2003). The frequency distribution constructed from the average daily calorie intake and
coefficient of variationwas assumed to be lognormal.

The proportion of the population undernourished is the proportion of the population consuming fewer
than aminimumdaily calorific intake. To account for the variation in demographics across countries, the
minimumdaily energy requirement was taken fromFAOFood Security Indicators (http://www.fao.org/
economic/ess/ess-fs/ess-fadata/en/#.YCAr1mj7SUk) for each country, and, where specific country data was
not available, a regional averagewas calculated and used.

The proportion of themothersmalnourished in each country was assumed to be the same as the overall
proportion of the populationmalnourished. Themethodology outlined in Blössner et al (2005)was then used to
quantify the number of pregnancies that experienced intrauterine growth restriction (IUGR) due tomaternal
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malnutrition (using a relative risk of 1.8 (1.7–2.0). This value was then applied to overall number of IUGR-
attributable low birthweight births in the country to estimate the number of low birthweight births attributable
tomaternalmalnutrition. Finally, the number of neonatal deaths attributable tomaternalmalnutritionwas
estimated applying equation 19 inwhich popwas the number of IUGR-attributable low birthweights due to
maternalmalnutrition, yowas the overall neonatalmortality rate, andRRwas 6, representing the increased risk
of death of IUGR lowbirthweight births compared to a normal weight birth.

For child stunting, the proportion of children (< 5 years old) suffering frommoderate (>2 standard
deviations belowmean height-for-age) and severe (> 3 standard deviations) stuntingwas estimated from the
average proportion of the populationmalnourished based on amodel developed by Lloyd et al (2011). This
model incorporates the proportion of the populationmalnourished, as well as ‘non-food causes’ of
malnutrition, which is derived fromper capita GDP and theGini coefficient for each country. Childmortality
associatedwithmoderate and severe child stuntingwas estimated using equation 19, inwhich pop is the
proportion of the population in each country under 5 that aremoderately or severely stunted, yo is the all-cause
mortality rate for children under 5 (disaggregated betweenmale and female), andRR is the increased risk of
death formoderately (2.28 (1.91–2.72)) and severely (5.48 (4.62–6.50)) stunted children compared to children
with average height-for-age, taken fromOlofin et al (2013). In addition to child stunting, othermetrics/risks,
such as childwasting and child underweight have been applied to estimate health impacts from child
malnutrition (Murray et al 2020), and have been shown to have a greater associationwith childmalnutrition-
attributablemortality. Child stuntingwas themetric used to quantify childmalnutrition health impacts here due
to the availability of a quantitative relationship between the overall proportion of the populationmalnourished,
and child stunting (see section 3 for a description of the results in comparison to previous childmalnutrition
health impacts).

The relationship between the average daily calorie intake and the proportion of the population overweight
(BMI>25 kgm-2) and obese (BMI>30 kgm-2) developed in Springmann et al (2016a)was used to calculate
the number of people in each adult (>25 years) age category in each country that were overweight and obese for a
given average daily calorie intake. The relationship developed by Springmann et al (2016a)was based on a linear
regression of historical national data (1980–2009) on calorie intake andmeanBMI globally. The number of
premature deaths associatedwith high body-mass indexwere then calculated using themethods outlined in
Murray et al (2020). Equation 19was appliedwith yo andRR the baselinemortality rates, and the relative risks
compared to a BMI of 22.5 kgm-2, respectively, for the 37 diseases associatedwith high body-mass index in
Murray et al (2020).

2.7.2. Health impacts from dietary risks
The number of premature deaths associatedwith different dietary risk factors were estimated for the proportion
of the populationwhose average daily intakewas belowminimum risk exposure levels outlined inGBD2017
Diet Collaborators (2019) for fruit (250 g day-1), vegetables (360 g day-1), legumes (60 g day-1), andmilk
(435 g day-1), and above theminimum risk exposure level for redmeat (23 g day-1).

The average daily consumption of fruit, vegetables, legumes,milk and redmeat was obtained from
equation 3. The distribution of daily consumption of each food type across the population in each country was
then estimated byfirst developing a distribution of per capita GDP, based on theGini coefficient of each country.
The frequency distribution ofGDPper capita was assumed to be lognormally distributed. The average daily
consumption of each food typewas assumed to correspond to the average GDPper capita. At higher and lower
levels of per capita GDP, the average daily consumption of each food typewas assumed to varywith the change in
per capitaGDP, with an elasticity.Muhammad et al (2017) derived elasticities for different food types for
different regions, based on an analysis across 164 countries. Regional elasticities for each food typewere applied
to construct the frequency distribution of daily consumption, to then derive the proportion of the population
whose consumption of each food typewaswithin a certain range.

To characterise both the proportion of the population consuming different food types below (fruit, vegetables,
legumes,milk)or above (redmeat) theminimumrisk exposure level, and thedegree of under or over
consumption, for fruits, vegetables, legumes, , andmilk, the range between theminimumexposure risk level, and0
g day-1, was subdivided into 10 sub-groups (e.g. for fruits, 10 groupswith consumptions between
250–225 g day-1, 225–200 g day-1, 200–175 g day-1K 50–25 g day-1 and 25–0 g day-1). The proportion of the
populationwithdaily average consumptionwithin the range of each sub-groupwere then calculated. For redmeat
consumption, a set ofX groupswith consumption above theminimumrisk levelwere set up to characterise the
proportion of the population consuming different levels of redmeat above theminimumrisk level.

The disease categories associatedwith each dietary risk, and the relative risks (with the exception of redmeat)
for each disease, sex, and age categorywere taken fromGBD2017Diet Collaborators (2019). This data was then
used by applying equation 19 to estimate the number of premature deaths separately for each of the subgroups,
in combinationwith the population in each of the subgroups. For redmeat consumption, theGlobal Burden of
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Disease disaggregates the health risks from redmeat between two risk factors, i) unprocessed redmeat, and ii)
processedmeat (which also includes processedwhitemeat). The output from the agriculturalmodel shown in
figure 1 is the total redmeat consumption, and therefore alternative relative risks developed total redmeat
consumption (unprocessed and processed)were identified for compatibility with the data on dietary intakes
available from themodel. Yip et al (2018) evaluated availablemeta-analyses to collate ‘best identified’ dose-
response relationships between total redmeat consumption and different health end points. The relative risks
identified in Yip et al (2018) for cardiovascular diseases and cancer were applied to quantify the impact of total
redmeat consumption on prematuremortality.

2.7.3. Ambient air pollution health risks
The heath impacts (Prematuremortality) attributable to exposure to ambient air pollution resulting from
agricultural emissions were estimated for exposure tofine particularmatter (PM2.5) and ground-level ozone
(O3). Emissions of primary PM2.5 (black carbon and organic carbon), as well as PM2.5-precursors (NOx, SO2,
NH3) from the agriculture sectorwere converted into population-weighted annual average PM2.5

concentrations by i) gridding national total emissions across the country, and ii) combining emissionswith
coefficients from theGEOS-Chemadjointmodel that quantify the sensitivity of changes in emissions of PM2.5

and PM2.5-precursor pollutants in 2×2.5° grids globally to national population-weighted PM2.5. For livestock
emissions, i.e. NH3 andNOx emissions frommanuremanagement, emissionswere gridded separately for each
animal type andmanagement system into 0.083° grids based on the FAOglobal gridded livestock of theworld
(GLW3)dataset (Gilbert et al 2018). Emissions associatedwith crop productionwere gridded into 0083° grids
based on the Spatial ProductionAllocationModel (SPAM, (International Food Policy Research
Institute 2019, 2020)).

GEOS-Chem is a global atmospheric chemistry transportmodel that simulates the formation and fate of
pollutants globally at a grid resolution of 2◦×2.5◦, with 47 vertical levels (Bey et al 2001). The adjoint of the
GEOS-Chemmodel calculates the sensitivity of a particularmodel responsemetric with respect to an emission
perturbation in any of the globalmodel 2×2.5° grid cells (Henze et al 2007), accounting for all of the
mechanisms related to aerosol formation and fate. These sensitivities are output from theGEOS-Chemadjoint
model as ‘coefficients’, which are thenmultiplied by emission estimates in each grid to estimate the change in the
particular responsemetric associatedwith a givenmagnitude of emissions. TheGEOS-ChemAdjointmodel has
been used to calculate, for 169 countries globally, coefficients that quantify the sensitivity of national,
population-weighted PM2.5 concentrations to changes in emissions in 2×2.5° grids globally (see Kuylenstierna
et al (2020) formore details).

The heath impacts attributable to ambient PM2.5 exposure result from the overall total PM2.5 from all
sources. For consistencywith existing global total PM2.5-attributablemortality estimates produced by theGlobal
Burden ofDisease (GBD), the population-weighted annual average PM2.5 concentrations for each country was
set to the values used in theGBD2019 study (Health Effects Institute 2020,Murray et al 2020). TheGEOS-Chem
adjoint coefficients were then used to estimate the fraction of the total population-weighted PM2.5

concentration for each country that resulted fromagricultural emissions estimated in this study. To do this, the
global gridded emissions from the agriculture sector were aggregated to the same 2×2.5° grids as the adjoint
coefficients. Anthropogenic emissions fromnon-agricultural sources were taken from the EDGAR emissions
database (Crippa et al 2018), and re-gridded to the same 2×2.5° grids. The product of the gridded PM2.5 and
PM2.5-precursor emissions and the set of coefficients for each country resulted in the estimated annual
population-weighted PM2.5 resulting from agricultural and non-agricultural sources. These valueswere then
scaled by the ratio of the total population-weighted PM2.5 from theGBD study, and the sumofGEOS-Chem
adjoint-derived population-weighted PM2.5 due to agricultural emissions, non-agricultural anthropogenic
emissions, and natural background PM2.5 concentrations (computed fromGEOS-Chem forwardmodel runs),
to provide a consistent estimate of the agricultural contribution to the population-weighted PM2.5

concentrations used to estimate global disease burdens in theGBD2019 study (Murray et al 2020).
The health impacts attributable to PM2.5 concentrations attributable to agricultural emissions were

estimated for adults over 30 years for chronic obstructive pulmonary disease, ischemic heart disease, ischemic
stroke, lung cancer, andType 2 diabetes and for children less than 5 years for lower respiratory infections using
equation 19. The relative risk (RR) corresponding to a givenmagnitude of total PM2.5 exposurewas derived from
the Integrated Exposure Response (IER) functions developed for theGBD2019 study, using the same theoretical
minimum risk exposure level (uniformdistribution between 2.4 and 5.9μgm-3) (Murray et al 2020). The IER
functions integrate results from epidemiological studies of ambient, household and second-hand smoke PM2.5

exposure to derived functions that quantify the relative risk for each disease category across awide range of
PM2.5 exposures. For each country, equation 19was applied to estimate the prematuremortality attributable to
total PM2.5 exposure, for each disease category. The fraction of national total population-weighted annual PM2.5
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due to agricultural emissionswas then used to estimate the fraction of the health burden attributable to
agricultural emissions.

Once emitted,methane is globallymixed and contributes to background ozone. Exposure to ozone is
associatedwith respiratory and cardiovascularmortality (Turner et al 2016). The contribution ofmethane
emissions from agriculture to ozone concentrations, and associated respiratory and cardiovascularmortality,
was calculated using results from theUNEnvironment ProgrammeGlobalMethane Assessment (UNEP&
CCAC2021). In that study, afivemodel intercomparisonwas performed to characterize the response of ozone
tomethane emissions changes. The health impacts of the ozone changes were then evaluated using 2015
population and baselinemortality data and the exposure-response functions reported in a large epidemiological
study using the AmericanCancer Society Cancer Prevention Study-II cohort of persons aged 30 years and over
(Turner et al 2016). The ozonemetric for which the response of changes inmethanewas characterisedwas
national, population-weightedmaximumdaily 8h average ozone concentration, which is the ozone exposure
metric used in the underlying epidemiological study (Turner et al 2016). These ozone-related impacts were
found to vary nearly linearly with the size of themethane perturbation, so that the results can be interpolated to
themethane emissions estimated for the agriculture sector in this work.However, the gradient of the linear
relationship betweenmethane changes and the ozone exposuremetric and associated health impacts, varied
between countries, due to differences in the levels of non-methane ozone precursors in different locations (i.e.
levels of nitrogen oxides, non-methane volatile organic compounds, and carbonmonoxide). In this study, the
health burden from global agriculturalmethane emissions were estimated individually for each country using
the country-specific linear relationships betweenmethane emissions and ozone health impacts.We use the
multi-modelmean as our central estimate, with uncertainties encompassing both those in the physical response
of ozone tomethane changes from themulti-model analysis and those inherent in the exposure-response
function. For further details seeUNEP&CCAC (2021).

3. Results

3.1. Air pollutant and greenhouse gas emissions fromagriculture
In 2018, this study estimated that global agriculture emitted 129million tonnes ofmethane, similar to previous
study estimates (table 3, table 4). In themajority of regions, enteric fermentation from cattle contributed over
50%of totalmethane emissions from the agriculture sector, except east and south-east Asia, where rice
productionmade the largest contribution (figure 2). For nitrous oxide, 4.4million tonneswere emitted globally
in 2018. This is approximately 25% lower than previous estimates (table 3), due to lower emissions from
synthetic fertiliser application, and differences inN2O emissions frommanuremanagement, application and
grazing (table 3). FAOSTAT estimates a substantially larger proportion ofN2O emissions from grazing animals
than frommanuremanagement and subsequent application, likely reflecting different assumptions regarding
the types ofmanuremanagement systems in place globally. The distribution of total N2O emissions across
regions and countries was similar to those shown formethane (figure 2, emissions of all GHGs and pollutants,
gridded at 0.083° resolution are shown infigure 3), while the contribution of subsectors varied, with larger
contributions from grazing in LatinAmerica and theCaribbean, and larger contributions of synthetic fertilisers
application in SouthAsia, and East and South East Asia.

For air pollutants, the 44million tonnes of ammonia emitted globally in 2018mostly resulted frommanure
management and application. The distribution of ammonia emissions between countries and regionswas
similar tomethane andN2O (figure 3), but compared toN2O, therewere smaller contributions from grazing and
synthetic fertiliser application (figure 2). Global ammonia emissions, and their spatial distributionwere similar
to previous estimates (table 3,figure 3). For nitrogen oxides, 8.6million tonnes (expressed asmass units ofNO2),
were emitted in 2018, with synthetic fertiliser application the largest source (table 3; figure 2). This value is over
50%higher thanNOx emissions estimated in EDGAR v5.0 andCEDS,which is consistent with underestimates
in bottom-up inventories compared to total NOx emissions derived from remote-sensing observations
(Elguindi et al 2020,Qu et al 2020). The burning of agricultural residues contributed themajority of the
emissions of other pollutants, including particulatematter, black carbon, and non-methane volatile organic
compounds, with aminor contribution from the diesel consumption from the use ofmachinery on farms
(table 1). The EDGARv5.0 inventory estimates higher emissions from agricultural burning compared to this
study, as does the ECLIPSE v5a emissions, (3,848, and 337 kilotonnes of PM2.5 and black carbon emissions in
2010, respectively) (Klimont et al 2017), which could reflect differences in the emission factors used for each
pollutant used in ECLIPSE v5a compared to this study.
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Table 3.Emissions ofGHGs and air pollutants for FAO regions and globally fromdifferent sectors in agricultural sector in 2018 (units: kilotonnes, abbreviations: EE—Eastern Europe, ESEA—East and South East Asia, LAC—Latin
America and theCaribbean, NA—NorthAmerica, NENA—Near East andNorth Africa, OCE—Oceania, RUS—Russia, SA—SouthAsia,WE—Western Europe) and comparisonwith global datasets.

Pollutant Source EE ESEA LAC NA NENA OCE RUS SA SSA WE Global

Global—FAOStat

(2018)a
Global—EDGAR

v5b (2015)
Global—CEDS

(2018)c

CH4 Enteric fermentation 1606 9021 25878 7877 5506 2585 1135 18551 15412 6293 93865 99942 105692

CH4 Manuremanagement 194 3150 1334 891 303 73 112 1152 979 1117 9305 9864 12106

CH4 Rice production 5 14408 724 0 79 7 19 7529 1976 62 24809 25348 36827

CH4 Crop residue burning 0 458 246 0 0 0 0 346 114 0 1164 1049

CH4 Total 1805 27039 28183 8769 5889 2666 1266 27579 18482 7472 129150 136203 154625

N2O Manuremanagement 32 240 169 90 87 1 21 397 215 66 1318 452 390

N2O Manure application 29 272 110 81 31 2 16 104 99 87 831 611

N2O Graze 12 87 402 55 47 59 6 127 157 57 1010 2824

N2O Synthetic fertiliser 69 107 92 194 175 19 0 431 28 91 1206 2262

N2O Total 142 706 773 421 339 81 42 1059 500 302 4365 6149 5808

NH3 Manuremanagement 791 5811 2546 2702 1007 59 613 3352 2213 2511 21606 11594 20870

NH3 Manure application 367 3748 1326 1033 285 23 191 453 736 1170 9331

NH3 Graze 62 426 1970 269 219 277 29 584 731 269 4837

NH3 Synthetic fertiliser 245 742 446 881 1095 124 0 3164 119 335 7151 2513* (Urea only)
NH3 Crop residue burning 0 407 219 0 0 0 0 308 101 0 1034 1415

NH3 Total 1465 11134 6506 4885 2607 483 833 7861 3899 4285 43959 42115 45446

NOx Manuremanagement 35 265 123 104 53 2 30 199 118 70 1000 398 1168

NOx Manure application 50 459 191 140 55 3 27 203 185 149 1461

NOx Graze 24 167 776 106 91 114 11 246 305 110 1949

NOx Synthetic fertiliser 143 223 191 403 364 40 0 895 57 190 2506

NOx Crop residue burning 0 387 199 0 0 0 0 297 91 0 974 1948 N.E.

NOx Machinery diesel

consumption

34 155 95 73 35 13 35 125 120 36 721

NOx Total 285 1656 1574 827 598 172 104 1965 876 554 8610 5450 5400

PM2.5 Crop residue burning 0 941 506 0 0 0 0 701 236 0 2384 3888 N.E.

PM2.5 Machinery diesel

consumption

3 16 10 7 4 1 4 13 12 4 73

PM2.5 Total 3 956 516 7 4 1 4 714 249 4 2458

BC Crop residue burning 0 91 51 0 0 0 0 66 24 0 232 363 N.E.

BC Machinery diesel

consumption

1 7 4 3 1 1 1 5 5 2 31

BC Total 1 98 55 3 1 1 1 71 30 2 263

NMVOC Crop residue burning 0 744 172 0 0 0 0 398 106 0 1419 3997 N.E.
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Table 3. (Continued.)

Pollutant Source EE ESEA LAC NA NENA OCE RUS SA SSA WE Global

Global—FAOStat

(2018)a
Global—EDGAR

v5b (2015)
Global—CEDS

(2018)c

NMVOC Machinery diesel

consumption

2 8 5 4 2 1 2 7 6 2 38

NMVOC Total 2 752 177 4 2 1 2 405 112 2 1458

a http://www.fao.org/faostat/en/#data
b https://edgar.jrc.ec.europa.eu/ (Crippa et al 2018)
c (McDuffie et al 2020,O’Rourke et al 2020)
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Table 4. Summary of global emissions (thousand tonnes), and annual prematuremortality attributable tomalnutrition, overweight/obesity, dietary and agricultural air pollution between 2014 and 2018.

Variable 2014 2015 2016 2017 2018

Agriculturalmethane emissions (kilotonnes) 123,887 124,876 126,912 128,131 129,150

Agricultural nitrous oxide emissions (kilotonnes) 4,089 4,221 4,205 4,357 4,365

Agricultural ammonia emissions (kilotonnes) 41,443 42,300 42,295 43,785 43,959

Agricultural nitrogen oxides emissions (kilotonnes) 8,108 8,367 8,309 8,679 8,610

Agricultural PM2.5 emissions (kilotonnes) 2,494 2,528 2,535 2,649 2,458

Agricultural black carbon emissions (kilotonnes) 267 270 270 283 263

Agricultural volatile organic compounds emissions (kilotonnes) 1,443 1,448 1,454 1,509 1,458

Diet high in total redmeat consumption (thousand premature deaths) 1,337 (1,089–1,585) 1,364 (1,109–1,620) 1,405 (1,140–1,669) 1,437 (1,167–1,707) 1,494 (1,215–1,773)
Diet low in fruits (thousand premature deaths) 1,017 (650.9–1,382) 1,025 (654.6–1,394) 1,044 (666.6–1,422) 1,033 (660.7–1,406) 999.6 (643–1,355)
Diet low in legumes (thousand premature deaths) 649.1 (289.1–1,009) 668.6 (298–1,039) 679.5 (303.8–1,055) 660.9 (296.1–1,026) 673.2 (301–1,046)
Diet low inmilks (thousand premature deaths) 72.2 (36.6–107.8) 74.3 (35.8–112.8) 76.2 (36.2–116.3) 78.1 (37.0–119.2) 80.7 (38.6–122.8)
Diet low in vegetables (thousand premature deaths) 787.6 (307.5–1,268) 859.1 (341.4–1,377) 842.5 (329.3–1,356) 845.9 (331.2–1,361) 872.7 (3,409–1,405)
Maternalmalnutrition (thousand premature deaths) 151 149.7 139.9 137.4 136.0

Moderate child stunting (thousand premature deaths) 199 (176–243) 194.8 (156.6–224.1) 184.6 (148.0–212.8) 177.0 (141.9–204.1) 170.4 (137.3–197.1)
Severe child stunting (thousand premature deaths) 485.8 (463.3–503.4) 517.6 (494.0–536.5) 484.0 (461.9–501.4) 452.2 (431.4–468.6) 423.7 (403.7–439.3)
Overweight (thousand premature deaths) 3,073 (1,575–4,571) 3,144 (1,599–4,688) 3,225 (1,643–4,806) 3,309 (1,686–4,932) 3,405 (1,747–5,064)
Obese (thousand premature deaths) 2,357 (1,556–3,158) 2,420 (1,592–3,249) 2,490.3 (1,640–3,341) 2,563 (1,692–3,433) 2,639 (1,745–3,534)
Ambient PM2.5 due to agricultural emissions (thousand premature deaths) 524.4 (395.9–652.9) 534.1 (402.4–665.8) 522.5 (392.7–652.3) 529.0 (395.6–662.4) 536.8 (401.1–672.5)
Ambient PM2.5 due to agricultural NH3 emissions only (thousand premature deaths) 356.1 (268.8–443.4) 356.9 (268.9–444.9) 351.0 (263.8–438.2) 355.7 (266.0–445.4) 357.7 (267.3–448.1)
Ground-level ozone due to agriculturalmethane emissions (thousand premature deaths) 176.1 (75.7–228.9) 177.5 (76.3–230.8) 180.4 (77.6–234.5) 182.2 (78.3–236.9) 183.6 (78.9–238.7)
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3.2.Humanhealth impacts attributable to food and agricultural risk factors
The proportion of the populationmalnourished in each country in 2018 is shown infigure 4, and in 2018was
estimated to be approximately 809million people, equivalent to 9%of the global population. This value is
similar to the 8.9%of the global population estimated to be undernourished by FAO in 2017 (FAO et al 2020),
which is expected since the FAO (2003)methodwas utilised in this study. Simultaneously, 43%of the global
populationwere estimated to be overweight in 2017, and 14%were estimated to be obese, which is consistent
with FAO (2020) that estimated 13.1%of the global population to be obese in 2016. The lowest levels of
overweight and obesity were estimated for sub-SaharanAfrica, and the highest levels inNorthAmerica and
Europe (figure 4). For dietary risks, 77% and 72%of the global populationwere estimated to consume below the
minimum risk level of fruits and vegetables, respectively, and 66%of the global population consumemore than
theminimum risk level of redmeat.

The largest health impact associatedwith dietary and food consumption risks was high body-mass index
(overweight/obesity), with 3.4million (overweight) and 2.6million (obesity) premature deaths estimated for
2018 (table 5), and a 13 and 12% increase, respectively, since 2014 (table 4). The largest fraction of these
premature deaths occurred in East and South-east Asia, followed by SouthAsia. Dietary risk factors including
consumption of redmeat, and diets low in fruits and vegetables contributed the next largest fraction of
premature deaths, andwere estimated to contribute to 4.1million premature deaths in 2018.Different dietary
risk factorsmade the largest contribution to this health burden in different regions. For example, the largest
health burdens attributable to diets high in total redmeat consumptionwere inWestern and Eastern Europe,
NorthAmerica and East and South East Asia compared to the other dietary health risks (table 5). However, diets
high in redmeatmade a relatively smaller contribution to dietary health risks in SouthAsia and Sub-Saharan
Africa, where diets low in fruit and vegetables contributed amuch higher fraction of the overall health burden
fromdietary risk factors.

The health risks due tomalnutrition combined to be attributable to over 700 thousand infant deaths in 2018,
which predominantly occurred in sub-SaharanAfrica and SouthAsia (table 5). This health impact is likely
underestimated, as child stunting is only onemetric to quantify childmalnutrition. Othermetrics, including
child underweight (weight for age), and childwasting (lowweight for height)have also been associatedwith
health burdens. To avoid double counting, only child stuntingwas quantified in this analysis, but theGlobal
Burden ofDisease 2019 analysis estimated 1.2million premature deaths were attributable to ‘Child growth
failure’, which includes all threemetrics (Murray et al 2020).

The highestmortality rates (premature deaths per 100,000) associatedwith the dietary,malnutrition and
overweight/obesity risk factors consideredwere in Russia and Eastern Europe, followed by theUnited States and
central Asian countries (figure 5). The premature deaths estimated for 2018 are generally comparable with those
estimated in previousGBD studies (table 5). Health burdens from redmeat consumption in this studywere
higher than those in theGBD2017 andGBD2019 studies as total redmeat was the risk factor considered,
compared to unprocessed redmeat in theGBD study (processed redmeat is included in the ‘processedmeat’ risk

Figure 2.Regional emissions of (a) ammonia, (b)methane, and (c)nitrogen oxides (asNO2), and (d)nitrous oxide in 2018 split by
agricultural sub-sector (Regional abbreviations: EE: Eastern Europe; ESEA: East and South East Asia; LAC: Latin America and the
Caribbean; NA:NorthAmerica; NENA:Near East andNorth Africa; OCE:Oceania; RUS: Russia; SA: SouthAsia; SSA: Sub-Saharan
Africa;WE:Western Europe).
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factor inGBD studies). The impacts on infant deaths attributable tomaternalmalnutrition are~9%of theGBD
2019 estimate of the health burden from lowbirthweight, highlighting thatmaternalmalnutrition is not the
only contributor to infant deaths from lowbirthweight.

In addition to the dietary health impacts, the agricultural emissions described in section 3.1were estimated
to contribute between<5%up to 30%of the annual average national population-weighted PM2.5

concentrations, with the largest absolute contribution inChina, followed by other South and East Asian
countries (figure 4). The contribution of the agriculture sector to PM2.5 concentrations was consistent with
previous studies formany regions (Karagulian et al 2017, Li et al 2017, Crippa et al 2019). For some regions, such
as Latin America, and East Asia, the contribution of the agriculture sector to population-weighted PM2.5 was
larger than in these previous studies. Thismay be due to underestimates in the EDGARv5.0 emission inventory
of non-agriculture emissions in these regions, which have been shown to be lower than other emission estimates

Figure 3.Annual (a)methane, (b)nitrous oxide and (c) ammonia emissions in 2018 in 0.0833° grids globally (units: tonnes per grid).
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in Latin America (Huneeus et al 2020), as well as differences in the representation of the chemical and physical
processing of pollutant in themodels used (e.g. Crippa et al (2019) use the TM5-FASSTmodel to assess source
sector contributions, compared to theGEOS-ChemAdjointmodel used in this study).

Agricultural emissionswere estimated to result in 537 thousand premature deaths in 2018 due to their
contribution to ambient PM2.5 concentration globally (table 5,figure 6), equivalent to 13%of total premature
deaths attributable to ambient PM2.5 exposure, and an additional 184 thousand premature deaths from the
formation of ground-level ozone from agriculturalmethane emissions. Both the agricultural PM2.5 and ozone
premature deaths occurredmostly inChina and SouthAsia (table 5), which also had among the highest
premature death rate from air pollution due to agricultural emissions, alongside Eastern European countries

Figure 4.Nationalmalnutrition, and dietary health risks and impacts in 2018, (a)Proportion of population undernourished,
(b)proportion of population overweight, and (c) premature deaths per 100,000 attributable to allmalnutrition, and dietary health risk
factors.
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Table 5.Premature deaths associatedwith food and agricultural risk factors for FAO regions and globally in 2018 (units: thousand people, abbreviations: EE—Eastern Europe, ESEA—East and South East Asia, LAC—Latin America and the
Caribbean,NA—NorthAmerica, NENA—Near East andNorth Africa, OCE—Oceania, RUS—Russia, SA—SouthAsia,WE—Western Europe).

Risk EE ESEA LAC NA NENA OCE RUS SA SSA WE Global GBD2017 GBD2019

Diet high in total redmeat consumption 119.6 640.0 121.3 185.5 55.2 11.3 105.7 13.1 14.1 228.2 1494 (1215–1773) 24.8 850.5a

Diet low in fruits 79.7 213.5 45.7 49.9 43.1 5.7 77.0 338.2 95.2 51.6 999.6 (643–1355) 2423.4 1008.1

Diet low in legumes 63.9 277.3 16.0 45.8 62.0 3.6 59.0 59.8 17.6 68.1 673.2 (301–1046) 534.8 1067.1

Diet low inmilks 1.1 58.8 5.0 0.2 2.4 0.1 1.1 6.6 4.4 1.0 80.7 (38.6–122.8) 126.1 154.7

Diet low in vegetables 25.5 146.6 106.7 55.6 28.3 5.0 59.8 289.8 83.2 72.2 872.7 (3409–1,405) 1462.4 508.7

Maternalmalnutrition 0.0 5.8 2.1 0.1 3.5 0.0 0.0 59.4 65.0 0.1 136.0 1833.2b

Moderate child stunting 0.5 11.5 0.0 1.2 9.1 0.5 0.6 62.7 83.5 0.8 170.4 (137.3–197.1)
Severe child stunting 0.0 36.0 48.0 0.0 6.4 0.8 0.0 106.2 226.4 0.0 423.7 (403.7–439.3) 1212.1c

Overweight 213.2 1233.3 232.6 258.9 265.0 13.0 199.5 517.4 124.8 347.5 3,405 (1,747–5,064)
Obese 152.5 916.8 214.5 241.2 212.3 10.4 142.0 365.0 89.2 295.4 2,639 (1,745–3,534) 4683.2d

Ambient PM2.5 due to agricultural emissions 13.5 298.0 27.2 3.2 8.6 0.1 5.6 159.8 4.1 16.8 536.8 (401.1–672.5)
Ambient PM2.5 due to agricultural NH3 emissions only 8.8 262.5 22.3 2.9 5.0 0.0 4.9 36.9 1.4 13.2 357.7 (267.3–448.1)
Ground-level ozone due to agriculturalmethane emissions 8.2 57.7 9.7 10.8 14.0 0.5 6.3 50.3 10.2 15.9 183.6 (78.9–238.9)

a Unprocessed redmeat consumption only
b Total health burden attributable to lowbirthweight
c Premature deaths attributable to ChildGrowth Failure
d Premature deaths attributable to high bodymass index (i.e. combined overweight and obese)
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(figure 6). The absolute PM2.5 health burden from agricultural emissions estimated in this study is 18% smaller
than those estimated Lelieveld et al (2015) (650 thousand premature deaths in 2010), whichmay be due to
differences in the categories considered in the agriculture sector, as well asmethodological differences such as
the different concentration-response functions used.

Two-thirds of the global health impact attributable to PM2.5 resulting from agricultural emissionswas from
agricultural ammonia emissions (358 thousand premature deaths in 2018, 9%of the total PM2.5-attributable
mortality) (table 5). The proportion of agricultural PM2.5 health impacts due to ammonia emissionswas highest
inNorthAmerica (90%), East and South East Asia (88%),Western Europe (79%), and Latin America and the
Caribbean (82%). However, in SouthAsia, only 23%of PM2.5-attributable premature deaths due to agricultural
emissionswere due to ammonia emissions (table 5), with other sources, specifically agricultural residue burning,
making a larger contribution.

4.Discussion

4.1. Implications for evaluating integrated strategies in the agriculture sector
Agricultural systems play a crucial role in achieving food andnutritional security, as well as in economic growth
and rural development. At the same time, agriculture can also result in a range of environmental impacts, as well
as impacts on humanhealth, indirectly through food consumption (or lack thereof) or directly through the air
pollutant emissions emitted from agricultural activities. These impacts have often been assessed separately. The
modelling framework presented in this work has integrated the assessment of dietary, and air pollution health
risks, with the contribution of the agriculture sector to climate change.When applied to the years 2014–2018,
themodel produces broadly comparable results to previous global estimates of GHGemissions, and health
burdens fromdietary risks,malnutrition and obesity/overweight that are estimated independently. The ability

Figure 5. (a)Absolute, and (b) percentage contribution of agricultural emissions to total annual average population-weighted PM2.5

concentrations globally in 2018.
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to integrate assessment of health, air pollution and climate impacts of food production and consumption has
several implications for the evaluation of integrated strategies tomitigate these impacts.

A variety ofmitigation actions can reduce the contribution of agriculture to climate change, including
(i) technicalmeasures on-farms such as feed optimisation, improvements tomanuremanagement systems,
improving animal husbandry, and intermittent aeration of rice paddy fields (FAO2013, Gerber et al 2013),
(ii) shifting diets to reduce consumption of high-GHGemitting foods, such as redmeat, and iii) reducing food
waste (FAO2019). Shifting diets to lowerGHG-emitting food products has been linkedwith additional health
benefits previously (Springmann et al 2016a, 2017, 2018, Clark et al 2019,Willett et al 2019). This study is
consistent with previous studies in estimating a substantial health burden from redmeat consumption (1.5
million premature deaths in 2018), highlighting the considerable health benefits that could be achieved
alongside reductions in greenhouse gases from reducing total redmeat consumption.

Moreover, this study quantifies the additional health benefits, from reductions in agricultural air pollutant
emissions, achievable from shifting diets, and fromother agricultural climate changemitigation strategies that
do not necessarily affect exposure to dietary health risks (i.e. on-farm technicalmeasures and reductions in food
waste). Reductions inmethane, in addition tomitigating climate change, will also reduce background surface
ozone concentrations, while reducing ammonia emissions, alongside co-emittedGHGs likeN2O frommanure
and synthetic fertilisers will also reduce premature deaths associatedwith PM2.5 exposure. The~700,000 annual
premature deaths estimated in this study from air pollutants from agricultural emissionsmay underestimate the
health benefits that could be achieved fromagricultural emission reduction strategies. Firstly, non-fatal health
outcomes associatedwith air pollution exposure, such as asthma incidence and exacerbations (Anenberg et al
2018), and non-fatal cardiovascular diseases (REVIHAAP, 2013), have not been quantified. Secondly, for some
climate changemitigation actions, additional reduction in air pollutant emissionsmay occur in other sectors,
which have not been considered in this study. For example, reducing foodwaste could also avoidmethane and
ammonia emissions from the decomposition of organic waste at solid landfill sites (Tonini et al 2018). There are

Figure 6. (a)National total premature deaths, and (b) premature deaths per 100,000 of the population attributable to ambient PM2.5

exposure resulting from agricultural emissions in 2018.
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also additional health burdens (and possible benefits) fromother dietary risk factors not quantified in this study,
including diets low inwhole grains (GBD2017Diet Collaborators, 2019). Finally, other health impacts
associatedwith food consumptionwere also not quantified, such as foodborne diseases, e.g. diarrhoeal disease
agents, whichwas previously estimated to be associatedwith approximately 420 thousand premature deaths in
2010 (WHO2015).

Possible trade-offs are also highlightedbetweendifferent health and environmental considerations in the
development of agricultural strategies. For example,many, particularly lowandmiddle-income, countries have
developed agricultural strategies that aim to intensify or extensify agricultural production, as one action amongmany
other options, to alleviate poverty, and increase economic growth (Zimmermann et al2009, Brüntrup2011,Kolavalli
et al2013). Reducingmalnutrition and exposure to dietary risks could yield substantial health benefits in reducing
child and adultmortality.However, achieving these benefits couldhave implications for foodproduction, and
associated impacts. Formalnutrition, and associatedhealth impacts, there are a largenumber of drivers (Gillespie and
vandenBold2017).Domestic foodproduction systems, included in thismodelling framework, can influence the
prevalence ofmalnutrition and food availability due to a shortage in the availability of grains or other staples
(FMARD2016), and from transitions to different foodproduction systems (Gillespie andvandenBold 2017). In
addition, policies to increase foodproductionor change foodproduction systemswhich are specifically designed to
improvehealth and reducemalnutritionhavebeen identified, including increasinghousehold agricultural
production (Gillespie andvandenBold 2017,Wendt et al2019), developingmorediverse production systems, and
improving theproductivity of nutrient dense foodproducts (Headey et al2012,Gillespie andvandenBold 2017).
However, there are a substantial number of other factors that influence food availability and theprevalence of
malnutrition, including income levels, non-food expenditures,women’s employment etc (Gillespie andvanden
Bold2017). These factors are not explicitly included in themodelling frameworkpresented in thiswork,which is
consistentwith similarmodels developedpreviously to assess the linkbetween agricultural productionunder
different future climate scenarios and theprevalence ofmalnutrition (Dawson et al2016).Moredetailed conceptual
frameworkshave beendeveloped to characterise the links across thewider drivers ofmalnutrition (Gillespie et al
2012,Headey et al2012). The applicationof thismodelling framework to assess future scenarios for agricultural
development allows assessment of the consequences of different scenarios ondietary, obesity andmalnutritionhealth
risks, alongside any trade-offs that occur due to intensification (e.g. resulting in increased inorganic fertiliser
application, increased livestocknumbers etc), extensificationor other changes to agricultural systems, e.g. to achieve
dietary or health goals. In addition, trade-offs between emissions ofGHGs andair pollution fromdifferent on-farm
mitigationoptions (e.g. differential effects ofmitigationoptions formanuremanagementbetweenmethane and
nitrous oxide and ammonia emissions, as outlined in Sajeev et al (2018)) can also be assessed.

There are also trade-offs in the quantification of health and climate impacts of food production and
consumption in this integratedmodel, as compared to developing separate and independent estimates of these
indicators. As noted above, the estimated health burdens fromdietary health risks andmalnutrition are not as
comprehensive as in studies that estimates these impacts in isolation, such as theGlobal Burden ofDisease (GBD
2017Diet Collaborators 2019). For example, the exposure to specific dietary risks cannot be estimated directly
from food balances, underestimating the overall health burden fromdietary risks. Examples of the dietary risks
which could not be integrated into themodelling framework presented here include those that are associated
with processed foods such as diets high in processedmeat, and diets high in sugar sweetened beverages, and diets
low inwhole grains, which are not disaggregated in FAO food balances fromother food consumption (i.e.
processed and unprocessed redmeat, sugar sweetened beverages and other sugar consumption andwhole and
refined grains). Finally, for estimation ofGHGand air pollutant emissions, themodelling framework presented
here quantifies those emissions that occur due to activities on the farm.Othermodelling tools which focus solely
onGHGemissions in the agriculture sector, such as theGLEAM tool (FAO2018), also provide estimates of
GHGemissions frompre- and post-farmprocesses, such as fertiliser production.

4.2. Limitations, uncertainties and future development
Thefirst limitation of themodelling is that the emissions occurringwithin national borders are those assigned to
a country. The health impacts, both fromdietary and air pollution risk factors, are those occurring to the
national population. The dietary health impacts result from the consumption of foods produced domestically
and those that are imported fromother countries. In addition, the agricultural air pollution health impacts for a
population result both fromagricultural emissions occurring within the country, and from agricultural
emissions in other countries that are transported in the atmosphere across borders. In this study, the agricultural
GHGand air pollutant emissions associatedwith the production of food that is imported into a particular
country is accounted for in the emission total for the producer country. This is consistent with international
GHGand air pollution emission accounting and reporting frameworks (IPCC2006, EMEP/EEA2019), and
does not affect the estimated emissions or health impacts quantified for 2014–2018.However, previous studies
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have assessed the impact of global trade on air pollution health impacts (Zhang et al 2017), and futurework to
integrate international trade into themodelling framework, would allow the implications of changes in diets in
one country on theGHGand air pollutant emissions (and associated health impacts) in the producer country, to
be quantified.

In addition, themodelling framework draws its boundary at emission sources on the farm, in contrast to
othermodels, such asGLEAM,which account for emissions from inputs and post-processing (FAO2018).
Other food production processes also contribute to emissions, including synthetic fertiliser production, and
post-farm transport, processing, and foodwastemanagement (Tonini et al 2018,Walling and
Vaneeckhaute 2020). These emissions are categorised in other source categories in IPCC and EMEP/EEA source
categories, andwere therefore not included in thismodelling framework (IPCC2006, EMEP/EEA 2019).
However, their future inclusion in themodel would allow the impact of differentmitigation strategies on all
emissions impacted by changes in agricultural systems to be assessed.

Other limitations include the estimation of annual air pollutant emissionswith no intra-annual
disaggregation. The contribution of agricultural emissions to PM2.5 concentrations varies across the year as
emissions of ammonia and nitrogen oxides frommanuremanagement, application and grazing, as well as
synthetic fertiliser application, and emissions from agricultural residue burning have pronounced seasonal
cycles (Pinder et al 2006, Paulot et al 2014,Warner et al 2016,Wang et al 2018). Themetric used to quantify
health burdens in this studywas the annual average PM2.5 concentration, as long-termPM2.5 exposure ismore
comprehensive for quantifying the overall PM2.5 health burden compared to short-term exposure
(REVIHAAP 2013). The impact of different temporal profiles of ammonia emissions on PM2.5 concentrations
were assessed across Europe, showing a 12%difference in annual average concentrations for different temporal
profiles (Backes et al 2016). This indicates that the temporal profile of agricultural emissions does not introduce
large uncertainties in the overall PM2.5 health burden from long-term exposure. In addition, the assessment of
PM2.5 concentrations and health burdens does not include the contribution of secondary organic aerosol
formation to total annual PM2.5 concentrations, which has been associatedwith approximately 10%of the
global air pollution health burden (Nault et al 2020).

In addition to the simplificationsmade formodelling agricultural systems and impacts onhumanhealth and
climate, data and assumptionswere extrapolated todevelop a global assessment. For some agricultural emissions,
e.g. livestockmethane andnitrous oxide emissions, andmethane emissions fromrice, regional data on the
livestock and rice growing seasons couldbeused to increase the specificity of the analysis.However, for other
variables, including ammonia emissions frommanure and inorganic fertiliser application, emission factors derived
from the EMEP/EEA (2019) air pollution guidebookwere useddue to lackof data on local emission factors. This is
consistentwith earlier assessments that have usedprevious iterations of the EMEP/EEAemission inventory
guidebooks to quantify agricultural emissions in regions that lack local data on specific variables (Castesana et al
2018,Crippa et al 2018). There are a limitednumber of studies that have assessed the transferability of EMEP/EEA
emission factors to other regions, but a recent study of ammonia emissions fromcattle in tropical and subtropical
pasturesmeasured emission factors thatwere consistentwithEMEP/EEA (2019) (Arndt et al2020).

Due to a lack of country or region-specific information, in undertaking the health impact assessment for
dietary, obesity,malnutrition and air pollution health risks, dose-response functions developed in studies
conducted in one regionwere applied to populations in other regions. This assumes that population globally
respond similarly to particular exposures of health risks (e.g. the samemagnitude of PM2.5 or ozone air pollution
exposure, or the same level of fruit ormeat consumption). The dose-response functions used have been applied
previously to quantify global health risks or are based on international assessments and reviewed that have
identified themost appropriate global dose-response functions (Murray et al 2020). As studies on different
health risks are conducted in different regions, these dose-response relationships can be updated to reflect
regional differences in health responses.

5. Conclusions

Food production and consumption play a key role in climate change and human health through emissions of air
pollutants, and dietary,malnutrition and obesity health impacts. The quantification of health benefits associated
with the implementation of climate changemitigationmeasures has been put forward as a potential factor to
increase climate changemitigation ambition, and to build a broad coalition of support for implementation
(Linnér et al 2012, Shindell et al 2017). This work presents a newmodel that integrates the assessment of food
consumption-related health risks, with quantification of the greenhouse gas emissions, and air pollutant
emissions and health burden associatedwith food production. The application of thismodel to 2014–2018
estimates that there are annually approximately 6million premature deaths associatedwith high body-mass
index, over 4million premature deaths associatedwith dietary health risks, and over 700 thousand infant deaths
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associatedwithmalnutrition. In addition, the emissions of PM2.5-precursor air pollutants, andmethane from
agriculture globally is associatedwith over 700 thousand premature deaths per year. The substantial health
burdens associatedwith food consumption, in addition to those from emissions during its production on farms
highlights the importance of developing integrated agricultural strategies that consider health and
environmental impacts, and the importance ofmodels that can assess their synergies and trade-offs.
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