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Abstract  

This work focuses on developing prediction models for the 

power output of multiple PV technologies installed at the 

outdoor test facility on the Pretoria campus of the Council for 

Scientific and Industrial Research. Random Forest (RF) and 

Adaboost machine learning models are trained with historic 

time-series data sets (measured meteorological and PV electrical 

parameters) to predict historical output power of the photovoltaic 

(PV) system. Sub-hourly measured data from January 2019 until 

November 2019 was averaged to hourly intervals for training and 

testing. The data undergo a pre-processing step where outliers 

are identified and removed. A very strong correlation (r2 ~ 0.99) 

was calculated between Isc and PV output because PV output is 

largely determined by the plane of array irradiance and the 

resulting current generation. A strong correlation between PV 

output and plane of array (0.89 < r2 < 0.99) and between PV 

output and module temperature (0.62 < r2 < 0.72) are also 

calculated, depending on the module type. The models are then 

trained on the datasets and the accuracy is quantified based on 

the root mean squared error (RMSE) between the actual 

measured PV output and the predicted PV output of different PV 

technologies. RF generally outperformed the Adaboost 

regression. Both regression models achieved minimal RMSE on 

predictions for the thin film module technologies with maximum 

RMSE of 0.2 W for Adaboost and 1.2 W for the Random Forest. 

In future work, the trained models will be used to forecast future 

electricity production from PV plants using only forecasted 

weather data as inputs.  

Keywords: Photovoltaic module; Random Forest; Adaptive 

Boosting; Power output predictions 

1. Introduction  

Solar Photovoltaic (PV) installations have been leading the 

renewable energy industry in the past few years, with the total 

installed global capacity of 627 GW by the end of 2019 [1]. The 

main driver for the evolution of this renewable technology has 

been dramatic reductions in cost and significant technological 

advancements [1], [2]. However, the variability in renewable 

resources brings challenges to the power system operator. These 

daily and seasonal variations in the grid-tied PV systems threaten 

the stability and reliability of the power network [3]. The ability 

to predict PV power output offers better system preparedness [4]. 

The application of artificial intelligence (AI) and supervised 

machine learning have been topics of interest in the PV space 

[5]–[7]. In PV predictions, these models have proven to be more 

reliable and economical than traditional methods on both PV 

generation and weather predictions. The computer algorithms 

are convenient in meeting specific aspects in the PV domain, be 

it in PV power prediction or weather related influences. [5], [7]–

[12].   Supervised learning models work by finding the complex 

hidden data patterns between given inputs and map output values 

with great accuracy [13].  

This study uses supervised machine learning (ML) approach to 

predict PV power output based on multiple inputs. Two machine 

learning models are considered in defining the prediction 

models: Random Forest regression and Adaptive boosting 

(Adaboost) regression. Initially, the dataset is pre-processed to 

prune out the outliers and lessen the training time and modelling 

errors resulting from an unfiltered dataset. The relative 

importance between parameters is assessed and correlations 

quantified. The prediction performances of both models are 

examined using regression metrics and various plots.  

2. Methodology 

2.1. System set up 

The outdoor test facility stationed at the rooftop of building 34 

at the Council for Scientific and Industrial Research (CSIR), 

Pretoria campus was utilized in this study. The system was built 

on a flat rooftop and hosts seven (7) pairs of different PV 

modules mounted on a fixed tilt rack facing true north (00 

azimuth) at 250 tilt. The PV modules under test include Bi-facial 

PERC 270 Watt peak (Wp), Bi-facial n-type c-Si 280 Wp, Mono-

facial mono-crystalline 275 Wp, Mono-facial mono-crystalline 

330 Wp, Mono-facial poly-crystalline 315 Wp, Thin film 105 
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Wp and Thin film 175 Wp. Five of the seven module types are 

shown in Fig. 1 below 

 

Fig. 1. Modules under test at the outdoor test facility on 

Building 34 in the CSIR Pretoria campus 

Each PV module is connected to an individual maximum power 

point tracker (MPP) system coupled with the electronic load 

(EL) and is configured in accordance with the manufacturer 

rating label. The EL and MPP equipment are shown in Fig. 2 

below. 

 

Fig. 2. MPPT and Electronic Loads (EL) 

The maximum power point (Pmpp) measurements for both thin 

film and crystalline Silicon (c-Si) technologies are measured 

every 1 minute and 10 minutes, respectively. Current-Voltage 

(IV) sweeps are carried out at every 2-minutes interval for thin 

films and 10-minutes for c-Si. Fig. 3 below shows the weather 

station also situated on Building 34. The measured 

meteorological datasets from the weather station includes a plane 

of array irradiance (PoA), temperatures (ambient and PV module 

temperatures), and wind speed all recorded at 1 minute intervals. 

 

Fig. 3. CSIR weather station in Pretoria campus 

2.2. Data Exploration 

The hourly averaged PV system and meteorological data for the 

period from January 2019 to November 2019 is used for this 

research. The data set of seven (7) PV module pairs measured 

from 5 AM to 6 PM sun hours. The dataset features and 

parameters include open-circuit voltages (Voc), short-circuit 

current (Isc), maximum power point voltages (Vmpp), maximum 

power point current (Impp), maximum power (PV output), plane 

of array irradiance (PoA), wind speed, module temperatures and 

ambient temperatures. One-week hourly data of BYD module 

during March equinox (20th March 2019) is plotted in Fig. 4 

below to show the measured electrical and weather parameters. 

 

Fig. 4. PV and weather parameters near March equinox. 

In this work, python programming language is used to train and 

evaluate the chosen ML models. All the measured data are used 

as input variables to the developed models except for the 

measured Pmp which is chosen as output variable in the study as 

shown in Fig. 5 below.  



    

 

Fig. 5. Inputs and Output parameters 

The data undergo a pre-processing step where possible invalid 

values are identified and removed. The outliers consist of 

missing and invalid values arising from maintenance and system 

faults. The relationship among the many parameters in the 

dataset is explored to assess the distributions and the 

correlations.  

Fig. 6 below shows the univariate distributions of each electrical 

performance parameter along the diagonal and the pairwise 

scatterplots in the off the diagonal for all seven (7) PV module 

types, coloured by module name. The figure shows only the data 

from the test dataset. The linear correlation between Isc and PV 

output is strong, as expected. The square of the linear correlation 

coefficient (r2) is greater than or equal to 0.99 for all module 

types, meaning 99% of the variability in the PV Output can be 

explained by the variability in Isc. The slope of each line varies 

depending on the module technology. The linear correlation 

between Voc and PV Output is weak (r2 < 0.31) for all module 

types, so not as useful in predicting PV Output as the Isc.  

 

Fig. 6. Scatterplots showing the correlation among 

electrical parameters for the PV modules under test 

Fig. 7 below shows the univariate distributions of the measured 

weather parameters along the diagonal and the correlation with 

PV Output, coloured by module name. The correlation between 

PV Output and PoA is strong (0.89 < r2 < 0.99) depending on the 

module. The correlation between PV Output and module 

temperature is moderate (0.62 < r2 < 0.72). Based on these 

correlations, the forecasting models should include the PoA 

irradiance and module temperature as important inputs when 

forecasting PV output.  

 

Fig. 7. Scatterplots showing the correlation among weather 

parameters and PV Output for the PV modules under test 

2.3 Training and Testing 

The cleaned data sets of each of the seven (7) module pairs are 

randomly sliced into training and testing subsets. The training 

data is used to optimize the model parameters and the test data is 

used to quantify the error in the predictions. Table 1 below 

summarizes the total number of observations and parameters in 

each data set.   

Table 1. Data set allocation and sizes 

Data subsets 
Data Size 

Rows Columns Size [%]  

Original 

dataset 

X 60203 8 
100% 

Y 60203 1 

Training 
X-Train  48162 8 

80% 
Y-Train 48162 1 

Testing  
X-Test  12041 8 

20% 
Y-Test 12041 1 

 

Prior to training, each parameter in the data sets is normalized 

using the z-score as expressed in Equation 1. The z-score 

transforms the raw data from the measured units to standardized 

values for each parameter resulting in a mean of zero (0) and a 

variance value of one (1). This process helps to speed up the 



    

training model completeness [16], [17]. 

𝑧 =
𝑥−𝑢

𝑠
                       (1) 

Where u represents the mean value of the training sample and s 

represents the standard deviation.  

2.4. Random Forest Regression Model 

The random forest works on a crowd wisdom theory. It is centred 

on the principle where the group decisions carry more weight 

than individual decisions. This means during prediction each tree 

casts a vote and the majority vote wins. RF regression then 

calculates the average of all votes received to generate a great 

estimate of what the expected value should be. RFs fall in both 

supervised learning algorithms and ensemble algorithms. In 

supervised learning, inputs and resultant outputs are grouped into 

a training set where the model learns the hidden relationship 

between inputs and output features. The trained model is tested 

on the test data where new inputs are given and the model uses 

learned skill and predicts the unseen output. It ensembles a great 

number of decision trees into its final prediction [14]–[17].  

2.5. Adaptive Boost (Adaboost) Regression Model 

The Adaptive Boost (Adaboost) ensemble works on fitting 

sequences of weak learners that are modified or repeated to 

become better. This is done to minimize the loss function. The 

decision trees with single splits are called weak learners. The 

weighted sum of all predictions results in the final predictions. 

The number of weak learners are managed by n-estimators and 

the learning rate-parameters manage the contribution of the weak 

learners in the final combination [13], [18]. In practice, a uniform 

weight is allocated for each training dataset to determine its 

significance. When the assigned weights are high, that set of 

training data points have great influence on the training set. In 

the same way, when assigned weights are low, their influence in 

the training set is low. In Adaboost, the feature of importance in 

are: 

• base_estimator: The weak learners used to train the 

model. 

• n_estimators: Total number of weak learners to train in 

each iteration. 

• learning_rate: It adds to the weights of weak learners 

and uses 1 as a default value. 

• base_estimator: It is a weak learner used to train the 

model. 

In both models, the architectural design of both ML models 

consist is as follows: 

• Total number of inputs considered is eight (8) in both 

models. 

• Then the number of  n_estimators is one thousand five 

hundred (1500) in both models.  

• The number of output or target value is one (1) in both 

models. 

• The random state is set to forty two (42). This is used 

as a seed to the random generator to ensure that the 

model is deterministic and reproducible in each 

execution. 

 2.6. Model evaluation metrics 

The developed machine learning models are evaluated using the 

conventional model evaluation metrics to assess the prediction 

performances of each model. 

2.6.1 Mean Squared Error 

The mean squared error is the quadratic error or loss calculated 

as: 

𝑀𝑆𝐸 (𝑦𝑖 , �̂�𝑖) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒−1

𝑖=0
              (2) 

Where 𝑦𝑖  represents the actual values and �̂�𝑖 represents the 

predicted values of the i-th sample. The squared error is 

calculated for each hourly measurement in the data set. Then the 

MSE is calculated from the hourly errors for each time interval 

of interest. The calculated errors from MSE are watt squared 

(W2) values. In this case, we consider RMSE on a monthly basis 

for each module.  

2.6.2 Root Mean Squared Error 

The root mean squared error is described as: 

𝑅𝑀𝑆𝐸 (𝑦𝑖 , �̂�𝑖) = √
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑛𝑠𝑎𝑚𝑝𝑙𝑒−1

𝑖=0
            (3) 

Where 𝑦𝑖  represents the actual values and �̂�𝑖 represents the 

predicted values of the i-th sample. The RMSE is calculated by 

taking a square root of the obtained results from Equation 2 

above. This will results in the same units as the target variable 

while the MSE results in squared units. 

3. Results 

3.1. Evaluation of prediction errors per PV module  

The trained Adaboost (AD) and Random Forest (RF) regression 

models are tested on the randomly selected 20% as shown earlier 

in Table 1 above. The predictions are inclusive of all the seven 

(7) PV module pairs. From the available test dataset, a single 

(sun hours) record of 2nd February 2019 is shown in Fig. 8 below 

to visualize the model predictions. The profiles for each module 

are very similar in shape since each module is exposed to the 

same PoA and mounted on the same tilt. The predicted Pmp by 

both models on each module type follow a similar trend and are 



    

closely matched to the measured actual Pmp. 

 

Fig. 8. Hourly actual Pmp and predicted Pmp of each PV 

module type 

The monthly RMSE predictions of all module pairs from the test 

dataset are presented in Fig. 9 below. The RMSE values are 

calculated from the hourly records of each module and presented 

in monthly values. Then the RMSE results for each module type 

over the entire measurement period in hourly sums are also 

presented in Table 2. 

 

Fig. 9. RMSE of Pmp of each PV module manufacturer 

On module level, RF prediction errors outperformed the AB 

prediction errors. Both the thin-film PV modules; Solar Frontier 

and Nice (SF& Nice) show minimal RMSE on both models with 

a maximum of 0.2 W and 1.2 W respectively. 

In RF prediction, the highest RMSE record of 1.8 W is recorded 

in April by the Yingli (YL) PV modules followed by the 

Panasonic (Pan) PV modules on October with RMSE of 1.7 W. 

In AB predictions, the highest RMSE is on July for SolarWorld 

bifacial (SW-Bi) PV modules and August on BYD module with 

RMSE records of 7.1 W, 6.7 W respectively. Nice PV module is 

observed to have the minimum RMSE prediction errors on both 

RF and AB regression predictions with maximum RMSE values 

of 0.2 W and 1.2 W. Both models are observed to be sensitive to 

missing data resulting in higher prediction errors in monthly 

records. 

In total sums for the entire measurement period (Table 2), the 

AB records the highest RMSE error across all module types with 

a maximum value of 58.9 W in the SW_Bi module and minimum 

of 13.7 W in the Nice module. The RF maintained the lowest 

RMSEs on total sums with maximum RMSE of 9.4 W in the Pan 

module and minimum of 3.2 W in the Nice module.  

Table 2. Averaged actual, predictions and RMSE powers. 

 

PV 

Module 

 

Actual 

Power 

[Wh] 

 

RF Pred. 

[Wh] 

 

AB Pred. 

[Wh] 

 

RF 

RMSE  

[W] 

 

AB 

RMSE 

[W] 

BYD 135222.1 135178.5 139211.7 8.7 55.9 

Nice 43680.5 43669.6 44329 3.2 13.7 

Pan 162153.2 162116.1 163506.6 9.4 43.8 

SF 76576 76596.1 77699.6 5.3 21.1 

SW-Bi 148072 148084.1 151071.1 7.1 58.9 

Yl 130640.8 130666.4 132149.5 8.7 46.1 

Yl-Bi 139945.0 139935.3 142518.5 8.4 48.8 

 

5. Conclusion 

In this work, the Adaboost and Random Forest machine learning 

models are trained and evaluated for predicting the PV output of 

different PV modules in the CSIR outdoor test facility. Analysis 

of the weather data shows the plane of array irradiance and 

module temperature have the strongest correlation with the PV 

output, so they must be included as inputs to the prediction 

models. The models are evaluated based on the RMSE of 

measured versus predicted power. The Random Forest algorithm 

achieved the lowest RMSE with no exceptions. On a technology 

level, all the RMSEs for thin film PV modules are lower 

compared to crystalline silicon PV modules for both machine 

learning models. The prediction error values measured in this 

paper clearly indicate that the Random Forest algorithm is 

superior to the Adaboost algorithm.  
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