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Abstract: The slanted-edge method describes an algorithm for measuring the spatial frequency
response (SFR) of digital imaging systems. The method can be applied to edges oriented at nearly
any angle, but there are some angles that cause simplistic implementations of the algorithm to
fail, or produce inaccurate measurements. These angle-dependent phenomena are demonstrated
to stem from a lack of uniformity in supersample spacing in the edge spread function (ESF).
Two well-known slanted-edge implementation variants are adapted to minimize edge orientation
dependent errors. These robust slanted-edge implementations are demonstrated yield accurate
measurements, regardless of edge orientation angle or moderate image noise.
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1. Introduction

The slanted-edge method is an effective means of characterizing the spatial frequency response
(SFR) of digital optical systems. It explicitly addresses the limited sampling resolution inherent
to a digital system, allowing SFR measurements to be extended beyond the native Nyquist
frequency implied by the discrete sample spacing of the digital sensor. The algorithm described
by Reichenbach et al. in 1991 already included important refinements such as the necessary
correction for employing a finite-difference numerical derivative in the line spread function
(LSF) computation, and it was said that “the extended knife-edge technique can be applied to an
edge at nearly any angle.” [1]. Later descriptions of the algorithm, such as that contained in the
ISO 12233 standard [2], restrict the allowed edge orientation to 5◦ relative to the sensor axes,
presumably to minimize the computational complexity of the implementation.

Central to the idea of the slanted-edge algorithm is that the tilt in the knife-edge is responsible
for the oversampling on which the method relies. The notion that different edge orientation
angles result in different oversampling rates was mentioned by Reichenbach et al. [1, Section
3.2], but this does not fully characterize the impact of edge orientation on the quality of the
measurement. In this paper a closer look is taken at the uniformity of the sample spacing as a
function of edge orientation, identifying edge orientations that produce the worst uniformity. In
addition, two variations on well-known edge spread function (ESF) construction methods are
described in detail, including parameter choices that lead to slanted-edge implementations that
are insensitive to edge orientation. These robust slanted-edge implementations are demonstrated
to produce accurate results independent of edge orientation.

2. Background

An implementation of the slanted-edge method can typically be partitioned into three main
steps [3, Section 2]: 1) the identification and modeling of the edge, 2) the construction of a
regularly-spaced ESF using the image data and the edge model, and 3) the calculation of the spatial
frequency response (SFR) as the Fourier Transform of the LSF, including the normalization of
the SFR and the application of corrections . For brevity, this article will focus primarily on the
second stage, the construction of the oversampled regularly-spaced ESF.
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Fig. 1. The slanted-edge method

The slanted-edge algorithm operates on a subset of pixels surrounding the edge, referred to as
the Region Of Interest (ROI), denoted by the symbol R. In the implementation described by
Kohm [4], the ROI is a rectangle that is aligned with the orientation of the edge, as illustrated in
Figure 1. Note that the ROI is truncated at a specified distance of T pixels from the edge; the
implications of the choice of T will be discussed in Section 4.1. For convenience, the pixels in R
are enumerated sequentially using the index k, such that (xk, yk) represents the coordinates of
the centre of pixel k, and the vector ®pk , (xk, yk). The intensity of pixel k is denoted by Ik , or
equivalently, I(xk, yk).
Let the vector ®c denote a point falling on the edge, and let ®n = (− sin θ, cos θ) denote a unit

vector normal to an edge at an angle of θ (Figure 1). The signed distance of each pixel ®p from the
edge can be calculated by projecting the pixel’s coordinates onto the vector ®n, thus

dk = d( ®pk) , ( ®pk − ®c) · ®n (1)

An irregularly-spaced ESF can be obtained by forming a set of tuples combining the distance-
from-edge and intensity of each pixel, to yield the set ESFi:

ESFi , {(dk, Ik)} ∀k | ®pk ∈ R. (2)

This step captures the essence of the slanted-edge method: the signed distance values dk have a
spacing that is much finer than the original pixel grid, thus allowing us to effectively sample the
ESF with sub-pixel resolution. The ESF can be differentiated to yield the line spread function
(LSF); from the projection slice theorem [5] we know that the Fourier Transform (FT) of the
LSF will yield a radial transect through the system Optical Transfer Function (OTF) along
the angle θ. The modulus of the OTF is called the modulation transfer function (MTF). The
slanted-edge method can be used to measure the spatial frequency response (SFR) of the system;
if the modulation of the test object is known, it can be used to derive the system MTF from the
measured SFR. The irregular spacing of the samples in ESFr precludes the direct application of
the Fast Fourier Transform (FFT); typically we have to resample ESFi to obtain an ESF with
regular sample spacing, ESFr .

3. Details of constructing a regularly-sampled ESF

There are twomain approaches to constructing a regularly-sampledESF: binning, and interpolation.
The ISO 12233 standard describes an implementation of the binning approach. Let the sequence
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Fig. 2. An example of a uniform distribution of samples (the ‘+’ symbols) from ESFi
throughout each bin, resulting from an edge orientation angle of 5◦.

xj denote the desired positions at which the regular ESF is to be sampled. For 4× oversampling,
the sequence xj could be defined as

xj =
j
4
, for j ∈ Z. (3)

In practice, the values of j are restricted to the range that covers the ROI truncated at distance T
pixels from the edge. The binning approach allocates each pixel k to a bin j such that

xj−1 + xj
2

≤ dk <
xj + xj+1

2
. (4)

To estimate the desired value of the regularly-sampled ESF at sampling position xj some
representative value must be constructed from all the Ik values of tuples with dk values falling
into bin j, as defined in Equation 4. The simplest solution is to compute the arithmetic mean of
all the Ik values in bin j; this solution is effective provided that the dk values falling in bin j are
uniformly distributed throughout the bin, a condition which is easily met when the relative edge
angle θ is constrained to be close to 5◦. This condition is illustrated in Figure 2: the ‘+’ symbols
represent actual values of ESFi , the thick vertical solid lines represent a 0.25-pixel regular sample
spacing (the bin midpoints xj), and the dotted vertical lines represent the boundaries of the bins.
The inset in the top left corner illustrates the entire ESF, with the box representing approximately
the section of the ESF shown in the main plot.

3.1. Critical angles

If a slanted-edge method implementation is intended for use outside of laboratory conditions,
such as on-orbit validation of satellite sensors, then the 5◦ edge orientation requirement of
the ISO 12233 method is impractical. The construction of the irregularly sampled ESF in
Equations 1–2, as proposed by Kohm [4], is already suitable for constructing ESFs from edges
with arbitrary orientation angles. Despite this, some edge orientation angles do not provide
sufficient oversampling to allow the slanted-edge method to measure accurately, without aliasing,
up to the Nyquist frequency (0.5 cycles/pixel) implied by the photosite pitch of the sensor. If θ is
an integer multiple of 90◦, then no oversampling is achieved, but there are other edge orientations
that also produce sub-optimal oversampling.
Some insight can be gained by studying edges with slopes that are rational fractions, e.g., a

slope of 1/2. The unit normal vector for an edge with a slope of p rows over q columns (where
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Fig. 3. The mean achievable oversampling factor, capped at 8×, as a function of edge
orientation angle, measured on a simulated edge of 30 pixels in length.

the greatest common factor of p and q is equal to one) pixels is

®n =
1√

p2 + q2
(−p, q). (5)

Substituting Equation 5 into Equation 1, and simplifying yields

dk =
(ykq − xkp)√

p2 + q2
+ C, (6)

where C = ®c · ®n. Since xk, yk , p and q are all integers, it follows that dk − C must be an integer
multiple of (p2 + q2)−1/2. The sub-pixel edge position (edge phase) of an edge with a slope
of p/q will repeat with a period of q columns (assuming a nominally horizontal slanted-edge),
producing at most q unique dk values in the interval [0, 1), thus limiting the maximum achievable
oversampling factor. A subset of this phenomenon, limited to edges with a slope of 1/q for q
between 0 (sic) and 9, was identified by Samei et al. [6]. A more comprehensive definition is
that edges with slopes of the form p/q with 1 ≤ p ≤ q ≤ N , and gcd(p, q) = 1 can guarantee an
oversampling factor of at most N .

Consider the example of an edge slope of 2/3 (≈ 33.69◦), which implies the dk − C values are
multiples of 13−1/2 ≈ 0.2774, thus either 3 or 4 of the dk values will fall in any interval (along
the edge normal) with a length of 1 pixel, resulting in 3× oversampling. What happens when
we choose a nearby slope, such as 201/300? The edge with slope 2/3 repeats at an interval of 3
columns, at which point the edge phase (modulo 1) is exactly zero; the edge with slope 201/300
will have an edge phase (modulo 1) of 0.01 after advancing three columns. After 6 columns,
the edge phase (modulo 1) will be 0.02, and so on. Given a sufficiently long edge, even such a
small edge phase advance will allow the samples to spread throughout our 1-pixel-length interval
(measured along the edge normal) with sufficient uniformity to support 8× oversampling at this
specific slope.
A simulation can be used to demonstrate the mean achievable oversampling rate that can be

obtained at any given edge orientation angle. The simulation ran over an ROI of 31 × 31 pixels,
but the simulated edge was truncated to a length of 30 pixels. A total of 20000 uniformly-spaced
edge orientation angles in the range [0◦, 45◦] were simulated, calculating the value of dk at
each pixel coordinate using Equation 1, but keeping only the samples with 0 ≤ dk < 1. These
samples were binned into 8 equal-width bins, keeping count of the number of non-empty bins.
The sub-pixel edge position was varied over the range [0, 1) pixels in 1000 steps, and the mean
number of non-empty bins over all these edge positions was calculated. Figure 3 illustrates the
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Fig. 4. An example of a very biased distribution of samples (the ‘+’ symbols) from ESFi
within each bin, resulting from an edge orientation of 14.036◦. Notice how all the samples
fall exactly on top of each other, clumping to one side of the midpoint of each bin.

mean number of non-empty bins, which acts as a proxy for the mean achievable oversampling
factor (capped at 8×), as a function of edge angle.

The significance of Figure 3 is that it provides a set of edge orientation intervals that should be
avoided if it is likely that the system SFR is not bandlimited, and the ROI yields an edge length
of 30 pixels. Regardless of whether the system SFR is bandlimited, it is prudent to avoid angles
below 1.73◦ and above 43.84◦. At longer edge lengths, the set of edge orientations that afford 8×
oversampling increases slightly, compared to the Figure 3.

3.2. Poor sampling uniformity

Unfortunately the problems with simple binning are not limited to just empty bins; a more subtle
but equally destructive phenomenon can manifest. Consider a 4× oversampling simple binning
implementation (thus the bins are 0.25 pixels wide), encountering an edge with a slope of 1/4,
resulting in a relative dk spacing of ≈ 0.2425 pixels. This will not produce any empty bins, but
almost all the bins will contain only one unique dk value, regardless of the size of the ROI. In
each bin the dk value will typically not fall on the midpoint of the bin (our desired xj sampling
position), but rather it will be to one side of the midpoint. There will be no averaging of values
on either side of the midpoint, as would be the case with a 5◦ edge orientation. This phenomenon
is illustrated in Figure 4: notice how all the samples (the ‘+’ symbols) in each bin are completely
coincident (compare with Figure 2), resulting in a biased representation of the contents of the
bin. In this example, the mean intensity of all the samples in the bin will underestimate the true
value of the ESF at the midpoint of the bin, resulting in the error as indicated. This type of
systematic distortion could lead to a narrowing (or widening) of the central peak of the LSF, with
the resultant error in the estimated SFR.

This phenomenon is not limited to just the obvious rational edge slopes: For example, slopes
that are close to 1/4, such as 1003/4000, or 999/4000 will produce a very small spread of dk
values within each bin, and simple binning will still fail to produce an unbiased estimate of the
regularly-sampled ESF. Two reasonable questions arise: Is this phenomenon severe enough to
impact the accuracy of a slanted-edge implementation, and does the phenomenon manifest at
only a handful of discrete angles, or does it occur throughout the range [0◦, 45◦]?
Masaoka proposed a variant of the simple binning algorithm, discussed in more detail

in Section 3.3, and performed an empirical study of the impact of edge orientation on this
implementation [7]. Although the results of that study are inextricably entwined with the
proposed algorithm implementation (as shown in Section 5), Masaoka’s results do indicate that
the phenomenon appears to affect the accuracy of the algorithm at angles throughout the range,



Fig. 5. The frequency of worst-case sample spacing uniformity scores as a function of edge
angle. The y-axis represents the uniformity score, which is the probability of the samples
being uniformly distributed throughout each 1/8-th pixel bin.

not just a small discrete subset.
In an attempt to quantify the prevalence of problematic angles without reference to a specific

slanted-edge algorithm implementation, one can directly evaluate the uniformity of the distribution
of the dk values through simulation. The Cramér-von Mises test [8] measures the deviation of an
empirical cumulative distribution function (CDF) from an expected analytical CDF. A simulation
similar to the one described in Section 3.1 was performed, but this time over a 201 × 201 pixel
ROI, while limiting the edge length to 200 pixels to ensure the same number of samples are
evaluated at each edge orientation in the range [0◦, 45◦]. At each edge orientation, the sub-pixel
position of the simulated edge was stepped through the range [0, 1) in steps of 1/1000th of a
pixel. At each edge phase, the list of dk values falling in the range [0, 0.125) were evaluated
(thus simulating 8× oversampling) for uniformity using the Cramér-von Mises test, with the test
statistic expressed as the probability of the samples being drawn from a uniform distribution.
To characterize the worst-case scenario over all edge phases, only the minimum uniformity

probability at each edge orientation angle was retained. Since a real-world slanted-edge
measurement will encounter arbitrary edge phase values, the decision to evaluated the uniformity
of the worst-case scenario is justified by the desire to eventually derive a slanted-edge algorithm
implementation that is guaranteed to perform predictably regardless of the uniformity of the dk
values in any particular bin. This implies that an edge orientation of ≈ 26.565◦, corresponding
to a slope of 1/2 and a uniform dk spacing of ≈ 0.44721, will receive a worst-case uniformity
probability of exactly zero, since there are edge phase values that result in no dk values falling in
the range [0, 0.125). Figure 5 illustrates the resulting 2D histogram of uniformity as a function of
edge angle.
From the figure it is apparent that there are edges with a uniform distribution of dk values

throughout the approximate range [1◦, 44◦], but that we also find edges with very poor uniformity
throughout the same range, illustrated by the row of higher-frequency bins at zero uniformity.
Approximately 8.71% of the edge orientations produce uniformity probabilities below 0.05; these
are shown in Figure 6. Some of the known critical angles, such as 26.565◦ and 45◦, are clearly
visible as a cluster of points with zero uniformity, but at this scale of visualization it is clear that
there are very few “safe” angles, meaning angles that are not surrounded by nearby angles with
very poor uniformity. Even the ISO 12233 recommended angle of 5◦ degrees is boxed in by the
angles 4.763◦ and 5.192◦, both of which score poorly on the uniformity test.
It should be noted that the simulated edge length of 200 pixels was chosen because not only

does it represent a reasonable edge length for high-quality slanted-edge measurements, but it also



Fig. 6. Discrete points representing the uniformity score as a function of angle, focusing on
angles with a uniformity score below 0.05, for a simulated edge length of 200 pixels.

results in a reasonable number of dk samples falling in the bin [0, 0.125), at a median value of 25
samples, thus conferring good statistical power to the uniformity test.

If the simulations are performed with a shorter simulated edge length, the apparent uniformity
of the distribution of dk values tends to decrease at all edge orientation angles, but the resulting
smaller sample sizes reduces the statistical power of the uniformity test. The simulations results
shown in Figure 5 thus represent the worst-case uniformity under good conditions (here taken
to mean a sufficiently long edge), illustrating that poor sampling uniformity must be explicitly
addressed by a robust slanted-edge implementation, such as those discussed in Sections 3.3–3.5.

3.3. Finer binning

Masaoka proposed a basic interpolation algorithm for estimating the value of a bin containing no
samples at all (the ‘empty bin’ phenomenon described above): simply pick the value from the
closest non-empty bin to the left [7]. If a bin is empty, and its immediate left and right neighbours
are not empty (the left neighbour could have been interpolated already), then the estimate for
the current bin is the arithmetic mean of the left and right neighbour bins. Masaoka further
demonstrated that the performance of his slanted-edge implementation improved progressively as
the oversampling factor was increased, up to 32× oversampling. Although this was not explicitly
stated by Masaoka, the increase in the oversampling factor is in fact a strategy for dealing with
the non-uniform distribution of samples within each non-empty bin, placing the xj bin midpoints
closer to the dk values.

3.4. Kernel-based interpolation

The binning step of the basic slanted-edge implementation can be represented as a two-step
process: the scene ESF is convolved with a box function, followed by point-sampling at the
midpoint of the bin [9, Section IV.A]. The convolution of the scene ESF and the box function is
only evaluated at the bin midpoint values xj , and the scene ESF is approximated by the irregularly
spaced discrete ESFi , so the combined convolution and sampling can be expressed as a discrete
sum

ESFr, j =

∑
k rect(wdk − wxj)Ik∑
k rect(wdk − wxj)

(7)

where ESFr, j represents bin j of the regularly sampled ESFr , and w represents the reciprocal
bin width, e.g. w = 8 for 8× oversampling. The convolution with the box function imparts a
negative bias onto the SFR obtained by the slanted-edge method, but this can be corrected by



dividing the SFR by the Fourier transform of the box function, i.e., sinc(f/w). Greer et al. go on
to demonstrate that the full correction is a function of the edge orientation angle [9], but that
detail will be omitted here for brevity.

This box function convolution gives all samples within the bin the same weight, as opposed to
a more natural weighting that would assign a higher weight to samples Ik with dk values closer
to the midpoint of the bin. If the box function convolution is replaced by a convolution with
some other compact function, such as a truncated Gaussian pulse, or perhaps a truncated Laplace
distribution, then we can obtain two desirable properties: firstly, the samples Ik can be weighted
according their distance dk from the bin midpoints xj , and secondly, the samples from nearby
bins can seamlessly contribute to the current bin if the filter function is sufficiently wide relative
to the bin size. The more generic form of Equation 7 thus becomes

ESFr, j =

∑
k h(dk − xj)Ik∑
k h(dk − xj)

(8)

where h represents any suitable compact kernel function. Note that Equation 8 can be evaluated
over only the subset of samples k that fall in the interval over which h(dk − xj) is nonzero for
improved efficiency. Towards the end of the slanted-edge algorithm, the estimated SFR is divided
by the Fourier transform of the kernel h to remove any unwanted attenuation that may have been
introduced by the convolution.
Three recent papers described implementations that employ a kernel-based interpolation

method to construct the regularly-sampled ESF: Van den Bergh proposed a Laplacian distribution
kernel [10], whereas Zhang et al. [11] and Duan et al. [12] used truncated Gaussian kernels.
Interestingly enough, Duan et al. approached the problem from the perspective of applying the
Non-Uniform FFT algorithm (NUFFT) [13] to ESFi , but mathematically this is equivalent the
kernel-based interpolation method described here.

3.5. Polynomial- or Spline-based interpolation

Fine detail that can be seen on close examination of analytical LSFs corresponding to the
diffraction component (for small circular apertures) indicates that fitting a purely global function
to the observed ESFi data points is not advised. Instead, a locally adaptive method such
as a local polynomial fit (e.g, locally estimated scatterplot smoothing, or LOESS) [14] or a
smoothing spline [15] might be more appropriate. An early slanted-edge implementation of a
local polynomial approach, involving a sliding 4th-order polynomial fit with Gaussian weighting,
was proposed for use in the field of digital radiography by Samei et al. [6]. In a recent paper, Zhou
et al. described an ESF construction method based on C-splines, which were further extended to
include monotonicity constraints [16].
One of the attractive properties of local polynomial or spline interpolation is that a well-

balanced fit can preserve the SFR contrast in the passband (e.g., between 0 and 1 cycles/pixel)
without any additional bias, and without requiring any correction of the SFR like in the case
of the kernel-based interpolation methods. This property can be used effectively to reduce the
impact of image noise on the estimated SFR.

4. Proposed algorithms

While both local polynomial interpolation and kernel-based interpolation ESF construction
methods are known from existing literature, no guidelines have been provided on how to fine-tune
an implementation to offer good robustness in the face of edge orientation dependent sampling
non-uniformity. The algorithms proposed here are therefore not new, but detailed descriptions
are provided to reduce the amount of testing that future researchers will have to perform to obtain
robust but relatively efficient implementations.
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Fig. 7. An example of an ESF with its corresponding LSF (scaled for display purposes),
with the box highlighting the central section of the ESF.

4.1. Apodization, truncation, and ESF tail noise filtering

Before delving into the details of the implementation of the ESF construction methods, it is
helpful to consider some general properties of a typical ESF. The central section, as illustrated in
Figure 7, carries the bulk of the information required to estimate the higher frequencies (say,
above 0.1 cycles/pixel) of the SFR. In the ideal case of a noise-free image, it is desirable to apply
the slanted-edge method to a wide ROI to minimize the truncation of the ESF. This follows from
the observation that if the ESF is truncated at a distance T from the edge, then this is equivalent
to multiplication of the ESF with a rectangular window of width 2T , centred on the edge. This in
turn implies that the SFR measured by the slanted-edge method is actually the convolution of
the true system SFR and a sinc(2T f ) function, which typically distorts the low frequencies of
the estimated SFR, as illustrated by Viallefont-Robinet and Léger [17, Section 7]. Increasing T
in turn decreases the width of the peak of the sinc(2T f ) function involved in this convolution,
which reduces the distortion of the estimated SFR.

On the other hand, if the image is not noise-free, then a wide ROI (large T) increases the impact
of noise on the estimated SFR, to the extent that Burns and Williams recommended choosing
a smaller T as a strategy for dealing with image noise [18]. Later, Williams and Burns [19]
recommended an improved strategy: rather than truncating the ESF to control noise, a low-pass
filter can be applied to the ESF tails (i.e., the regions outside of the box representing the central
part of the ESF illustrated in Figure 7). To implement this strategy, a robust method is required
to estimate the start of the ESF tails, expressed as a distance from the edge, dT . A reasonable
approach is to define dT in terms of the knee-points of the ESF.

There are several methods that may be employed to estimate the location of the knee-points in
curves, including the Kneedle algorithm [20], or locating the point of maximum curvature in the
ESF [3, Section 3.6]. Another method, with very low computational complexity, is to identify
the 10% and 90% rise points along the ESF, that is, the location at which the ESF reaches 10%
and 90% of the overall contrast, with contrast being estimated as the difference between the
asymptotes of the ESF tails. All of these methods require a relatively noise-free estimate of the
ESF to obtain good results; experimentation has shown that building an 8× oversampled ESFr
using kernel-based interpolation (as described in Section 3.4), with the kernel

h(x) =

{
1 − 7

4 |x |, if |x | ≤ 4
7

0, otherwise
(9)

produces acceptable results, even at an edge orientation of 45◦. An additional pass with a 5-sample
moving average filter over ESFr is applied to improve performance at very low signal-to-noise
ratios; the slight broadening of the ESF caused by this additional filter also helps to make the



estimate of dT more conservative. Let d10 and d90 represent the signed distance-from-edge
values at which ESFr reaches 10% and 90% contrast. A conservative estimate of the start of the
ESF tails, dT , is obtained such that dT = 1.5 +max(|d10 |, |d90 |). After dT has been obtained, the
temporary ESFr can be discarded, to be replaced by a better estimate of ESFr obtained using
either local polynomial interpolation, or the kernel-based interpolation method described below
in Section 4.2.
With the estimate of dT it is possible to apply the ESF tail smoothing suggested by Williams

and Burns [19]. In practice, a moving average filter with an effective width of 4 pixels (32
samples at 8× oversampling) has proved to be very effective at moderate noise levels (CNR
of 30dB or better). The width of the filter can be tapered down near dT to obtain even more
conservative behaviour.

Near the end of a typical slanted-edge implementation an FFT is applied to the LSF to obtain
the SFR. By its nature, the FFT treats the LSF as a signal that repeats periodically, with a period
equal to the length of the array containing the LSF. This implies that ideally the LSF should be
zero at both ends, or some spectral leakage will occur. It is not uncommon for a slanted-edge
implementation to apply a windowing function to effectively apodize the LSF; one such example
is the ISO 12233 standard [2]. If the ESF/LSF was truncated at a short distance from the edge,
such as initially recommended Burns and Williams, it is much more likely that the LSF was not
naturally near zero, especially for systems with wider PSFs (e.g., such as caused by a small lens
aperture, or defocus), making the windowing step with the Hann window seem inevitable. If
the ESF is truncated at a much greater distance from the edge, however, the LSF is much more
likely to already be near zero, and any additional windowing with a Hann or similar window
will just increase the distortion of the SFR at low frequencies. An alternative strategy, which is
particularly effective when it is possible and/or appropriate to truncate the ESF only at a distance
of 24 pixels or greater, is to use the ESF tail smoothing operation to achieve a natural taper of the
LSF tails. This is accomplished by extending the ESF by replicating the last sample at each end
of the ESF for an additional length of at least 4 pixels (equivalent to padding the LSF with zeroes
over the same length) before applying the ESF tail filtering.

4.2. Robust kernel-based interpolation method

The kernel-based interpolation algorithm determines the start of the ESF tails, dT , described in
Section 4.1, and applies Equation 8 with the kernel

h(x) =

{
e−αx

2
, if |x | ≤ 2

0, otherwise
(10)

to all bins where |xj | < dT . In the remaining bins, with |xj | ≥ dT , a simple average over the
interval [xj − 0.5, xj + 0.5] is used to estimate ESFr, j . An acceptable value for α is 26, obtained
through optimization in Section 5.2. ESF tail smoothing as described in Section 4.1 is applied to
effect apodization and to ESFr to reduce the impact of noise.
After the FFT has been applied to the LSF, the SFR is corrected by dividing it by the FT of

the kernel given in Equation 10; to incorporate the influence of the truncation, the correction is
obtained numerically using an FFT. This implementation requires about 2.45 ms to produce an
SFR over a 200 × 200 image on relatively modest modern hardware.

4.3. Robust local polynomial interpolation method

The local polynomial interpolation algorithm first determines the start of the ESF tails, denoted
by the parameter dT , described in Section 4.1. The strategy is to use 6th order orthogonal
Chebyshev polynomials of the first kind to construct the central part of the ESF where |xj | < dT ,
dropping down to simple averaging over the window [xj − 0.5, xj + 0.5] for the remaining bins



with |xj | ≥ dT . The Chebyshev polynomials require the dk values within the fitting window to be
normalized to the range [−1, 1], but this normalization is prudent to improve numerical accuracy
regardless of which polynomial basis is used. To accommodate the worst-case poor sampling
uniformity the local polynomial fit is performed over a sliding window with a width of 4.5 pixels;
such a wide window must be paired with a fairly narrow weighting function. The recommended
weighting function is

w(x) =

{
1, if |x | ≤ β
e−α |x |, otherwise

(11)

with β = 0.125 when |xj | <= 0.5dT and β = 0.250 for 0.5dt < |xj | < dT . These proposed
values of β, as well as the associated thresholds (e.g., 0.5dT ) were found experimentally to
produce acceptable results on a wide range of modelled systems. Individual samples from ESFi
are weighted in the polynomial regression using w(dk − xj) when constructing bin j. Through
the optimization process described in Section 5.2 the value α = 5.5 is found to offer good
performance in the passband [0, 1] cycles per pixel.
The local polynomial coefficients can be obtained by solving for the design matrix using

Cholesky factorization followed by forward substitution and back substitution, provided that
a Tikhonov ridge regression parameter of approximately 5 × 10−7 is used when computing
the solution using double-precision floating point numbers. This is significantly faster than
the alternatives, such as singular value decomposition or QR factorization, and the choice of
orthogonal polynomials and domain-normalization together with the Tikhonov regularization
yields sufficient numerical precision.
After the initial ESFr has been constructed using the polynomial fitting in the center, and

simple averaging in the tails, the ESF tail filtering method described in Section 4.1 is applied to
further reduce any residual noise in the tails. This implementation requires about 3.47 ms to
produce an SFR over a 200 × 200 image on relatively modest modern hardware.

5. Results

5.1. Synthetic image set description

To evaluate the impact of poor sample uniformity owing to specific edge orientations, and the
efficacy of the proposed algorithms at countering the poor sampling, a number of synthetic
images were generated. The synthetic images simulate an ideal aberration-free lens, focused
perfectly, attached to a sensor with a perfectly square 100% fill-factor photosite apertures. This
system yields analytical MTFs of the form

MTF( f ) =
2
π
|sinc( f cos θ)sinc( f sin θ)|

(
arccos( f ) − f

√
1 − f 2

)
(12)

where 0 ≤ f ≤ 1 represents normalized frequency, θ represents the edge orientation angle, and
sinc(x) = sin(πx)/(πx). The normalized frequency f is obtained as f = fpNλ, where fp denotes
a frequency in physical units (e.g., cycles per mm), N denotes the relative aperture f-number, and
λ the wavelength of the simulated light. To render a simulated image, it is convenient to divide
the product fpNλ by the sensor photosite pitch, allowing fp , and thus f , to be expressed in units
of cycles per pixel. The simulated images were generated to match a system with a photosite
pitch of 5 µm, monochromatic light at a wavelength of 550 nm, and relative apertures of f/4,
f/11 and f/16, using an importance sampling algorithm [21] with 40401 samples per pixel. The
extinction frequencies at f/4, f/11 and f/16 are approximately 2.27, 0.83 and 0.57 cycles/pixel at
small edge angles. Examples of the analytical system MTFs are shown in Figure 8.

The simulations were repeated at edge orientations from the set θ ∈ {5, 7.125, 9.462, 11.310,
14.036, 18.435, 21.801, 26.565, 30.964, 33.690, 36.870, 38.660, 39.806, 40.601} degrees. The
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Fig. 8. Analytical MTF curves of the synthetic images, shown at an edge orientation of
14.036◦.

5◦ edge orientation represents the reference angle for excellent sampling uniformity, but the
other orientations were selected to correspond to the worst-case sampling uniformity observed in
Section 3.2. At each edge orientation the sub-pixel edge phase was varied in steps of 1/37th pixel
through the range [0, 36/37] in an attempt to elicit greater variance in the performance. The total
set comprised 3 apertures × 14 angles × 37 edge phase values = 1554 images.
Signal-independent Gaussian noise was added to the noise-free versions of the simulated

images to evaluate the performance of the algorithms under moderate noise conditions of a
contrast-to-noise ratio of 35 dB. This signal-independent noise is not a realistic simulation of
signal-dependent photon shot noise, but it should suffice to illustrate the impact of noise on the
algorithms. Only one instance of noise was generated at each edge phase, so the total number of
noisy images was 1554, just like the noise-free set.
In all the experiments the edge orientation angle was explicitly provided as an input to each

implementation. This eliminates the possibility of an error in the edge orientation estimation
algorithm (part of the edge modeling phase) as an additional source of error.

All the slanted-edge implementations used in the experiments truncated the ESF at a distance
of 28 pixels from the edge, thus the analytical SFR of Equation 12 was convolved with a sinc(56 f )
function before the RMSE was calculated. This eliminated any bias at low frequencies stemming
from the ESF truncation, which proved to be an important consideration when optimizing the α
parameters of the kernel-based and local polynomial interpolation implementations (Section 5.2
below).
The entire simulated image data set, including the expected analytical SFR at each edge

orientation, is available for download from https://sourceforge.net/projects/
mtfmapper/files/misc/critical_edge_simulation.zip/download. These
simulated images have been prepared with great care, and can be demonstrated to accurately
represent the expected system SFR in the range [0, 2] cycles per pixel. Other researchers are
encouraged to try this data set before attempting to create their own simulated imagery for testing
slanted-edge implementations.

5.2. Optimization of parameters

Both the polynomial and kernel-based implementations accept a parameter α that controls the
effective width of the support of their respective weighting kernels. A small α parameter should
improve robustness against poor sampling uniformity, at the cost of distorting the SFR at high
frequencies. The balance between improved robustness and distortion at high SFR frequencies
was obtained through optimization.

A new set of 304 simulated images were generated specifically for the optimization process

https://sourceforge.net/projects/mtfmapper/files/misc/critical_edge_simulation.zip/download
https://sourceforge.net/projects/mtfmapper/files/misc/critical_edge_simulation.zip/download
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using a slightly different sensor model, this time with a circular photosite aperture. The
simulations covered both noise-free and noisy images (at a CNR of 35 dB), again using simulated
lens apertures of f/4, f/11 and f/16, with the simulations running over the same set of angles
listed in Section 5.1. The root mean square error (RMSE) between the measured SFR and the
expected analytical SFR was computed for each simulated image over the frequency range [0, 1]
cycles/pixel. The objective function for a coarse-to-fine optimization algorithm was defined as
the mean of the RMSE values over the 304 images in the set. Figure 9 illustrates the value of this
objective function over the range [2, 30] for both the polynomial and kernel-based interpolation
implementations.
The global minimum RMSE of the polynomial-based implementation occurs at α ≈ 5.5,

with some other local minima at α ≈ 8.55 and α ≈ 17.0. For the kernel-based interpolation
implementation there is a single minimum at α ≈ 26.0, although this minimum is not clearly
visible at the scale of the plot. It is important to note that these ‘optimal’ parameters are likely to
change a little if a different set of simulated images were to be used, especially if the magnitude
of the simulated noise is increased dramatically, however, the values of 5.5 and 26.0 for the
polynomial- and kernel-based interpolation methods are reasonable starting points for further
optimization.

5.3. Candidate algorithms

Three algorithms were selected for the comparisons presented in Section 5.4–5.5:

poly is an 8× oversampling implementation of the local polynomial interpolation method
described in Section 4.3, with the weighting parameter α set to 5.5;

masaoka is a 32× oversampling implementation of Masaoka’s method described in Section 3.3;

kernel is an 8× oversampling implementation of the kernel-based interpolation method described
in Section 4.2, with the kernel parameter α set to 26.

All three these algorithms were furnished with the same ESF tail smoothing step to level the
playing field when noisy images are evaluated.

5.4. Noise-free results

The goal of using noise-free simulated images is to identify any systematic bias in the estimated
SFR curves, which would typically be present if the implementation was not fully corrected, or
if there was some over-aggressive noise reduction present. The RMSE metric was chosen to
express the deviation of the measured SFR from the expected analytical SFR; the RMSE was
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calculated only on frequencies from 0 through to 0.5 cycles/pixel to minimize the impact of
aliasing that may arise at some edge angles in the f/4 and f/11 simulations.
Figure 10 illustrates the 95th percentile of RMSE over the 37 simulated edge phases, at each

edge orientation, for the three candidate algorithms evaluated on the f/11 system model. The
kernel-based interpolation implementation produced very consistent results, with almost no
variation in performance with edge angle, except at 26.565◦. Although Masaoka’s method
delivers competitive accuracy on the 5◦ edge orientation subset, the algorithm’s RMSE values
increase dramatically on the edge orientations with poor sampling uniformity.
Figure 11 illustrates the type of distortion experienced by Masaoka’s method at some edge

phase values; this distortion is not present at all 37 simulated edge phases, so this is more
reflective of the worst-case behaviour. The flat difference curves produced by the polynomial and
kernel-based methods demonstrate that there is very little bias in these implementations, even at
a critical edge orientation angle of 18.435◦ where the sample uniformity is very poor, and the
effective oversampling factor is only about 3.
The mean performance of the three implementations, evaluated over all edge orientations,

is presented in Table 1. The standard deviation of Masaoka’s method is at least an order of
magnitude greater than the other two methods, demonstrating that those methods a more robust
in the face of poor sample uniformity in ESFi .



Table 1. Comparison of mean RMSE (± standard deviation) on noise-free images across all
14 angles

f/# poly masaoka kernel

f/4 4.34e-04 6.10e-03 5.98e-04
± 6.75e-05 ± 2.36e-03 ± 9.33e-05

f/11 7.55e-04 3.97e-03 5.90e-04
± 8.33e-05 ± 1.80e-03 ± 3.36e-05

f/16 1.22e-03 3.40e-03 6.83e-04
± 1.46e-04 ± 1.17e-03 ± 4.51e-05
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Fig. 12. RMSE at various edge orientation angles, CNR 35 dB simulated images at f/4.

5.5. CNR = 35dB results

Table 2. Comparison of mean RMSE (± standard deviation) on CNR=35 dB images across
all 14 angles

f/# poly masaoka kernel

f/4 3.85e-03 7.43e-03 4.36e-03
± 1.36e-03 ± 2.81e-03 ± 1.47e-03

f/11 4.07e-03 5.89e-03 4.49e-03
± 1.36e-03 ± 2.26e-03 ± 1.49e-03

f/16 4.36e-03 5.51e-03 4.68e-03
± 1.41e-03 ± 1.91e-03 ± 1.49e-03

Next, the three implementations were evaluated on the subset of the images that were perturbed
with signal-independent additive Gaussian noise with a standard deviation magnitude that
produces a contrast-to-noise ratio of 35 dB, representing moderately noisy images. The 95th

percentile RMSE over the 37 edge phase simulations are plotted as a function of edge orientation
in Figure 12, this time for the f/4 simulation. It is clear that the addition of the noise has levelled
the playing field somewhat, with Masaoka’s implementation now producing comparable RMSE
scores on some of the edge orientations, but some edge orientations still produce errors that
are three times greater than the error obtained at the 5◦ edge orientation. Another interesting
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phenomenon is that the polynomial-based implementation consistently produces slightly smaller
errors than the kernel-interpolation implementation, a reversal of what was observed on the
noise-free images, indicating that the local polynomial fitting does indeed help to reduce the
impact of noise.
Figure 13 shows a single example of the impact of noise on the SFR difference curve: all

three methods exhibit local oscillations, but both the polynomial-based implementation and the
kernel-interpolation method manage exhibit low bias below 0.5 cycles/pixel, only showing larger
deviations (overestimation) at frequencies above 0.5 cycles/pixel. Masaoka’s method still suffers
from systematic bias owing to the poor sampling uniformity, even in the presence of noise.
A summary of the performance of the three methods is presented in Table 2. The difference

in the RMSE standard deviations between the three methods is significantly reduced by the
noise, but Masaoka’s method is still trailing by between 35% and 100%, indicating that the edge
orientations leading to poor sample uniformity remain a significant problem at these noise levels.

6. Discussion

The results presented in Section 5 demonstrate that it is possible to implement the slanted-edge
method in such a way that it is largely insensitive to the poor sampling uniformity that results from
certain edge orientations. In the case of the local polynomial fitting approach, the parameters of
the robust implementation differ from those reported in the literature. For example, both Samei
et al. [6] and Helder [3, Section 3.2] describe the use of a 4th order polynomial, with a window
width of 1.7 and 2 pixels, respectively. During the development of the polynomial interpolation
method described in Section 4.3 it was found that a window of 2 pixels was too narrow to obtain
robust fitting at edge orientations of 26.565◦ or 45◦; the best compromise was obtained by using a
6th order polynomial, widening the window to 4.5 pixels, using ridge regression, and optimizing
the α parameter.

The recent appearances of the kernel-based interpolation approach in the literature are slightly
harder to compare because the information is sometimes missing or unclear. Duan et al. use
a truncated Gaussian kernel with an apparent window length of 8 pixels, and possibly an α
parameter of 3π ≈ 9.42 [12]. Zhang et al. provide no concrete values [11]. Van den Bergh
proposed a Laplace distribution kernel with a scale parameter of 13; no window length is provided,
but the publicly available source code reveals that the window length was quite narrow at 2.0
pixels [10]. The proposed value of α = 26 for the implementation described in Section 4.2
produces a kernel that is narrower than that proposed by Duan et al., but wider than the one
proposed by Van den Bergh.
The ESF tail smoothing method described in Section 4.1 appears to be quite effective at



suppressing noise; detailed results were omitted for brevity, but traditional ESF truncation at 16
pixels from the edge, followed by a Hann window, produced RMSE values about twice that of the
polynomial interpolation method with tail smoothing. As shown in Figure 13, image noise leads
to an overestimate of contrast at frequencies above the extinction frequency (0.57 cycles/pixel),
which is consistent with the theoretical results presented by Haefner and Burks [22], suggesting
that there is still some scope for additional noise reduction, most likely stemming from noise in
the central part of the ESF. It is difficult to add additional noise suppression to the central part of
the ESF without distorting the SFR, for example, the Tikhonov regularization proposed by Xie et
al. can be seen to introduce a negative bias in the measured SFR at lower frequencies [23, Figure
6]. A promising method combining the use of spline interpolation with an ESF monotonicity
constraint was proposed by Zhou et al., their results [16, Figure 4] demonstrate a peak SFR error
of about 0.005 in the range [0, 0.5] cycles/pixel, which is comparable to the robust polynomial
method in Figure 13 above, especially when one takes into account that Zhou et al. appear to have
simulated noise at a slightly higher CNR of 43.5 dB. Lastly, it is important to emphasize that
the impact of angle-dependent sampling non-uniformity can be masked by image noise, without
requiring any mitigation in the implementation; the relative performance of Masaoka’s method
on the noise-free images (Table 1) versus the noisy images (Table 2) compared to the other two
implementations supports this observation.
The fact that simplistic implementations of the slanted-edge method lead to excessively poor

performance at certain edge orientations cannot be emphasized enough. A recent paper by Xie
et al. demonstrated how important it is to describe the slanted-edge implementation used in a
particular study; their paper evaluated what appears to be a very poor (but completely unspecified)
implementation, producing results that can at best be described as questionable [24, Figure 5].

The slanted-edge implementations described in Section 4.2 and 4.3 are robust, and can safely
be used at almost any edge orientation in the range [2, 43]◦. These implementations even work on
edge orientations of 45◦, but aliasing will result if the systemMTF is not bandlimited to below 0.71
cycles/pixel. This flexibility in acceptable edge angles allows full-field SFR measurements [25] to
be approximated at minimal cost with a single test chart, as demonstrated in theMTFMapper open
source software package (https://sourceforge.net/projects/mtfmapper/).

7. Conclusion

Simulation results have been presented to illustrate that the uniformity of the distribution of
samples within a single ESF bin in a typical slanted-edge algorithm implementation is strongly
dependent on the relative edge orientation. A few critical edge orientations result in such
poor uniformity that some ESF bins receive no samples at all. Local polynomial fitting and
kernel-based interpolation are two well-known methods of reconstructing a regularly-sampled
ESF; the results presented in this article demonstrate that with a suitable choice of parameters
these algorithms can be used to obtain a very robust slanted-edge implementation that is largely
insensitive to edge orientation. The efficacy of an ESF tail low-pass filtering step to reduce the
impact of image noise was demonstrated, supporting the idea that this method could be used in
the place of the traditional truncate-and-window approach.
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