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ABSTRACT The optimal integration of electrical units, such as distributed generation units, power
electronic devices, and electric vehicles, is a significant development of smart grids. This development has
effectively transformed the traditional grid system, promising numerous advantages for economic values
and autonomous energy source control. In smart grids development, metaheuristic algorithms are one of the
optimization algorithms that have been applied extensively to mitigate the accompanying problems such as
voltage instability, power loss, and high installation cost. This paper presents a comprehensive review of
metaheuristic techniques for the optimal integration of electrical units in distribution networks, considering
different phases of the optimization process. These include the approaches for handling of crucial objective
functions and the optimal integrationmethods for different electrical units. This review shows a need formore
research on developing efficient metaheuristic algorithms and the effective handling of multiple objective
functions.

INDEX TERMS Decision making, distributed generation, distribution networks, electric vehicles, meta-
heuristic optimization algorithms, multi-objective optimization, optimal location and sizing, smart grids.

I. INTRODUCTION
Metaheuristic optimization techniques have become quite
popular for solving engineering problems due to peculiar
reasons such as simplicity and flexibility. One significant
benefit of metaheuristic algorithms is their capability to solve
highly computational tasks at a substantial efficiency. These
algorithms use stochastic operators to search for optimal solu-
tions based on diversification and intensification [1], where
the former is a sporadic search of a whole solution search, and
the latter is the search of a particular region of the search space
[2]. Metaheuristic algorithms are independent of any prob-
lem, and their high-level nature permits them to roam in and
out of several local optima. They are mostly nature-inspired
and are based majorly on two concepts: evolution theory and
swarm-based intelligence [3], [4]. Evolutionary algorithms
begin with the initialization of a random population, where
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the best individuals move to the next generation (clearly
imitating the theory of evolution). Swarm-based intelligent
algorithms mimic the social behavior of animals and how
they interact with each other to achieve a common goal.
This concept is fundamental for reaching a global optimum,
hence finding optimal solutions.Metaheuristic algorithms are
very dynamic such that they extensively search for a solution
within a single objective or multi-objective space [5], [6].
Hence, they have been applied heavily to solve the optimal
integration of electrical units in distribution networks.

Electrical units have been integrated into distribution
networks for better power delivery and power compensa-
tion. These units are categorized as energy sources and
Power Electronic (PE) devices, where the energy sources
are Distributed Generation (DG) units, Energy Storage
System (ESS) units, and Electric Vehicles (EV), and the
PE devices are capacitor banks, Synchronous Static Com-
pensator (STATCOM), and voltage regulators. Distribution
Networks (DG) units are the most prevalent for optimal
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integration because of their dual purpose of compensating
power and stabilizing the grid. Renewable Energy Sources
(RES)-based DG units are even more prevalent due to their
environmental benefits. Generally, electrical unit integration
benefits include voltage stability improvement, power loss
minimization, operating cost reduction, and emission reduc-
tion. These benefits can only be achieved if the electrical units
are integrated appropriately.

The inappropriate integration of electrical units causes
extreme power loss and voltage instability. For instance,
a continuous real power penetration from a DG unit can
cause extreme reverse power, leading to a voltage break-
down in a power distribution network. For RES-based DG
units, the intermittent power supply can affect a distribution
network performance and reliability. Therefore, optimization
algorithms have been developed to solve these issues faced
with the optimal integration of electrical units.

Optimal integration of electrical units has revealed many
advantages in distribution networks, which has led to
numerous reviews on different algorithms, applications, and
objectives. The authors of [7] and [8] reviewed different
technologies and benefits of ESS and the methods for optimal
location, sizing, and control. They emphasized on further
studies on the performance and control of ESS units. Sirjani
and Jordehi [9] reviewed different techniques used in the opti-
mal placement and sizing of the Distribution Synchronous
Static Compensator (D-STATCOM). They carried out a qual-
itative analysis of the storage type, objective functions, con-
straints, and solutions; concluding that there is a need to place
D-STATCOM in different conditions, and improve the speed
and accuracy of solving the optimal placement and sizing of
D-STATCOM. Sheibani et al. [10] reviewed ESS installation
and expansion in distribution and transmission networks.

Some authors have focused majorly on optimization tech-
niques in distribution networks as in [11], where a compre-
hensive review conducted for analytical methods for solving
optimal integration and planning in distribution networks.
The study encompasses different types of techniques and
compares them according to DG unit types, decision vari-
ables, and objective functions. It was suggested that more
work should be carried out on the combined integration of
DG units and EVs in distribution networks. The authors
of [12] and [13] focused on different techniques used for
solving the optimal location and sizing of DG units, consid-
ering the objective functions, indices, and constraints, while
Theo et al. [14] focused on the comparison of numerical and
mathematical methods and their application in optimal DG
planning. In [15], multi-agent system applications to power
system problems were reviewed. Some of the applications
reviewed are DG units management system, electric vehicle
management system, electricity market, energy management
& control, power generation expansion, and fault detection &
protection.

Askarzadeh [16] reviewed the application of a meta-
heuristic algorithm, a harmony search in power systems.
The study focused on economic dispatch/unit commitment,

optimal power flow, control, optimal placement of FACTS
devices, expansion and planning, prediction, parameter iden-
tification, reconfiguration, and optimal reactive power dis-
patch. In [17], six metaheuristic algorithms were selected
in the categories of swarm intelligence, evolutionary, and
teacher/learner. The algorithms were reviewed and analyzed
using benchmarked functions. In addition, a microgrid con-
sisting of DG units such as solar photovoltaics, wind tur-
bines, microturbines, diesel generator, and fuel cell, was
modeled to find the minimum operating cost. Results from
the analysis show that the Teaching Learning-Based Opti-
mization (TLBO) performs better than the Particle Swarm
Optimization (PSO), Differential Evolution (DE), Whale
Optimization Algorithm (WOA), Genetic Algorithm, and the
Firefly algorithm.

Metaheuristic algorithms are used extensively because of
their ability to produce near-optimal results in a computation-
ally efficient manner. They have also been used for solving
multiobjective optimization problems in the optimal integra-
tion of electrical units in distribution networks. However,
these metaheuristic algorithms have not been compared in
literature. This paper discusses the different categories of
metaheuristic techniques, and their applications to the single
and multiobjective problems in the optimal integration of
electrical units in distribution networks. The paper discusses
the opportunities and future research directions that may be
needed to improve results from the optimal integration of
electrical units in distribution networks.

The rest of this paper is as follows: Section II discusses
the electrical units in a smart grid. Section III explains the
phases in the optimal integration of electrical unit problem.
Section IV discusses the application of metaheuristic algo-
rithms to optimal integration of electrical units in distribu-
tion networks. Section V discusses metaheuristic algorithms
based on multiobjective optimization in the optimal integra-
tion of electrical units in distribution networks. Section VI
presents the summary of findings from the review. Finally,
conclusions are drawn in Section VII.

II. ELECTRICAL UNIT INTEGRATION IN SMART GRIDS
The National Institute for Standards and Technology (NIST)
coined out concepts from a standard smart grid as ‘‘archi-
tecture, architecture process, energy services interface, func-
tional requirement, harmonization, interchangeability, and
inter-operability’’ [18]. All of these concepts are related to
the optimal integration problem in microgrids, distribution
and transmission networks. They come in play depending on
the (i) number of integrated units (ii) type of units (iii) mode
of operations. For example, RES-based DG units can be
integrated to serve the smart grid at their peak hours only,
or they can be merged with Energy Storage Systems (ESS)
to store energy for high demand hours, which promotes the
demand side management in a smart grid. The ESS unit can
be used for smoothening power output through frequency
variation [19] and [20]. A representation of the integration
of BESS, solar Photovoltaic (PV) plant, wind turbine plant,

VOLUME 9, 2021 5047



K. E. Adetunji et al.: Review of Metaheuristic Techniques for Optimal Integration of Electrical Units in Distribution Networks

FIGURE 1. Configuration of a distribution network with the integration of
different electrical units (adapted from [21]).

and EVs in a distribution network is shown in Figure 1
[21], [22]. Some major integrated units are discussed below.

A. ENERGY SOURCES
Energy sources are central to the development of smart grids.
These energy sources can be RES-DG units and may be
configured as a single or multiple DG units. Either type of
energy source configuration should have an appropriate size
and location of the energy source itself [23]. Some examples
of energy sources used in literature are Battery Energy Stor-
age Systems (BESS), wind turbines, PV modules, and diesel
generators. BESS units are used mostly to compensate for the
intermittent nature of the RES. While BESS units have been
enhanced with improvement in chemical composition and
structure [8], [24], there is also a need to optimally place them
at strategic locations to achieve optimum power delivery.

Researches such as in [25]–[28] proposed algorithms
to find optimal size and location of BESS in distribu-
tion networks. The authors of [29]–[33] have also devel-
oped meta-heuristic algorithms to optimally size and place
BESS-based DG units in distribution networks. Independent
energy sources such as PVs and wind turbines have also been
optimally placed and sized for optimum energy transfer [34].
Most of the energy sources have also been integrated
into microgrids to reduce cost of energy, net present cost,
etc. [35], [36].

B. POWER ELECTRONIC UNITS
The inception of the smart grid comes with the power delivery
problem, which is mostly power stability. PE units have been
used to compensate for distorted power, thereby enhanc-
ing power quality. Over time, these units have been sized
and placed at strategic locations. Examples are capacitors
(or capacitor banks), D-STATCOM, and Dynamic Voltage
Restorer (DVR). Capacitors are generally the most economi-
cal; hence they attract more studies. Chunks of research such
as in [37]–[43] worked on the optimal sizing and allocation
of capacitors in a distributed network through the use of
meta-heuristic algorithms. Other power electronic devices

such as STATCOM, which consists of coupling transformers,
energy storage devices, and inverters [44], have also been
optimally placed and sized.

C. ELECTRIC VEHICLES
Electric vehicles are emerging technology that can be an
energy source or a PE device. They are eco-friendly vehicles
that are fully or partially powered by electric propulsion.
These vehicles are categorized into three, which are Plug-in
Hybrid Electric Vehicles (PHEV), Fuel Cell Electric Vehicles
(FCEV), and Battery Electric Vehicles (BEV). The PHEV
combines the Internal Combustion Engine (ICE) with an
on-board battery system to enhance fuel economy. FCEVs
are powered by hydrogen fuel cells, which is the newest and
developing technology. BEVs are only run on battery tech-
nology and are considered the most efficient way to reduce
carbon emissions. This distinction has made the BEV draw
more attention than other EV categories [45], both in the
global market and research. Naturally, the use of EVs in any
form (as a load or support) will always cause a deterrent to
the grid; hence there is a need to control its implementation.

Firstly, charging an EV is an extra load to the grid net-
work, causing voltage fluctuations and sudden peak loads if
charging is uncoordinated. An uncoordinated charging refers
to an arbitrary charging of EVs [46]. Ahmadi et al. [45] had
highlighted the impacts of EVs on distribution networks. One
method to control EVs is the optimal EV scheduling, which
is assigning time slots for EV charging. To encourage the
participation of EV owners, charging costs are minimized
along with other objectives. Adetunji et al. [47] proposed an
EV charging model that reduces the charging cost alongside
the minimization of power loss and load variance.

Secondly, EVs can discharge power to support the grid.
Optimal EV scheduling can also control this phenomenon.
Another method to control EV implementation in a grid net-
work is the EnergyManagement System (EMS), which, most
times, incorporates DG units. EMS is the maximum strategic
utilization of energy sources in a smart grid while considering
its technical, economic, and environmental impacts. In this
context, EVs are implemented to charge from or discharge to
the grid network and is done using the Vehicle-to-Grid (V2G)
technology.

V2G is the management and control of EVs to the distribu-
tion network, which involves an aggregator and a distribution
system operator (DSO). Some common objectives of the V2G
technology are to minimize charging cost, maximize profit,
improve power quality, and reduce carbon emissions. V2G
technology is categorized based on power flow direction,
namely unidirectional and bidirectional. Unidirectional V2G
uses a one-way power flow to control the charging rates
of EVs. It primarily provides ancillary services to the grid.
These ancillary services must involve energy trading policies
that should encourage the participation of EV owners [48].
Bidirectional V2G uses a two-way power flow between the
grid and EV. There are extra benefits, such as frequency
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regulation, voltage regulation, reactive power support, and
peak load shaving.

Furthermore, EV charging stations are also an important
factor in the mix because their allocation to the bus locations
may deter the technical characteristics of the network. Some
studies have formulated and solved the charging station allo-
cation problem as in [49]–[52].

III. PHASES IN THE OPTIMAL INTEGRATION OF
ELECTRICAL UNITS
This section discusses the phases and factors involving opti-
mal integration in a distribution network. The following are
discussed: power flow models, objective functions and con-
straints, and non-arbitrary datasets.

A. POWER FLOW MODELS
Power flow is an essential factor in distribution systems.
Power flow methods range from optimal power flow (OPF),
continuous power flow (CPF), probabilistic power flow (PPF)
and so on. These methods have been used to analyze the
components on a power bus line, hence determining the cal-
culation of power losses and voltage stability on such lines.
However, power loss equations will be based on the type of
generator source. For example, the output power of diesel
generators will defer from the power from PVs or WT. Also,
a single- or three-phase type will change the model of its
power flow. The schematic for the single-phase power supply
is shown in Figure 2 [53].

FIGURE 2. Schematic of a single line illustration of a distribution network.

Figure 2 is represented with the equations below.

Pp+1 = Pp − PLOADp+1 − Rp,p+1
(P2p,p+1 − Q

2
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|VP|2
, (1)
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2
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|VP|2
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2
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2
p,p+1)

|VP|2
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where p is the sending bus and p+ 1 is the receiving bus. P,
Q, and V are respectively the real power, reactive power, and
voltage at bus p or p+1, while R and X are the resistance and
reactance at branch p, p+ 1.

The total power loss of the system is represented in (4)

Plosstotal =

n−1∑
p=1

Plossp,p+1. (4)

The derived equations from Eq. (1) can be supplemented
by the addition of energy devices such as capacitors and
STATCOM. Capacitors are used for supporting power flow
through reactive power enhancement. On the other hand,
STATCOM devices consist of Voltage Source Convert-
ers (VSCs) coupled with transformers and energy devices.
It dynamically injects and/or absorbs reactive power for
improving voltage stability and profile [9].

With the addition of other energy sources. Eq. (5) - (7) may
be updated as follows:

Pp+1 = Pp − PLOADp+1 − Rp,p+1
(P2p,p+1 − Q

2
p,p+1)

|VP|2

+PRES + PBATT, (5)

Qp+1 = Qp − QLOAD
p+1

−Xp,p+1
(P2p,p+1 − Q

2
p,p+1)

|VP|2
+ αqQCp+1. (6)

The reactive power can be updated as shown in (7)

Qp+2 = Qp+1 + QSTATCOM
p+2 , (7)

where PRES can be integrated as solar modules or wind
turbines, αQC is the reactive power compensation by the
capacitor with anα factor andQSTATCOM

p+2 is the reactive power
compensation by the STATCOM at bus p+ 2.

B. COMMON OBJECTIVES FUNCTIONS
Objective functions are mainly mathematical equations that
are formulated to simulate the characteristics of a system. The
most common objective function in the optimal integration
problem is real power loss minimization, followed by oth-
ers, such as voltage stability improvement, voltage profile
improvement, cost minimization, and profit maximization.
Figure 3 illustrates the different types of objectives.

1) POWER LOSS MINIMIZATION
Power loss is almost inevitable in power systems, yet its
mitigation cannot be overemphasized. The objective is the
most common objective of optimal integration, and it is used
mostly as a base objective to solve metrics such as voltage
profile. Basically, power loss can be formulated by Kirch-
hoffs’ laws, where the summation of injected power on each
bus can represent the total distribution network loss. A mis-
calculation of power loss can cause either shortage of power
supply or oversupply, which is economically inefficient. The
power loss minimization is defined as

min
N∑
n=1

I2n,tRn. (8)

Here, In,t is the current on the nth at time t and Rn is the
resistance of the nth line.

2) VOLTAGE STABILITY IMPROVEMENT
Voltage stability is a crucial factor in loading distribution
networks. A sudden increase or fluctuations in the network

VOLUME 9, 2021 5049



K. E. Adetunji et al.: Review of Metaheuristic Techniques for Optimal Integration of Electrical Units in Distribution Networks

FIGURE 3. Common objectives of optimal integration in distribution networks.

can cause a voltage collapse. The inability to compensate for
reactive power loss will also cause voltage instability [44],
especially with small-scale network microgrids. Voltage Sta-
bility Index (VSI) is used as an indicator for network stability
and loadability and can be used alone to solve the planning
of distribution systems. In place of this, several methods
have been developed with deviating strategies [44]. Some of
the proposed methods are Line Stability Index (Lmn), Line
Stability Index (Lp), Novel Line Stability Index (NLSI), Line
Voltage Stability Index (LVSI), Fast Voltage Stability Index
(FVSI), Voltage Collapse Proximity Index (VCPI) etc. Over
time, VSI has been combined with meta-heuristic algorithms
for distribution network planning. A standard equation for
solving VSI is given in (9):

VSI(p+1) = V 4
p − 4[P(p+1)Xp−Q(p+1)Rp]2

− 4[P(p+1)Rp + Q(p+1)Xp]2V 2
p (9)

3) LOAD VARIANCE MINIMIZATION
This objective is related to the integration of EVs. Given
the fact that EVs act as a load, there is a need to minimize
the fluctuations on the grid through a proper scheduling.
An optimal cancellation of this objective can reduce power
loss. A typical load variance objective is formulated as

min
1
T

T∑
t=1

[
(Pconvt +

N∑
n=1

PEVt,n − β)

]2
, (10)

where

β =
1
T

T∑
t=1

(
Pconvt +

N∑
n=1

PEVt,n

)
. (11)

Here, Pconvt is the conventional load without the EV load at
time t; PEVt,n is the charging power of the nth EV at time t . It is

crucial to note that N is the maximum number of charging
stations which is assumed to be occupied by EVs at a prede-
termined time slot, t.

Theoretically, this objective should also cater for peak
shaving and load leveling to improve the grid efficiency.
A well-controlled load variance will improve network stabil-
ity (synonymous with VSI).

4) PEAK LOAD SHAVING
Peak shaving is a key objective in the V2G implementa-
tion, where electricity demand is met by utilizing available
resources, rather than increasing the grid capacity. In a PV
and EV-present distribution network, the peak load can be
reduced through

min max

{
Pconvt +

N∑
n=1

PEVn,t − P
PV
t

}
, (12)

where Pconvt is the conventional load at time t , which is the
base load without the EV load; PPVt is the PV output power
at time interval, t and PEVn,t is the rated power of charging the
nth EV.

5) COST MINIMIZATION
The economic aspect of optimal integration has to be con-
sidered for sustainability and acceptability. Without this con-
sideration, most of the projects might not be signed off for
commencement. Therefore, there is a need to minimize the
cost of carrying out the optimal integration of DG units
project. Most studies sum the total cost as the summation
of installed DG units construction cost, and operation and
maintenance cost [54], [55]. A typical example of optimal
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integration of DG units is shown here

DGIC =
NDG∑
i=1

PDGi × INVcost, (13)

where DGIC is the installation cost of DG units, PDGi repre-
sents the capacity of the ith DG unit, and INVcost investment
costs of the DG units. The operation and maintenance cost is
defined as

DGOM =
NDG∑
i=1

NN∑
j=1

PDGi × OM
cost
× R× CFi × T , (14)

where OM cost is the operation and maintenance cost, R is
the approximate value of interest and inflation rate, CFi is its
capacity factor, and T is the duration of the planning period
(counted in days). The cost of purchasing excess power from
substation can be expressed as

COSTsub =
24∑
t=1

Psubt × Pcost × R× T , (15)

where Psubt is the summation of the active load connected to
the distribution network, the power generated from DG units,
and the accumulated power loss. Pcost is the cost of active
power from the substation.

For EVs, there is a need to reduce the cost of charging at
specific periods. This act is beneficial to the grid and also to
EV drivers. A load-shifting scheme is applied where cheaper
tariffs will be available as an incentive at off-peak hours. The
standard form of charging cost minimization is defined as

min
N∑
n=1

T∑
t=1

PEVn,t · Ct · 4t, (16)

whereN is the total number of plugged-in EVs;4t is the time
horizon; Ct is the current TOU price at time t; Pn,t is the nth

EV charging power at time t .

6) OPERATING PROFIT MAXIMIZATION
Investing in the improvement of power systems should also
be profitable for investors. Taking an EV scheduling as an
example, an aggregator should serve an appealing charging
cost while considering profits. In the same vein, an investor
in the construction of a DG integration project should have a
projected profit [54].

C. CONSTRAINTS
For a more practical scenario, constraints are modeled into
an optimization problem in order to limit specific parameters.
Constraints are mostly applied to technical objectives, where
power, voltage, and current flow within and into the grid are
confined. Some essential constraints are highlighted
• Bus voltage limits are applied to maintain the stability of
the grid. While injecting power from DG units or EVs,
a permissible voltage is allowed on each bus, which has

a maximum variation of 5%, some cases will allow a
variation of 10%.

• Bus capacity limits are applied to regulate the maximum
allowable load to a bus. This constraint is well appli-
cable to EV charging, where some number of EVs are
only allowed to be charged from a bus. This inequality
constraint must be equal or lesser than the sum of con-
ventional (residential or commercial) load and the total
number of EVs connected to the same bus

• DG penetration limit refers to the maximum allowable
power from installed DG units like PV andWT. EV pen-
etration is also controlled except when gradual steps are
allowed [46], ormaximumpenetration is used, as in [47].

• Power flow balance ensures that the total real and reac-
tive power of the grid network is equal to the sum of real
and reactive power flowing from DG units, substation,
and real and reactive power loss in the network.

D. NON-ARBITRARY DATA-SET
Optimal sizing and placement of energy sources and power
electronic devices are based on parameters such as real
& reactive power of buses and resistance & reactance of
branches that connect the buses. These parameters influence
the major objective functions such as power loss, voltage
profile, and voltage stability. The IEEE dataset is a standard
for solving sizing and placement problems and has been pri-
oritized strongly for choosing research papers for this review.
Real data from location grids were also considered from
literature.

Other required data such as load, PV power output, and
electricity prices can be influenced byweather, human behav-
ior, etc. These factors can cause uncertainties in data; there-
fore, several models have been developed to handle such
cases. While recent studies in literature have considered the
uncertainties, this study only focuses on the optimization
process that applies metaheuristic algorithms in a single
objective or multiobjective framework.

IV. METAHEURISTIC ALGORITHMS FOR THE OPTIMAL
INTEGRATION OF ELECTRICAL UNITS
The concept of most meta-heuristic algorithms is based on
a characterized agent or set of agents that operate without
human interaction, to achieve an objective or a set of objec-
tives [56]. Particle Swarm Optimization (PSO) [57] and Ant
Colony Optimization (ACO) [58] are good examples of the
use of agents. Other examples, such as the Genetic Algo-
rithm (GA) [59] uses a slightly different approach. Figure 4
shows the categories of algorithms and their examples.

The advent of benchmark functions has seen the develop-
ment of other algorithms such as Bat Algorithm (BA) [60],
Cuckoo Search (CS) [61], Harmony Search Algorithm (HSA)
[62], Flower Pollination Algorithm (FPA) [63], and Firefly
Algorithm (FA) [64]. Other new meta-heuristic algorithms
have also been developed such as Ant Lion Optimizer (ALO)
[65], Whale Optimization Algorithm (WOA) [66], GreyWolf
Optimizer (GWO) [67].
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FIGURE 4. Metaheuristic optimization algorithms for smart grids network.

Figure 5 shows a general framework of metaheuristic
algorithms to solve the optimal integration problem. The
categories of metaheuristic algorithms are discussed in the
following subsections.

A. EVOLUTIONARY-BASED ALGORITHMS
These kinds of algorithms use Darwinian evolution and
the natural selection theory for obtaining optimal solutions.
Examples in this category are GA, Differential Evolution
(DE), and Evolution Strategy (ES). Like the evolution pro-
cess, a generation will consist of parents and children who
inherit their parents’ features. Evolutionary algorithms use
three major operators: selection, crossover, and mutation.
The selection operator takes two parents while the crossover
operator handles the mating process to generate children.
Lastly, the mutation operator is used mostly for developing
stronger children.Many types of research have applied evolu-
tionary algorithms to optimal integration of electrical units as
in [68]–[72].

In [68], GA was utilized to acquire the optimal data for
load flow analysis. The algorithm enhances reactive power
flow for the optimal placement of capacitor banks in strategic
locations along bus lines. It uses a combinatorial approach
to switch between different load scenarios, and was tested
on the Saudi Electricity Company (SEC). In the same vein,
Liu et al. [73] considered the optimal placing of BESS in a
Virtual Power Plant (VPP) for optimal planning of a distribu-
tion network. The GA was used to reduce the power loss and
the power fluctuation induced by PV plants while considering
uncertainties of power output and load growth.

The authors of [69] used a modified GA to enhance power
loss minimization objective, for optimal capacitor placement
in an unbalanced distribution system. The GA was utilized
mainly for optimum compensation values of the reactive
power on the bus, and was tested on the IEEE 4- and 123-bus,
and 85-bus feeder. Similarly, Babacan et al. [70] optimally
sized and placed BESS units in a PV-integrated grid distribu-
tion system using a GA-based bi-level optimization frame-
work. The aim was to reduce voltage fluctuations caused
by PV outputs through real power injection and BESS units
through power absorptions from the distribution network.
Voltage fluctuations could also be termed as voltage instabil-
ity since its effect can also break down a distribution network.
A possible extension of this study could be the comparison of
the proposed algorithm with other metaheuristic algorithms
in terms of objective values, convergence time, and computa-
tional time.

The DE is another evolutionary algorithm developed by
Storn and Price [74] to achieve better performance such as
fast convergence. The operation of the DE produces target
and difference vectors which further generate trial vectors
through the EA classical operators such as crossover and
mutation. This operation allows the DE to handle both dis-
crete and continuous variables [75]. Huy et al. [76] applied
the DE to find optimal locations, sizes, and power fac-
tors of DG units while minimizing the energy losses in a
meshed power network. Kumar and Chakraborty [77] applied
a chaotic operator to avoid premature convergence while
solving the optimal DG unit integration problem in dis-
tribution networks. Injeti [78] applied a similar algorithm,
the Differential Search Algorithm (DSA) to optimize total
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FIGURE 5. Generic flowchart of a meta-heuristic algorithm application to the optimal integration problem.

power loss, voltage deviation, and total operating cost in
distribution network planning. It is reported that the improved
DSA produces better final objective values than the GA.

Modified Shuffled Frog Leaping Algorithm (MSFLA)
was suggested to optimally allocate and size DG and
D-STATCOM units in a distribution network [79]. The objec-
tive was to minimize distribution line losses, increase volt-
age stability, and improve power quality. The algorithm was
tested on the IEEE 33-bus system and was compared to the
GA algorithm. It was reported that the MSFLA generates a
lesser DG and STATCOMcapacity than the GA. TheMSFLA
also improves the voltage profile better than the GA. The
authors of [80] also applied the MSFLA to an energy man-
agement system in a dynamic distribution network. They inte-
grated DG and BESS units considering the optimal switches
and objectives, such as voltage stability, operational cost, and
reliability index.

Recently, Singh et al. [81] developed a GA-based opti-
mization that was implemented for the integration of DG,
STATCOM, PHEV, and FACTS units to reduce total real
power loss in the distribution network. The DG units and
loads were modelled into four types to savour the real-world
characteristics. The GA evaluates the fitness values of each
chromosome, which represents each bus power state. The
algorithm was evaluated on the IEEE 37-bus distribution
network, concluding that the integration of DG, STATCOM,
and PHEV units will deliver enhanced real and reactive power
support and increased system power factor. The new model
can be evaluated on other test bus systems. That way, other
algorithms can be implemented to improve the model.

Constraint is an important feature of the optimal integra-
tion problem; hence its handling is a major concern. Most
studies switch to the mathematical approach to properly
handle constraints, but the GA can also solve this effec-
tively. Vuletic and Todorovski [71] developed a Penalty-Free

Genetic Algorithm (PFGA) that handles constraints and elim-
inates the process of selecting a penalty parameter in a
capacitor placement and sizing problem. Instead of assigning
a function or a parameter value to penalize constraints vio-
lations, two chromosomes are adopted to handle constraints
violations with conditions: if both chromosomes do not vio-
late constraints, then one of the chromosomes will be selected
according to their fitness value; if one of the chromosomes
violates the constraints, the other chromosome is selected to
continue the algorithm; and if both chromosomes violate the
constraints, then the chromosome with the lower constraints
violation value is selected. The PGFA uses a single-point
crossover and a non-uniform probability wheel to select the
next gene for a new chromosome. During each iteration,
the best fitness value is kept as an elite for the next iteration.
This process reduces the complexity that may be caused by
applying the random parameters in themutation operator. The
PFGAwas used tominimize power and energy losses andwas
tested on 18-, 68-, and 141-bus systems.

Celli et al. [82] varied both crossover and mutation oper-
ators for properly installing BESS units in a distribution
network. They used a blend crossover operator that uni-
formly picks a value within the two parents’ genes. This
method yields a good compromise between the exploration
and exploitation areas of the genes. Their mutation operator
uses a non-uniform approach based on a polynomial proba-
bility distribution function and a mutation clock scheme. The
mutation clock’s addition enhances the computational time
because unlike in [71], where the number of extraction is
based on the number of genes, it allows for only one extrac-
tion of genes per chromosome. In [83], a Normal Distribution
Crossover (NDC) was used to produce new chromosomes to
optimize power loss and voltage deviation. It was reported
that the NDC-based GA converges faster than the PSO and
PSO-GA algorithms.
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Xiao et al. [72] modified the implementation of the GA
for the optimal integration of BESS in a distribution network.
An OPFmethod handles the BESS scheduling and minimizes
network losses while the GA optimizes the Net Present Value
(NPV). Their implementation involves deleting a generation
if the BESS capacity at the initialization stage cannot satisfy
the constraints. This effort saves time and reduces the number
of generations to solve the optimal integration problem. The
algorithm was tested on the IEEE 33-bus system and was
tested with a previous GA implementation. The results show
that the number of generations of a GA can be optimized
while reducing computational time.

B. SWARM-BASED ALGORITHMS
This category of algorithms is based on simulating the inter-
action among a swarm (or flock) of animals (called search
agents or particles) to achieve a common goal. The simulation
is enhanced with parameters, which have the most influence
on the algorithms’ performance. Therefore, studies on the
optimal integration of electrical units have optimally tuned
and reduced the number of parameters to improve voltage
stability and minimize power loss, thereby enhancing the
overall grid performance. Some studies have also modified
the algorithms’ mechanism to achieve better computational
efficiency. Lee et al. [84] proposed different PSO topologies
for the optimal placement of capacitors, considering load
patterns in distribution systems. Instead of using a uniform
probability distribution, Gaussian and Cauchy probabilistic
distributions were implemented for generating random num-
bers to update the velocity equation. The distribution func-
tions were applied alternatively to the social and cognitive
components such that fifteen PSO mechanism types were
generated. All the PSO types were compared to the GA and
Tabu search algorithm. It is evident that a modification of the
PSO social component improves the algorithms’ performance
than other permutations.

Although swarm-based algorithms generally converge
faster than evolutionary algorithms, they however are prone
to a premature convergence. To avoid this setback, Deveci
and Guller [85] proposed a competitive-based PSO to pro-
duce the optimal levelized cost of energy and electricity
generation cost while integrating renewable energy sources in
distribution networks. The particle position, instead of being
updated from their personal and global best, updates through
a competitivemechanism applied to a randomly selected pairs
of particles [86].

In [87], the PSO algorithm was applied to find optimal DG
unit locations and sizes, while considering harmonic power
flow computations for different harmonics according to non-
linear loads in a 31-bus distribution network. The authors
evaluated the power loss, cost of DG units, emissions, and
fuel, with the major constraint of maintaining an acceptable
harmonic distortion level.Mosbah et al. [88] proposed amod-
ified PSO to optimally allocate and size shunt capacitors in
a radial distribution system. The algorithm was implemented
by reducing the high current that causes a voltage drop, which

minimizes the real power loss and reduces capacitor costs.
It was reported that the proposed PSO implementation pro-
duces a cheaper capacitor cost than the PSO implementation
from [89]. In the same vein, Karimi et al. [90] also used the
PSO for solving objective functions to optimally place and
size capacitor banks in a 10-, 33-, and 69-bus distribution net-
work. The objective was to minimize real and reactive power
loss and maximize net savings from distribution companies.
Another consideration was to ensure that voltage violations
were minimal by adding a function used to penalize line
voltage drops.

Das et al. [29] presented a method to optimally place dis-
tributed BESS units in a distribution network using Artificial
Bee Colony (ABC), with improvements being made through
addressing power loss alongside voltage deviation and line
loading. It was reported that the algorithm improves the real
power loss minimization than the PSO.

Mostafa et al. [91] optimally integrated BESS units in
a microgrid to inject and absorb real power according
to change in electricity prices. The Symbiotic Organism
Search (SOS) algorithm was implemented alongside the VSI
method tominimize power loss, improve voltage profiles, and
boost microgrids’ voltage stability. The study can be further
extended by evaluating the algorithm on a test bus system and
comparing with other algorithms. In [43], PSOwas suggested
to optimally size and allocate capacitors in a distribution
network, to reduce real power losses and economic costs. The
algorithm was evaluated on 34-bus and 85-bus system, and
results from a comparison with the WOA show that the PSO
had higher voltage profile improvement.

Some authors mainly focused on the strengths of two
algorithms, as in [92], where two swarm-based metaheuristic
algorithms, Bat Algorithm (BA) and Cuckoo Search (CS)
were compared while solving the optimal capacitor sizing
and location problem. The objective was to minimize the real
power loss andmaximize network savings on a 34- and 85 bus
system. It was concluded that the CS is better than the BA in
solution quality, but slower to converge than the BA.

One major drawback of swarm algorithms is the subjective
tuning of parameters. The inappropriate setting of parameters
can lead to a premature convergence [93], which can produce
local optima results. A simple hack is to find efficient ways
to minimize or, if possible, eliminate parameter tuning. This
concept has been studied in [94], where a Chaos Symbiotic
Organisms Search (CSOS) algorithm with fewer parameters,
was developed to place and size DG units in distribution
networks. A chaotic variable was introduced to replace the
parameters, making it less prone to local optima. The algo-
rithm was tested on 33-, 69-, and 118-bus RDS, and it out-
performs the original SOS in terms of convergence. Authors
of [95] developed a hybrid GreyWolf Optimizer that requires
no parameter tuning except for population size. The algorithm
was applied to solve the optimal DG allocation problem in a
distribution network tominimize real and reactive power loss.
The sizes of DG units and their power factor on each bus, and
bus voltages were kept within realistic boundaries.
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In light of implementing a substantial number of param-
eters, metaheuristic algorithms like WOA, ALO, and JAYA
were developed. George et al. [96] used the ALO-based opti-
mization technique to optimally place fixed shunt capacitors
in a distribution system, considering the minimization of total
power loss and total annual cost. Boktor et al. [33] also
utilized the ALO for the optimal placing of shunt capacitors
in a distribution network while optimizing the objective func-
tions such as power loss and voltage profile. The ALO was
evaluated on the IEEE 33- and 69-bus networks. The JAYA
algorithm was used by [97] for optimal flow in a renewable
energy-present distribution network. The JAYA algorithm is
parameterless and quite simple to implement in the optimal
integration problem [98].

The authors of [41] implemented WOA for optimal sizing
and placement of capacitors in an RDN. Their objective was
to reduce power loss, improve voltage profile, and minimize
cost. The WOA was compared to other meta-heuristic algo-
rithms, such as PSO and BFOA, and was tested on the IEEE
34- and 85-bus system. Wong et al. [99] investigated the
impacts of optimal integration of BESS and PV-DG units in
various scenarios. The WOA was applied to a 25-bus meshed
network to minimize total real power loss and was compared
to PSO and FA. The WOA and PSO performed distinctively
better than FA, with the WOA surpassing the PSO by a small
margin.

Other algorithms have also been applied to the optimal
integration problem, such as in [100], which used the Dis-
crete Lightning Search Algorithm (DLSA) for optimal place-
ment of capacitors in wind farms. The proposed objectives
were based on energy loss minimization and management
cost reduction. The DLSA was compared with the GA and
Discrete Harmony Search Algorithm (DHSA). From [101],
the Moth Fly Algorithm (MFA) was used to optimally size
and place capacitor banks in distribution networks. Power
flow was solved for loss minimization using an iterative
algorithm, while an arbitrarily simulated real and reactive
load profile with a 15-minute interval was used for the load
conditioning.

The Flower Pollination Algorithm (FPA), which uses a
Levy flight based on a heavy-tailed probability distribution
to attain global optimal solution was implemented by [38]
to reduce the total cost of installed capacitors while solving
the optimal capacitor sizes in a distribution network. The
Moth Search Algorithm (MSA), similarly uses the Levy
flight approach and was proposed by [102] for regulating bus
voltage while placing and sizing DG units in a distribution
network.

C. PHYSICS-INSPIRED ALGORITHMS
These algorithms emulate the workings of physical phe-
nomena, which can be observations from chemistry, human
interaction, or any natural occurrence. This category can be
classified as an extension of swarm-based algorithms, espe-
cially in terms of their mechanisms. A significant distinction
between them is that, instead of a swarm of search agents, the

physics-based algorithms can use one search agent to interact
within a solution search space or vice-versa. Ali et al. [40]
proposed the Improved Harmony Algorithm (IHA) for opti-
mally sizing capacitors in a distribution network, where the
Power Loss Index (PLI) determines possible buses for the
optimal installation of capacitors. The algorithm was tested
on a 69-bus distribution system and was compared to other
algorithms such as the PSO, ABC, DE, and HSA.

Ali et al. [103] studied the impacts of the stochastic nature
of EV and the uncertain power output from PV-DG units
in a distribution network. The optimal integration was for-
mulated as a two-layer problem, using Gravitational Search
Algorithm (GSA) to maximize the benefits of PV integra-
tion and to minimize annual energy losses. The EV battery
was modeled to update the state of charge at every horizon
and every charge/discharge state. The first layer produces
optimal locations and sizes of PV-DG units considering the
charging/discharging power of EVs, while the second layer
produces optimal charging/discharging power profiles.

The HSA is another efficient metaheuristic based on the
aesthetic combination of sounds. A well-detailed approach
can be found in [62] and Askarzadeh [16] extensively dis-
cussed its implementation in power systems improvement.
Liu et al. [104] implemented an improved HSA for the opti-
mal integration of units in a distribution network to minimize
the total operating cost. The HSA was hybridized with FA
in [105], which is discussed in the next subsection.

D. HYBRID ALGORITHMS
Hybrid algorithms are a combination of two or more meta-
heuristic algorithms. The algorithms can either be com-
bined as a single algorithm to solve the whole optimization
problem, or not combined to solve different subproblems.
Some applied examples are seen in works of literature.
Lotfi et al. [106] proposed a hybrid algorithm to optimally
allocate capacitors for the reconfiguration of distribution
feeders fed with ESS, DG, and solar PV. An improved
PSO and MSFLA were used alongside the VSI technique to
achieve power lossminimization and voltage deviation reduc-
tion. The VSI uses a penalty factor to manipulate unstable
decision parameters, hence avoiding buses with VSI values
greater than zero. A competition function determines the best
fitness values, where the population is split into two for each
algorithm to solve the same problem. Afterward, the IPSO-
MSFLA continues to select the best fitness value until the
maximum iteration is met. It was reported that the algorithm
produces a better voltage stability and operational cost than
previous variants of the algorithm.

From [30], a hybrid algorithm, PSO-GA, was proposed to
optimally allocate energy storage systems in awind farm grid,
considering uncertainties. Their objective was to improve
voltage deviation and to reduce operating costs and carbon
emissions. The proposed algorithm was tested on the IEEE
30-bus system, and was reported that the PSO-GA performs
better than the GSA on all the objectives except for voltage
deviation.
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TABLE 1. Hybridized metahueristic optimization algorithms for smart grid networks.

Moradi et al. [32] utilize GA and Intelligent Water
Drops (IWD) to optimize and allocate DG units in a distri-
bution network. VSI was used to reduce active power losses
through the identification of candidate buses. The IWD com-
putes the fitness values while the GA operators produces a
new generation of chromosomes. The hybrid algorithm was
tested on a 33-bus and 69-bus system and shows an excellent
computational time, which even increases linearly with the
number of DG units.

Deb et al. [107] developed a hybrid algorithm (comprising
chicken swarm optimization and TBLO) in a multi-objective
space to improve grid stability while allocating charging sta-
tions in the IEEE 33-bus network. The grid stability consists
of voltage stability index, reliability index, and power loss
index. The CSO and TLBO are directly merged to speed up
convergence and to reduce the likelihood of a premature con-
vergence. The INV parameter in the CSO-TLBO, just like in
the CSO, is user-defined and must be tuned properly to avoid
local optima solutions. It was reported that the CSO-TLBO
converges faster than theMulti-Objective Evolutionary Algo-
rithm with Decomposition (MOEA/D) and the NSGA-II but
with a higher computational time.

The authors of [105] hybridized the HSA and FA (CHSFA)
to maximize profits of distribution network companies by
reducing operational costs and increasing income in a dis-
tribution network. A robust framework was implemented to
handle uncertainties from load demand, which, rather than
probabilistic, uses a deterministic approach based on a confi-
dence interval or historical data estimate. The CHSFA uses
the HSA mechanism to search towards the best objective
values in the harmony memory and uses the FA mechanism
for a random search. This process is repeated twice to achieve
an optimal solution. The CHSFA was validated on a 38-bus
distribution network and was reported to converge faster than
the HSA. Although the computational time comparison was

not reported, it is assumed that the CHSFA, due to its complex
mechanism, will have a higher computational time than the
HSA.

Zhang et al. [108] developed a hybrid of DE and Harmony
Search (DEHS) algorithm to find the optimum location of
multiple STATCOM units in the IEEE 30-bus meshed net-
work. The study uses the DE mutation operator to exten-
sively search for an optimal solution in the harmony memory
without changing the search mechanism of the HSA. The
opposition learning principle was implemented to hasten the
search process, thereby speeding up the convergence time.
The DEHS algorithm improves the stability index of the
network than the HSA. It also converges faster than the HSA.

Zeynali et al. [109] hybridized a family of the evolutionary
algorithm: GA, DE, and Strength Pareto Evolutionary Algo-
rithm (SPEA-II) to simultaneously integrate RES-based DG
units (solar and wind), capacitor banks, and EV in a distri-
bution network. The algorithm uses a varietized crossover
function to select from three mutation strategies randomly.
The objectives are voltage stability improvement, gas emis-
sion reduction, and installation cost reduction.

The summary of reviewed hybrid metaheuristic algorithms
with their applications, objective functions, strengths and
drawbacks, is shown in Table 1.

E. COMBINED TECHNIQUES
Unlike the hybrid algorithm category, this category is
a combination of two different optimization techniques.
Examples are analytical/metaheuristic and mathemati-
cal/metaheuristic techniques. These techniques can be used
to (i) reduce the complexity of the optimal integration of elec-
trical units problem and (ii) manipulate high-level problems
for simplex computation. They are also a starting point to
optimize a newly modified model. Generally, algorithms are
combined with other techniques for optimization in power
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systems to achieve better efficacy. Tang et al. [110] studied
the optimal location and size of ESS and PV-DG units in
a 33-bus distribution network. This was done by using an
analytical sensitivity analysis and a flame propagation model
to determine DG units’ location. The study exploits the
partition method to help minimize power loss and improve
power supply reliability.

In [111], Power Loss Reduction Factor and an improved
Multi-Objective Golden Ratio Optimization was used to opti-
mally allocate and size capacitors and STATCOM in distri-
bution networks respectively. The algorithm was tested on
a 13-bus and the IEEE 69- and 118-bus distribution net-
works to minimize power loss, reactive power investment,
and improve voltage profile. The authors of [112] proposed a
hybrid ABC-PSO approach with load flow calculation based
on fuzzy load flow to minimize power loss and to improve
voltage profile while finding the optimal capacitor sizes. The
Loss Sensitivity Factor (LSF) technique was used to detect
buses sensitive to power loss, and then a fuzzy inference sys-
tem was used to select the optimal location of the capacitors.
A hybridizedABC-PSO algorithmwas used to size the capac-
itors and the algorithm was tested on a 34-node RDN. Also,
Muthukumar et al. [113] developed a hybrid algorithm, HSA-
ABC, to optimize capacitor size and placement in an RDN,
considering different load models. PLI, VSI, and LSF were
implemented to calculate total network power loss, to detect
low-quality voltage in nodes, and to identify high active
power loss in nodes for capacitor placement respectively.

In [42], an LSF technique to select the possible candi-
date buses for capacitors in a 69-bus distribution network.
AnMFA-based algorithmwas developed to optimally size the
capacitors to reduce energy losses considering the variation
of load. From [114], ALO was implemented alongside LSF
to allocate and size optimally renewable DGs in a microgrid
respectively. The proposed algorithm was evaluated on a
69-bus RDS and compared to other algorithms to show the
improvement of total power loss reduction and net savings
enhancement. Kishore et al. [115] added the VSI to the
LSF technique to optimally place capacitors in distribution
networks. An improved bacterial foraging optimization algo-
rithm (IBFOA) with symmetric fuzzy methods were imple-
mented alongside the techniques to minimize power loss and
improve voltage stability and was tested on a 33-, 69-, and
141-node networks.

The authors of [37] worked on the optimal location and
size of capacitors in a distribution network. Here, the LSF
technique was implemented to select candidate buses for the
capacitor placement, which led to the GSA’s implementation
to optimally size the capacitors on the selected buses. From
[116], LSF was also used to assign candidate buses with the
lowest capacitor placement values. The FPA-based algorithm
was used to optimally determine the capacitor sizes, with the
main objective of minimizing real power loss. The algorithm
was evaluated on a 10-, 33-, and 69-bus system.

Lim et al. [117] proposed a GA optimization method to
minimize peak-to-average ratio energy demand and the price

of electricity in a multi-level optimization framework. The
framework uses convex programming in a stepwise manner
to incorporate energy demand scheduling, ESS units, and
PV-based DG units for households. Das et al. [118] combined
a chaotic process with an artificial bee colony algorithm for
the optimal placement of distributed BESS in a PV- and
WT-present IEEE 33-bus distribution network. The goal was
to minimize power loss, voltage deviation, and maximize line
loading.

V. MULTIOBJECTIVE OPTIMIZATION METHODS IN THE
OPTIMAL INTEGRATION OF ELECTRICAL UNITS
The efficient use of optimization algorithms is dependent
on the mode of handling objective functions. Multiobjective
functions stand the risk of not being optimized correctly due
to the distinctive interference among them. Therefore, it is
imperative to select a suitable multiobjective framework in
an optimization model, particularly in the optimal integration
of electrical units in distribution networks.

There are twomajor approaches for solvingmultiple objec-
tives, namely apriori and aposteriori. The apriori approach
is applied to sort multiple objective functions before pro-
cessing. A simple method is the sequential programming,
where different objectives are dependent on each other. That
is, the first objective must be solved to calculate the second
objective, or two objectives can form an equation to determine
the main objective. This is done in [119], where a modified
Imperialistic Competitive Algorithm (ICA) was proposed to
optimally place and size DG units in the planning of distri-
bution networks. The algorithm minimizes real power loss
and improves the voltage stability in different load variations.
A summationmethod was used to compute the objectives into
a single objective. The algorithm was tested on a 34-bus and
69-bus test system and was compared with the CS algorithm,
which shows improvement in the voltage profile and real
power loss. The objective function, which is the division of
real power loss equation and total voltage stability index,
subjectively represents the technical impacts in a distribution
network.

The weighted sum aggregate (WSA) is another typical
method, where objective functions are assigned different
weights according to their importance, where the sum of the
weights is always approximate to one. This method is quite
simple since all objectives are weighted and summed for a
final objective value. El-Ela et al. [120] proposed a newly
developed algorithm, Water Cycle Algorithm (WCA), and
applied theWSA to handle multiple objectives while integrat-
ing DG units and capacitor banks in a distribution network.
The weights were applied in different scenarios such that it
alternatively reflects grid performance, economic benefits,
and environmental benefits. Mukhopadhyay and Das [121]
focused on technical objectives while using the PSO to
optimally allocate PV-DG and BESS units in a reconfig-
urable distribution network. The objectives, which are, power
loss minimization, voltage deviation minimization, and line
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loading maximization, were normalized before applying an
equal weighting to them.

Applying weights to multiple objectives will require expe-
rience; otherwise, one can use weights from previous studies.
However, the values of weights are subjective and bias to the
researchers. In lieu of this, some studies have tried to subdue
the subjectivity of weight values by applying an additional
technique to generate weights with respect to the objective
functions. In [122], a fuzzy multi-objective approach was
applied to a two stage-basedGrasshopper OptimizationAlgo-
rithm to optimally place and size DG units, capacitors, and
EV-CS. The first stage is to allocate and size DG units and
capacitors to reduce real power loss and improve power factor
and voltage profile. The second stage is to identify optimal
locations for EV-CS. To reduce the subjectivity, the study
appliedweights with a fuzzified voltage limit to all objectives.
The proposed approach converges faster than the regular
GOA, PSO, and GA techniques. Adetunji et al. [47] also
proposed a concept of fuzziness to assign different weights to
objective functions on an iterative scale. The WOA was used
to carry out several runs while changing the weighting factors
of the multiobjective framework. The weights were assigned
to represent different decision-maker preferences and find a
solution through a competition model. Note that the varying
of weights does not produce a Pareto optimal solution set.

Shaheen et al. [123], instead of directly assigning weights
to the objective functions, used the Analytical Hierarchical
Process (AHP) for calculating the weights to reduce bias
while applying the Enhanced Grey Wolf Algorithm (EGWA)
to optimally integrate DG units, capacitors banks, and voltage
regulators. The relationship between objective functions is
graded according to a certain level of importance, which
forms a pairwise matrix. Gangwar et al. [124] also used the
AHP to assign weights to objective functions while solving
the optimal DG units location problem in a reconfigurable
distribution network.

While studies have used different techniques to minimize
the bias for assigning weights to objective functions, other
studies have implemented the aposteriori approach to com-
pletely avoid the bias.

The aposteriori approaches involve the processing of
multiple objective functions before sorting the values. All
objective functions are optimized collectively, and the
non-conflicting solutions are selected as the best outputs [4].
A non-dominating solution means that two or more sets of
objective function values are not better than one another.
The set of non-dominating solutions, also called the Pareto
optimal set, is solved by a decision-making technique to find
the best solution.

Instead of performing different runs of possible alterna-
tives, as in the case of ε-constraint, weight combination,
or other mathematical techniques, metaheuristic algorithms
simultaneously handle many potential options that produce a
set of Pareto optimal fronts. NSGA-II technique is the com-
monly used evolutionary algorithm due to its robustness and
efficiency. The technique uses a domination-based approach

to assign fitness through non-domination ranking and
crowding distance [125]. Some applications [25], [31], [82],
[126]–[129] of NSGA-II to the optimal integration problems
are discussed below.

Dehghanian et al. [31] proposed a special multi-objective,
non-dominated sorting genetic algorithm (NSGA-II) for the
optimal siting of DG units in a power system, with objective
functions to minimize network power losses, reduce costs,
and increase system reliability. The NSGA-II produces a
Pareto optimal set of solutions that are not better than each
other in terms of their objective values. The NSGA-II was
also suggested in [25] for solving the optimal integration of
DG and BESS units in a distribution network. The objective
function was to reduce the energy losses and the total invest-
ment cost of DG and BESS units. A Utopian method was
used to select the compromise solution from the Pareto set.
The method entails the running of the optimization algorithm
for each normalized objective to derive the Utopian point,
the calculation of the Euclidean distance between the Utopian
point and each solution in the Pareto set, and the selection
of the solution with the shortest distance as the compromise
solution. This method, although not frequently used, elimi-
nates the subjectivity in assigning importance to objectives.
The study used voltage regulation and temperature to increase
the lifespan of the BESS units. The algorithm was tested on
an IEEE 906 bus European test feeder.

In [126], NSGA-II was used for power loss minimization
and voltage profile improvement. Electricity prices and prob-
abilistic load (with peak) were modeled based on time series
for optimally sizing and placing capacitors in a distribution
network, and the fuzzy decision model was used to select
the compromise solution. The algorithm was tested on the
IEEE 33-bus distribution test network. Zhang et al. [108] also
applied the fuzzy decisionmodel to select a compromise solu-
tion from non-dominating solutions in the optimal location of
STATCOM in the IEEE 30-bus meshed network. The focus is
on the technical and economic benefits, which are investment
and operation cost reduction, voltage stability improvement,
and real power loss minimization.

Battapothula et al. [127] simultaneously allocated DG
units and CS in a distribution network while minimizing
power losses, energy consumption, charging station devel-
opment cost, voltage deviation of the system. The NSGA-II
was used for generating Pareto optimal solutions, while
the min-max technique was used to determine the compro-
mise solution. The min-max method is adopted from goal
programming where distances between large deviations are
minimized to obtain a final solution. Jannat et al. [128] also
developed a method based on the min-max technique to
determine a compromise solution from Pareto fronts. They
used the NSGA-II for the optimal capacitor placement in dis-
tribution networks and an RE-based power flow was imple-
mented to consider uncertainties from wind, solar, and load.
The algorithm was evaluated on the Serbia grid network
to improve the voltage profile and minimize power from
the installed capacitors. Generally, the min-max falls among
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the categories of varied weights and ε-constraints where a
weakly set of Pareto solutions are produced. Only recently
studies have improved the min-max to produce better Pareto
optimal solutions [130], [131].

Recently, Nagaballi and Kale [132] used a minimax-based
game theory approach to choose the compromise solution
among non-dominating solutions from the Improved Raven
Roosting Optimization (IRRO) algorithm application in the
optimal allocation of DG units in distribution networks. The
minimax algorithm uses a competitive two-player mode,
where each player tries to reach the optimal minimum or
optimal maximum for the final utility value. This approach
proves to be computationally efficient than other methods
such as the TOPSIS and fuzzy decision-making technique.

Mahesh et al. [133] implemented the PSO in a
non-dominated sorting multi-objective as an advanced Pareto
front. A mutation factor is applied to modify the position
vector after the particle position is updated. This approach is
to avoid a fast convergence thatmostly produces a false Pareto
front. The algorithm was applied alongside the VSI and
PLI techniques and minimize total power loss and improve
voltage profiles while sizing and placing DGs optimally in
a distribution network. The study uses cases of single and
multiple objectives, with three DG types being integrated
categorically. Solutions from the multi-objective space were
computed from a fuzzy-decision model. Deb et al. [107]
developed a hybrid algorithm (comprising chicken swarm
optimization and TBLO) in a multi-objective space to
improve grid stability while allocating charging stations in the
IEEE 33-bus network. The grid stability consists of voltage
stability index, reliability index, and power loss index. The
fuzzy decision-making technique was also used to determine
the compromise solution from the Pareto optimal solution.

Zhang et al. [134] used Chance Constrained Program-
ming (CCP) to solve the probabilistic power flow in the opti-
mal planning of distribution systems. The objective was to
reduce economic cost through the correlation of uncertainties
using NSGA-II for the Pareto optimal fronts, and a 61-bus
test system was used for evaluation. However, no comparison
was made with other algorithms to test for performance. It is
to note that the proposed multi-objective technique integrates
uncertainties from different DG units during the optimization,
but cannot handle BESS DG units. A decision-maker is to
choose from the Pareto front; hence a decision technique
was not implemented. The same decision was made in [129],
where the compromise solution is left for the decision-maker
to choose. In the study, Fault Current Limiters (FCL) were
installed in series with DG units to reduce the adverse effects
on the grid while finding an optimal location. The NSGA-II
was implemented to reduce power losses and FCL sizes.

Li et al. [135] used a two-stage optimization frame-
work to optimally place and size BESS and DG units in
an active distribution network. The framework consists of
an LSF technique and a multi-objective ALO (MOALO),
which solves the location and capacity of the DG and BESS
units, respectively. The MOALO was initially used to find a

Pareto-optimal solution, followed by obtaining the order of
significance of each Pareto solution. The final results address
the objective that minimizes the power losses and maximizes
the voltage stability and investment benefits while consider-
ing the uncertain outputs of energy sources (DG and BESS).
The framework was tested on the PG & E 69-bus and was
compared to the NSGA-II, Multi-Objective PSO (MOPSO),
and Multi-Objective Harmony Algorithm (MOHA). Results
showed that their two-stage optimization method is better
than the algorithms mentioned above in terms of line losses,
voltage stability, and investment costs.

Sharma et al. [136] suggested the NSGA-II to optimally
allocate BESS for demand response in the presence of
WT-based DG units and capacitors. The bi-objective frame-
work consists of power loss minimization and grid demand
cost minimization. The Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) approach was used to
select a compromise solution based on the relative closeness
index. The TOPSIS approach uses the Euclidean geometry
such that it minimizes the Euclidean distance between each
alternative and its best solution set (positive ideal solution),
and simultaneouslymaximizes each alternative from its worst
solution set (negative ideal solution). The study compared
the performance of the developedmultiobjective optimization
framework to the MOPSO. The framework was evaluated on
an Indian power distribution network, showing a significant
reduction in power loss and grid energy consumption cost.

Meena et al. [137] also used TOPSIS to select a com-
promise solution from a multiobjective Elephant Herding
Optimization (ELO) algorithm. The approach used for select-
ing Pareto optimal solutions is unclear; however, a spacing
metric was used to quantify the quality of Pareto solutions
for comparison with other variants of the ELO. The spacing
metric was used to measure statistical values to compare with
other variations of the ELO. The framework was applied
to optimize power loss minimization, voltage deviation, and
voltage stability. Selim et al. [138] proposed an improved
Harris Hawks Optimizer (IHHO) in a multi-objective space
to optimally place DG units in distribution networks. The
objective was to minimize total real power loss, voltage
deviations, and improve the voltage stability index, based on
different operating power factors. The Grey Relational Pro-
jection (GRP) technique was used to identify the best com-
promise solution from non-dominating solutions. Although
computationally efficient, the GRP method can only be used
to select compromise solutions among closely related objec-
tives; hence, only the technical objectives were considered.

Huiling et al. [83] formed a stochastic fuzzy chance-
constrained model for coordinated charging and discharging
of EVs and the integration of RES-based DG units in a
multi-objective space. A modified NSGA-II algorithm was
developed for minimizing power loss and voltage deviation.
Instead of using the crowding distance, the study proposed
a congestion comparison operator for calculating the dis-
tance among three close solutions of each objective func-
tion, to avoid overconcentration and improve the uniform
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distribution of the Pareto front. In [139], a decomposition
approach was used to produce final utility value from a
Pareto set in the optimal integration problem in distribu-
tion networks. The approach decomposes the main prob-
lem into numerous subproblems in order to assign a set of
evenly-spread weights to each subproblem. This approach
enables the emulation of a uniformly distributed set of solu-
tions in a multiobjective space. However, the adopted objec-
tives, real power loss and reactive power loss, are not clearly
conflicting, which may not reveal the full strength of the
proposed approach. Conflicting objectives should be adopted
to solve the nonconvex Pareto front problem from weight
assignments [140], [141].

While the primary application of a multiobjective frame-
work is to simultaneously optimize multiple objectives,
there should be a consideration of the types of objectives
to optimize in an optimal integration problem. In modern
distribution networks, it is more practical to consider the
simultaneous optimization of grid performance (technical),
economic, and environmental benefits for network planning.
Fewer research works [30], [109], [142] have implemented
such studies.

Zeynali et al. [109] developed a multi-objective optimiza-
tion framework to simultaneously integrate RES-based DG
units, capacitor banks, and EV in a distribution network.
A family of the evolutionary algorithm was hybridized as a
GA-DE-SPEA-II algorithm, which has its strength from a
varietized crossover function and synthesized mating strategy
to produce good Pareto optimal solutions. The study con-
sidered one objective from all collective objectives, which
are voltage stability, carbon emissions, and installation cost.
The Fuzzy decision-making technique handled the selection
of compromise solutions from the Pareto front. An extended
version of the NSGA-II (E_NSGA-II) with a fuzzy deci-
sion model was developed by [142] to determine the best
solution from a non-dominating set. The aim is to opti-
mally integrate solar PV, BESS, and D-STATCOM to a smart
microgrid, using a probabilistic power flow model. A VPI
technique was used to compute voltage profile improve-
ment after the integration of the three units. The algorithm
was tested on a 69-bus test system to evaluate objectives,
such as voltage profile, environmental benefit, reliability,
and benefit-cost ratio. Thereafter, a non-parametric test was
performed to compare the proposed algorithm’s performance
to other multi-objective algorithms such asMOGA,MOPSO,
and NSGA-II.

In [30], a hybrid MOPSO and NSGA-II and a multi-
objective GSA were proposed to optimally allocate energy
storage systems in a wind farm-infused IEEE 30-bus meshed
network. Their objective was to improve voltage deviation
and to reduce operating costs and carbon emissions while
using TOPSIS to select compromise solutions from the gen-
erated Pareto set. The authors formulated a single-, two-
, and three-objective study to compare the best objective
values for each formulation. The single objective produced
the best voltage deviation and emission cost value while

the three-objective produced the best installation cost value.
Further work can be done to compare the quality of Pareto
solutions distribution.

The multi-objective handling techniques used in the opti-
mal integration of electrical units in distribution networks are
summarized in Table 2.

VI. COMPARISONS AND DISCUSSIONS
This study identified many significant issues by reviewing
metaheuristic techniques for the optimal integration of dis-
tributed generation and power electronic units in distribu-
tion networks. This section discusses the observations and
suggestions regarding the implementation of metaheuristic
algorithm applications to single objective and multi-objective
frameworks in the optimal integration of electrical units in
distribution networks.

A. DISCUSSIONS ON METAHEURISTIC TECHNIQUES FOR
THE OPTIMAL INTEGRATION OF ELECTRICAL UNITS IN
DISTRIBUTION NETWORKS
As explained previously in Section IV, metaheuristic algo-
rithms are the common choice for solving optimal integra-
tion problems in smart grids due to their flexibility. How-
ever, in this context, flexibility might not necessarily mean
simplicity. The successful implementation of metaheuristic
algorithms requires a good knowledge of both the algorithm’s
inner workings and the optimal integration problem. Studies
may directly apply algorithms to the optimal integration prob-
lem, given their availability as a toolbox or library in opti-
mization software applications. While this direct approach
may be simplistic, the researcher or engineer would imple-
ment the algorithm as a black box and may omit some impor-
tant details. Hence, studies may not attain optimal or practical
results. The GA is a typical example.

The GA is the most commonly used evolutionary algo-
rithm, which may be due to its availability as a toolbox or
library in optimization software applications, or its efficiency
to produce good results from the optimal integration prob-
lem. It is observed that other algorithms in the evolutionary
algorithms category, such as the DE, have fewer studies
when compared to the GA. The DE has been reported to
perform better in other studies than theGA, as shown in [143].
Moreover, the DE primary operators are synonymous to the
recently modified GA operators, which means that current
GA research can be used to improve the DE. Therefore, future
researchworks can explore theDE algorithm to achieve better
results from the optimal integration problem.

As seen in the study, swarm and physics-inspired algo-
rithms have also been widely applied to the optimal integra-
tion of electrical units in distribution networks. They have
been modified by tuning their parameters, which shows the
high impact of parameter values on the optimization result.
A high number of parameters may increase the subjectivity of
the algorithm’s performance; hence, future studies may focus
on finding a substantial amount of the algorithm’s parameters.
Dimensionality reduction techniques, such as factor analysis
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TABLE 2. Summary of reviewed multi-objective metaheuristic algorithms.
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TABLE 2. (Continued.) Summary of reviewed multi-objective metaheuristic algorithms.

and principal component analysis, can be used to find an
optimal amount of parameters for any algorithm. Although
this process may be exhaustive, it will aid studies on the
optimal integration of electrical units to further improve grid
performance and boost economic benefits.

It is also observed that hybrid algorithms are trending
since they can be easily implemented to produce good results
from the optimal integral problem. However, some studies
directly merge two or more mechanisms to improve grid
performance and boost economic benefits. This effort poses a
risk of increasing the algorithm runtime; hence, they become
computationally inefficient. This is evident in works of [30],
[105]. One way to overcome this setback is to find and elim-
inate duplicate steps or attributes of the algorithms. Future
studies on the optimal integration of electrical units can focus
on implementing each algorithm’s unique features rather than
directly implementing the whole features of each algorithm.

Another observation is that most of the combined tech-
niques, especially the analytical/metaheuristic, reduce the
computational complexity of the optimal integration prob-
lem. However, these techniques may not guarantee optimal
solutions because they are based on an approximate deriva-
tion of mathematical equations [7], [11]. Moreover, results
from approximate derivations can only give a snapshot of
the distribution network characteristics, e.g., power loss or
voltage stability values, at one run. It will be interesting to

see more research on better supporting techniques for meta-
heuristic algorithms. That way, there will be increased com-
putational efficiency with a lesser risk of losing optimality in
the optimal integration problem’s final results.

B. DISCUSSIONS ON MULTIOBJECTIVE OPTIMIZATION
FOR THE OPTIMAL INTEGRATION OF ELECTRICAL
UNITS IN DISTRIBUTION NETWORKS
As discussed in Section V, metaheuristic algorithms deal
with multiobjective problems in two major ways, either by
computing preference aggregation before or after problem
manipulation. The apriori approach is quite easy to imple-
ment and is computationally efficient. However, based on
intuition for a better practical scenario, most aposteriori
methods are preferred to the apriori ones. Studies on the
optimal integration of electrical units have implemented both
approaches according to different philosophies. A compar-
ison of different multi-objective optimization techniques is
shown in Table 3.
Previous studies have handled multiple objectives in a

non-categorized manner, where, irrespective of the multi-
objective handling method used, every objective function is
pushed to a multiobjective framework for a final decision
value. This approach may not represent a practical scenario
where all collective objectives, such as technical (or grid
performance), economic, and environmental objectives are
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TABLE 3. Comparison of decision-making techniques.

thought differently from each other. For example, studies in
[108] adopted two objective functions for grid performance
and one for economic benefits but assigned equal weighting
for all objectives in the decision making phase. An equal
assignment of weights or direct summation already shows a
high preference for grid performance than economic benefits.
Some studies have avoided this drawback by either focusing
on only one of the collective objectives or selecting one
objective to represent each collective objective. For instance,
Sharma et al. [136] adopted power loss minimization and
grid demand cost reduction to represent grid performance
and economic benefits, respectively. Another example is from
[121], where all adopted objectives represent only the grid
performance.

These examples beg the questions:
1) Can one objective, such as power loss minimization,

satisfactorily represent grid performance?
2) Can we always optimize only a collective objective,

such as grid performance, without including economic
or environmental benefits?

To find a balance among all collective objectives, it is sug-
gested that future studies should develop a multi-stage multi-
objective framework to find a balance among all collective
objectives, where all similar objectives can be optimized
categorically.

The trend of optimal integration of electrical units in a
distribution network grid is shifting towards a full-blown
smart grid, where clean energywill be prevalent. Hence, more
studies will need to be carried out on the optimal integra-
tion of ESSs, wind turbines, solar PVs, and EVs. Another
observation is the trend in the integration of EV units in
recent studies, where EVs are used to support the grid in
terms of voltage regulation or power compensation. The EV

aggregator (EVA) has been added to new optimal integration
models to communicate EV data for charging or discharging
schedule. They are practically in the business space, while
the DSO is concerned about the health of the distribution
network. Hence, the EVA can also become a decision-maker
along with the DSO. It is only practical since the EVA is
an integral part of the model. Future studies can explore the
possibilities of including the DSO and EVA as major decision
makers in the optimal integration of EVs and other electrical
units model.

VII. CONCLUSION
This paper reviewed the application of metaheuristic algo-
rithms for solving the optimal integration problem and its
dynamic implementation to solve objective functions. Meta-
heuristic algorithms were extensively discussed and catego-
rized as evolutionary, swarm intelligence, physics, hybrid,
and combined. Each of these categories was thoroughly dis-
cussed with examples from the literature regarding the type
of application, decision variables, objective functions, and
results. All of the techniques should determine the optimal
location and sizes of electrical units while considering spe-
cific objective functions.

Given that optimal integration problem is based practically
on improving more than one objective, researchers are faced
with an additional decision making, which is to choose a
convenient but correct method to handle multiple objective
functions. It is noteworthy that the handling of multiple
objective functions is directly related to the authenticity of
the results. Additionally, the simultaneous integration and
handling of uncertainties in distribution networks can signif-
icantly add to the complexity of the model, depending on the
grid scenario. Therefore, it is important to develop a model
that can efficiently handle such complexity.

Suggested future works regarding the optimal integration
problem in distribution networks may be required in

• development of new metaheuristic algorithms that
require minimal input from the user, e.g., an optimal
number of parameters,

• development of hybrid algorithms that converge quickly
and have a lesser computational time,

• development of better supporting techniques for select-
ing candidate buses for optimal location of electrical
units in a distribution network,

• combination of EV charging stations and other electrical
units for optimal integration in distribution networks,

• development of a multi-objective optimization frame-
work that further helps multiple decision-makers regard-
ing the optimal integration problem.

ABBREVIATIONS
BESS Battery Energy Source System
CS Charging Station
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D-STATCOM Distributed Synchronous Static
Compensator

DG Distributed Generation
EV Electric Vehicles
PV Photovoltaic
RES Renewable Energy Sources
V2G Vehicle to Grid
WT Wind Turbine
MCS Monte Carlo Simulation
GRP Grey Relational Projection
WSA Weighted Sum Approach
AHP Analytical Hierarchical Process
TOPSIS Technique for Order Preference by

Similarity
to Ideal Solution

ABC Artificial Bee Colony
ACO Ant Colony Optimization
ALO Ant Lion Optimizer
CS Cuckoo Search
DE Differential Evolution
DLSA Discrete Lightning Search Algorithm
FA Firefly Algorithm
FPA Flower Pollination Algorithm
GA Genetic Algorithm
GWO Grey Wolf Optimizer
HHO Harris Hawks Optimization
HSA Harmony Search Algorithm
ICA Imperialistic Competitive Algorithm
MOALO Multi-Objective Ant Lion Optimizer
MOPSO Multi-Objective Particle Swarm

Optimization
NSGA-II Non-dominating Sorting Genetic

Algorithm
PSO Particle Swarm Optimization
TLBO Teaching Learning Based Optimization
WCA Water Cycle Algorithm
WOA Whale Optimization Algorithm
LSF Loss Sensitivity Factor
PLI Power Loss Index
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
NLP Non-Linear Programming
SOCP Second Order Cone Programming
VSI Voltage Stability Index
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