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Abstract. Sequence-to-sequence end-to-end models for text-to-speech
have shown significant gains in naturalness of the produced synthetic
speech. These models have an encoder-decoder architecture, without an
explicit duration model, but rather a learned attention-based alignment
mechanism, simplifying the training procedure as well as the reducing
the language expertise requirements for building synthetic voices. How-
ever there are some drawbacks, attention-based alignment systems such
as used in the Tacotron, Tacotron 2, Char2Wav and DC-TTS end-to-
end architectures typically suffer from low training efficiency as well as
model instability, with several approaches attempted to address these
problems. Recent neural acoustic models have moved away from using
an attention-based mechanisms to align the linguistic and acoustic en-
coding and decoding, and have rather reverted to using an explicit dura-
tion model for the alignment. In this work we develop an efficient neural
network based duration model and compare it to the traditional Gaus-
sian mixture model based architectures as used in hidden Markov model
(HMM)-based speech synthesis. We show through objective results that
our proposed model is better suited to resource-scarce language settings
than the traditional HMM-based models.
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1 Introduction

Deep neural network (DNN) based techniques applied to text-to-speech (TTS)
systems have brought on dramatic improvements in the naturalness and intelli-
gibility of synthesized speech. An example of the change in the landscape could
be seen in the 2019 edition of the Blizzard Challenge [1], where the best percep-
tually judged entry was based on a long short-term memory (LSTM) - recurrent
neural network (RNN) hybrid architecture [4] with WaveNet [22] as the vocoder.
In fact, of the twenty one entries to the Blizzard Challenge 2019 that submit-
ted an accompanying paper (on the Blizzard Challenge website1), one system

1http://festvox.org/blizzard/blizzard2019.html
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was based on a traditional unit-selection architecture, one system was based on
a hidden Markov model (HMM) - deep neural network (DNN) hybrid driven
unit-selection architecture, one system was based on a HMM-DNN based hy-
brid architecture, whilst the other eighteen systems were based on some or other
DNN architecture.

The current research in TTS is dominated by DNN-based architectures as can
also be seen from the paper submissions to the 2019 edition of Speech Synthesis
Workshop (SSW)2. According to [24], the success of these architectures in the
improvement of the synthesized speech naturalness and intelligibility can be
broadly attributed to the attention-based models (such as Tacotron [23] and
Deep Convolutional TTS (DCTTS) [19]) as well as the use of neural network
based vocoders (such as WaveNet [22])).

Many of the newer DNN-based sequence-to-sequence model architectures are
what is known as “end-to-end” systems, in that they only require text and audio
pairs (<text, audio>) for training. The traditional TTS architectures are usually
based on a pipeline of a linguistic front-end and a waveform generation back-end,
requiring specialized linguistic knowledge or engineering capabilities for building
new voices.

A major challenge of the end-to-end architectures is the computational com-
plexity and load, where for example the WaveNet vocoder achieves a 0.3× real
time synthesis speed of 16-bit 24kHz mono audio on a Nvidia P100 GPU, and
WaveRNN [5], which aims to improve the synthesis speed, achieves a 4× real
time speed of the same fidelity audio on the same hardware [5]. This improve-
ment still represents a very high computational load. The training time and
computational requirements is also something that needs to be taken into con-
sideration, for example the Tacotron 2 architecture [16] takes on average 234
hours3 to train (at 32-bit floating point precision) whilst the WaveGlow vocoder
[16] (WaveGlow is one of the newer vocoders that was developed to address the
high computational requirements of WaveNet) takes on average 768 hours3 to
train (also at 32-bit floating point precision). These performance numbers were
obtained with one Nvidia V100 16G GPU, which at the time of writing costs
in the region of $6000 - $7000 each (excluding supporting hardware, importing
costs and taxes).

Other challenges of the end-to-end models are that the attention-based align-
ment systems, such as used in the Tacotron, Tacotron-2, Char2Wav [18] and
DC-TTS [19] architectures, typically suffer from low training efficiency as well
as model instability [30]. The low training efficiency means that one requires
more data than is usually available for low-resourced environments (DC-TTS in
[19] used 24 hours of data, which still resulted in reverbed quality synthesized
speech). Model instability may happen due to inaccurate alignments by the at-
tention mechanism, resulting in repeated, skipped or mispronounced phonemes
or words.

2https://www.isca-speech.org/archive/SSW_2019/
3https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/

\SpeechSynthesis/Tacotron2#expected-training-time

https://www.isca-speech.org/archive/SSW_2019/
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/\SpeechSynthesis/Tacotron2#expected-training-time
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/\SpeechSynthesis/Tacotron2#expected-training-time
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Recent neural acoustic models such as Fastspeech [14], FastSpeech 2 [13] and
a bottleneck feed-forward neural network implemented in [8] have moved away
from using attention mechanism to align the linguistic and acoustic encoding
and decoding, and have rather reverted to using an explicit duration model
for the alignment. With our focus being on developing and implementing DNN
architectures for resource-scarce environments we are looking at duration models
in this work, and in particular speaker specific or dependent models. We compare
the traditional HMM-based duration models with a DNN-based model suitable
for resource-scarce environments and report on objective measures between the
two models and a reference data set.

The organisation of the paper is as follows: in Section 2 we give some back-
ground on duration modeling as well as an overview of the two approaches fol-
lowed in this work. Section 3 details our experiments and results, and lastly a
discussion and conclusion is presented in Section 4.

2 Duration Models

Duration models, or to be more precise, phonetic duration models are employed
in a TTS pipeline architecture in order to inform the phonetic acoustic model of
the number of acoustic frames for which it must generate acoustic parameters,
or features, that will typically be synthesized by a downstream vocoder into
synthetic speech.

Intonation, emphasis or prominence and phrasing are influenced by the dura-
tion of the different phonetic units of an utterance [20]. The dynamic properties
of the phonetic unit durations and their relationships and interactions in an
utterance are complex, for example if one talks faster then the factor of speed
increase is not applied equally to all phonetic units.

Early formant and diphone based TTS systems used sets of deterministic
rules [7] developed by linguistic experts. Some models used the syllable as the
fundamental unit of duration [2], as syllables are believed to be the natural
units of prosody [20]. Data driven techniques for phonetic duration modelling
have become ubiquitous, including decision trees [15], neural networks [25] and
genetic algorithms [11].

In this work we will be comparing an HMM- and DNN-based duration model
in a resource-scarce setting.

2.1 HMM-based Duration Models

The technique we describe here is based on the widely used HMM-based Speech
Synthesis System (HTS) [28]. The fundamental unit of duration is a phoneme,
and each phoneme is modelled as a 5-state left-to-right, with no skip, HMM.
State duration densities are modeled by single Gaussian distributions.

The duration models are context dependent, with many contextual factors
that influence the duration of the individual phonemes taken into account (e.g.,
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phone and phone context identity factors, stress-related factors, locational fac-
tors). The contextual factors taken into account depend on their availability
in the particular language in question, i.e. some resource-scarce languages for
example might not have any available stress models.

During training, a decision-tree based context clustering technique is used to
cluster states of the context dependent HMMs. The decision-tree has a question
at each node which splits the context into two groups (i.e. a binary tree). The
clustered context dependent states are tied (shared) and are reestimated with
embedded training.

During synthesis, the target text to be synthesized is converted to a context-
based label sequence by the TTS engine front-end. A sentence HMM is con-
structed by concatenating context dependent HMMs according to the label se-
quence. The state durations of the sentence HMM can then be determined from
the total length of speech and the state duration densities.

The reason for the decision-tree based context clustering technique is to over-
come data scarcity, as it is impossible to prepare a speech database which in-
cludes all combinations of contextual factors.

Figure 1 shows the synthesis steps, where the decision- or regression tree is
used to select the context dependent HMMs based on the context labels of the
target text. The HMMs are concatenated to form the HMM sentence, which can
then used to determine the phoneme durations from the HMM state durations.

2.2 DNN-based Duration Models

The DNN-based phonetic duration model used in this work is based on a stack of
fully connected layers in a feed-forward neural network (FFNN), as given in figure
2. At the output is a linear layer, whilst the rectified linear unit (ReLU) activation
function was used for the hidden layers. Batch normalization and dropout were
used with each hidden layer of the network. The Adam optimisation algorithm
[6] was used with a learning rate scheduler that lowers the learning rate when
the validation loss reaches a plateau (the Adam optimisation algorithm adjusts
the learning rate, it is the upper bound that we reduced). The weights and biases
of all the layers were initialized using the He-uniform distribution [3]. The loss
function was the mean squared error (MSE) on the predicted duration feature.

As with the HMM-based duration models of the previous section, the fea-
tures used included many contextual factors that influence the duration of the
individual phonemes.

During training the TTS engine front-end creates a contextual label sequence
for each recording of the training data in the speech database. This contextual
label sequence is then converted into a linguistic description feature vector, used
as input to the FFNN. The ground truth duration of each phone unit in the
contextual label sequence is taken from the recorded database and used as the
output feature target of the FFNN.

During synthesis the TTS engine front-end creates a contextual label se-
quence for the target utterance. This contextual label sequence is then converted
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Fig. 1. HMM-based duration model.

into a linguistic description feature vector, used as input to the FFNN, and the
FFNN does a prediction of the duration at the output.

3 Experimental Setup

3.1 Data

The data used in this work is a subset of an in-house single speaker Afrikaans
female TTS corpus of duration 12:08:15.89. The corpus was recorded in a studio
with a professional voice artist at a 44.1 kHz sampling rate with 16 bits preci-
sion. The subset used are recordings of the text of the Lwazi II Afrikaans TTS
Corpus [12], consisting of 763 utterances of duration 00:56:30.29. This subset



6 J.A. Louw

Speech

database

TTS engine

front-end

Linguistic

description

Duration

features

h1

h2

h3

h4

Fig. 2. DNN-based duration model.

represents a small and phonetically balanced speech database as would be used
for building HMM-based synthetic voices and attempting to build DNN-based
synthetic voices.

The utterances were randomly split into training, validation and testing sets
as given in Table 1. All audio was down-sampled to 16 kHz at 16 bits per sample
and each utterance was normalised to the average power level of the subset (the
763 utterances).

Contextual Features The text annotations of the speech database (Table 1)
were tokenized and normalised with the Speect TTS engine front-end [10]. The
context features used in this work is given in Table 2, and these features are the
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Table 1. Speech database utterance splits as used in the experiments.

Set # Utterances Duration

Training 715 00:53:12.09
Validation 38 00:02:37.99
Test 10 00:00:40.21

same as defined in [21], except for syllable stress, accent and ToBI (Tones and
Break Indices) [17] tones which were not included due to it most probably not
being available in resource-scarce settings. The context features of each utterance
was also extracted using Speect.

Table 2. The linguistic context features as used in this work.

Context Feature

Phoneme
the current phone
the two preceding and succeeding phones
the position of the current phone within the current syllable

Syllable

the number of phonemes within preceding, current,
and succeeding syllables
the position of the current syllable within the current word
and phrase
the number of preceding and succeeding stressed syllables
within the current phrase
the number of preceding and succeeding accented syllables
within the current phrase
the vowel identity within the current syllable

Word

guessed part-of-speech (GPOS) of preceding,
current, and succeeding words
the number of syllables within preceding, current,
and succeeding words
the position of the current word within the
current phrase
the number of preceding and succeeding content words
within the current phrase
the number of words from the previous content word
the number of words to the next content word

Phrase
the number of syllables within preceding, current,
and succeeding phrases
the position of the current phrase in major phrases

Utterance the number of syllables, words, and phrases in the utterance

Reference Durations The reference durations of the phone units in the speech
database (Table 1) were obtained from a forced-alignment procedure using the
HTK toolkit [27]. A frame resolution of 10ms was used (hop size). A silence
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Fig. 3. The phone duration distribution of all the non-silent phones in the speech
database.

state was added between all words in the database in order to identify any
pauses or phrase breaks which were recorded but not specifically annotated in
the text with punctuation marks (based on work in [9]). Any non-annotated
silence longer than 80ms is marked as a pause and a phrase break is inserted
into the utterance structure at this point. These phrase breaks have an influence
on the context features as given in Table 2.

Figures 3 and 4 give the duration distributions of all the non-silent phones and
the near-open front unrounded vowel (/æ/) respectively. Note that the minimum
phone duration is 5 frames due to the use of a 5-state HMM model (see Section
2.1).

3.2 HMM-based Duration Model

After the reference durations were extracted, a duration model was built based
on the standard architecture of 5-state (excluding the emitting states), left-
to-right HMM. The contextual features used were as defined in Table 2. The
duration features were modelled by a single-component Gaussian. The decision
trees state clustering was done using a minimum description length (MDL) factor
of 1.0. Training of the model was done via custom scripts based on the standard
demonstration script 2 available as part of HTS [33] (version 2.2).

Note that the model was only trained on the 715 training utterances of Table
1.
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Fig. 4. The phone duration distribution of all the near-open front unrounded vowel
(/æ/) in the speech database.

3.3 DNN-based Duration Model

The contextual features of Table 2 were converted to a linguistic description
vector containing a combination of binary encodings (for the phoneme identities
and features) and positional information (as is done in [26]).

The input linguistic descriptions vector consisted of 375 features and was
normalised to the range of [0.01, 0.99], whilst the output vectors (the reference
durations) were normalised to zero mean and unit variance. TTS is a highly
unbalanced mapping problem when viewed as a sequence-to-sequence mapping
model [30] (mapping text to speech frames). The output speech sequence is
much longer than the input text sequence. In order to add granularity on the
text side, the durations are modeled in terms of their “HMM” states, i.e. as if
the model consists of a number of HMM states. This has been proven to improve
the quality of the synthesized speech [29]. The output vector has a normalised
frame duration for each “state” of the HMM model (which was modelled using
a 5-state left-to-right HMM).

Note that this model was also only trained on the 715 training utterances of
Table 1, the same as the HMM model. Various model hyper-parameters in terms
of the number of hidden layers and the number of units per hidden layer were
trained and all the results are given in Table 3.
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3.4 Results

The validation and test sets of Table 1 were synthesized with the HMM- and
DNN-based duration models and the durations per phone unit were extracted.

Objective Measures Two objective measures were used in order to evaluate
how closely the models were able to predict the durations of the phonemes of
the particular speaker. The Pearson correlation coefficient and the Root Mean
Square Error (RMSE) between the predicted (y) and actual (x) durations (in
terms of number of frames) were calculated.

The Pearson correlation coefficient (ρ) is given by:

ρxy =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
(1)

and the RMSE by:

RMSE =

√∑
i(x− y)2

T
(2)

where T is the number of frames. The results of the objective measurements
on the synthesized durations of the validation and test sets of various architec-
tures are given in Table 3. Higher correlation (ρ) is better whilst lower RMSE
(in terms of frames/phone) is better.

Table 3. Results of objective measurements for different model architectures. Root
mean squared error (RMSE) is in units of frames per phone whilst the Pearson corre-
lation coefficient (ρ) is dimensionless.

Architecture
Validation set Test set
RMSE ρ RMSE ρ

HMM, 5-state, single Gaussian 4.288 0.633 6.644 0.552

6 hidden layers, 128 units/layer 3.819 0.696 3.067 0.827

6 hidden layers, 256 units/layer 3.797 0.702 4.685 0.707

6 hidden layers, [512, 256, 128, 64, 32, 16] units 3.801 0.709 3.174 0.809

4 hidden layers, 128 units/layer 3.773 0.702 2.905 0.832

4 hidden layers, 256 units/layer 3.771 0.709 3.052 0.812

4 hidden layers, [128, 64, 32, 16] units 3.739 0.720 3.240 0.778

Figure 5 shows a visual comparison between the durations on a word level
predicted by a HMM model, a DNN model and the reference recording.

4 Discussion and Conclusion

In this work we have developed an efficient feed-forward neural network for
speaker dependent phonetic duration modeling in the context of resource-scarce
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Fig. 5. A visual comparison of the duration prediction on the word level for the utter-
ance “Telkens moet hy die gevolge van sy dade dra”. At the top is the DNN prediction,
at the bottom the HMM prediction and in the middle the reference from the recorded
speech.

text-to-speech settings. Our model trains in less than 2 hours on a CPU and
therefore can be easily adapted. Although not reported on, we have also applied
this model on isiXhosa, isiZulu as well as Setswana corpora with similar success.

The importance of these types of explicit duration models have declined with
the advent of the attention-based mechanisms in end-to-end neural speech syn-
thesis architectures such as Tacotron, Tacotron 2 and Char2Wav. However, the
challenges brought on with the attention-based mechanisms architectures and
their unsuitability in resource-scarce environments have prompted the develop-
ment of acoustic models such as Fastspeech and Fastspeech 2, which again use
explicit duration models.

Our results show that a simple FFNN, with 4 hidden layers, can accurately
predict phone unit duration and can reach a RMSE of 2.905 frames/phone on a
speech database of less than 1 hour in duration, with a high correlation over the
whole sequence of phones.

It is interesting to note that larger networks do not necessarily perform better,
which may be attributed to the lack of data for training the larger systems.

In contrast to our work, [20] mentioned that previous comparative studies
between decision trees and neural networks found little difference in accuracy
between either approach. We think that this may be due to the size of the dataset
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used for training, as it has been shown that neural networks with the appropriate
architectures are much more data efficient than HMMs [29] and the dataset used
in this work is particularly small.

Future work will include variants of output layers, such as a softmax function,
to predict a region wherein the duration of a specific input may lie, such as
done in [25]. The importance of specific linguistic features are also of particular
interest, as eliminating hand crafted or expert developed features make it easier
to develop voices in new languages.
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