
A Survey of Distributed Trust Mechanisms Suitable
for IoT Devices

Morné Pretorius∗, Sthembile Mthethwa∗
∗Modelling and Digital Science (MDS)

Council for Scientific and Industrial Research (CSIR)
1mpretorius2@csir.co.za
2smthethwa@csir.co.za

Abstract—There are challenges and trade-offs associated with
building secure decentralised systems that incorporate resource-
constrained devices into the internet ecosystem, particularly
the internet of things. Introducing distributed ledgers solves
some of these problems while introducing new challenges. This
paper identifies mechanisms that can be adopted to build
distributed trust for smaller devices when attempting to bal-
ance the consensus, scalability and decentralisation trilemma.
The building blocks of decentralised consensus networks are
identified and problem areas with potential solutions discussed to
provide proper requirements scope. Newer consensus protocols
and cryptographic constructs are discussed that might provide
secure, efficient and scalable consensus and avoid excessive
computational-, bandwidth- and storage resources. The idea is
to limit the conceptual design phase to a resource-constrained
operational situation to avoid redesign when the internet of
things becomes widely adopted.

Index Terms—consensus, distributed, internet-of-things, cryp-
tographic, risc-v

I. INTRODUCTION AND BACKGROUND

With the Internet of Things (IoT) being a future reality
[1], it would be ideal if technologies existed to ensure its
safety in terms of an open, permissionless and optimally
decentralised arrangement, where any device can join or leave
the network without degrading performance or trusting in any
central point of control. Distributing control of a system is
important because in an IoT context, compromising a central
data controller results in the unauthorised manipulation of the
digital which is connected to the physical [1]. For example,
leaking your baby’s sleep patterns through a connected baby
monitor is one thing but controlling their sleep pattern is
a much different risk equation. Physical and geographical
decentralisation of control implies that attackers need to do
much more work to compromise a system.

Distributed and decentralised systems have problems with
scaling as central points of control are usually required to
maintain efficiency at the expense of fault-tolerance which
introduces the well know Consistency, Availability and Par-
tition tolerance (CAP) theorem or rather, rule of thumb [2,
3]. A derivative of CAP is used here to view the trade-offs
related to distributed and decentralised systems design.

It is important to discern firstly between a classical dis-
tributed database and Distributed Ledger Technology (DLT).
The key difference lies in the ability to distribute (uniformly

or fairly) control and coordination of the system towards
anyone willing to participate, whilst using incentive-punitive
mechanisms such as cryptography to induce good- and reduce
bad behaviour. In contrast, classical distributed databases
usually operate in trusted environments and do not necessarily
use cryptography to guard against malicious behaviour. This
is the most important distinction to make when considering
permissioned versus permissionless distributed systems and
databases [4].

Achieving a safe IoT involves a multidisciplinary approach
and so this research aims to identify historical and current
definitions, trade-offs and challenges related to building these
systems while being mindful of resource-constrained envi-
ronments such as IoT. We aim to use more generic and
classical, yet explicit, terminology due to the multidisciplinary
nature of these systems when discussing trade-offs and present
possible future solutions related to cryptographic primitives
and hardware.

Thus, Section II identifies historical definitions that have
been used to describe a correctly functioning distributed
agreement system. Section III further identifies basic
types of distributed agreement technologies that have
emerged, including additional terminology that define similar
ideas across these types. Section IV merges the previous
terminology into more classical definitions from systems
and information theory and discusses trade-offs related to
the identified consensus types in existence today. Section V
evaluates said distributed consensus options in the context
of IoT, presents possible solutions at a conceptual level
and is followed by lower-level cryptographic and hardware
considerations in Section VI and VII respectively.

II. DISTRIBUTED SYSTEMS HISTORY

Lamport proposed two properties that need to be present
in distributed systems, namely safety and liveness [5]:

1) Safety - refers to nothing bad happening when the
system executes, such as handling exceptions and not
halting if they occur.

2) Liveness - refers to things that eventually must happen,
such as requests from correct clients that are eventually
processed and not getting stuck in an undecided state.



These properties are usually required by most systems
to be practical, however, from safety and liveness followed
more property definitions to ensure the existence of a correct
asynchronous Byzantine Fault-Tolerant (aBFT) system and
dates back to the ’70s and ’80s [6, 7]:

1) Agreement - All honest processes/nodes must agree on
the same value/output v.

2) Integrity/Validity - Any agreed-upon v must originate
once from honest nodes and thus faulty nodes’ values
must be filtered out or ignored.

3) Termination - Honest nodes must eventually agree and
cannot remain undecided. This has to do with the sys-
tem avoiding open-ended control loops and maintaining
state-full transition by handling anomalies or event forks
and remaining live.

Combining these requirements into a single sentence to
define a correct/safe and live distributed system: Honest nodes
are assumed to propose input(s) where all honest nodes
have to agree eventually (Termination), on the same output
(Agreement), that has to be equal to the proposed inputs
(Validity).

Within the Byzantine fault model, an agreement was shown
to be possible only if less than a third of nodes are faulty or
Byzantine [8] where the behaviour of the Byzantine processes
or nodes are restricted and filtered by incorporating message
broadcast into the consensus protocol [7]. It was also shown
through the Fischer-Lynch-Paterson (FLP) impossibility that
agreement is impossible in an idealised non-broadcast, fully
asynchronous environment if only one node becomes faulty
or Byzantine [9]. Thus, it is important to identify if the
system being built needs to be asynchronous or synchronous.
Other fundamental properties of fault-tolerant distributed
systems include concurrent components that do not rely on a
global clock in the presence of delays and other validity faults.

III. DISTRIBUTED TECHNOLOGIES

After the formulation of the Byzantine general’s problem
in 1982 [8], various solutions such as Paxos, Raft and
Practical Byzantine Fault-Tolerant (PBFT) followed [10] and
were eventually adopted by enterprise entities in trusted or
permissioned environments.

Whilst Bitcoin is currently the most popular roll-out of
a permissionless replicated append-only hash linked list or
blockchain [11], earlier experiments have existed [12] and
encountered similar trade-offs related to CAP. Blockchains
operate in the context of immutable traceability which is not
always the predominant requirement for IoT systems as will
be discussed.

Another decentralised technology that began to surface
along with Bitcoin in 2009 is that of a Conflict-free Replicated
Data Type (CRDT) [13] which creates a set of abstract data
types that allows for the convergence of concurrent updates
with the following properties [14]: “(i) any replica can be
modified without coordinating with other replicas; (ii) when
any two replicas have received the same set of updates,

they reach the same state, deterministically, by adopting
mathematically sound rules to guarantee state convergence.”

To the best of our knowledge, there exist two fundamental
types of distributed consensus (asymptotic and convergent)
and the aforementioned distributed technologies are currently
the three basic implementations in existence today to achieve
varying forms of consensus for ordering events.

In other words and a theoretical sense, Proof-of-
Resource/Work (PoX) or Nakamoto implementations indef-
initely approach consensus whereas aBFT and CRDTs reach
consensus eventually, known as finality [15, 16]. The three
consensus mechanisms make trade-offs within the CAP spec-
trum, but before these can be classified, a proper definition of
CAP is required.

IV. TRADE-OFFS

Even though there is some confusion regarding the A and P
components within CAP [2], it remains useful as a design tool.
Explicit distinctions are required for clarity because a system
can be referred to as being up or down i.e. vertical-availability
or scaling, by having low algorithmic time-complexity and
high performance in the presence of load.

Partition-tolerance can easily be confused with Availabil-
ity and interpreted as horizontal-availability, which refers
to the ability of the system to uniformly and redundantly
synchronise data geographically and to be available in the
presence of faulty/malicious/Byzantine behaviour i.e. the fault
model. It might be better to refer to this as a Fault-Tolerance
property as partitions have been modelled as faults using
delays, before the CAP theorem’s formal inception [2, 17]. To
further exacerbate confusion, others have presented a similar
Decentralisation, Consensus and Scalability (DCS) theorem
[18] although their contextual definitions make more sense
than CAP. A less confusing theorem could be postulated as
CAvAh or CAF although Availability remains an ambiguous
term:

1) Consistency - Every read receives the latest write or an
error.

2) Availability - All requests receive non-erroneous re-
sponses, with no guarantee that they contain the latest
writes.

3) Fault-Tolerance - The system continues operating de-
spite an arbitrary number of messages being dropped
(or delayed) by the network between nodes.

Whilst considering all previous definitions, it is difficult
to place these properties within the CAP spectrum and thus,
related terminologies have been classified into Table I in an
attempt to find common ground regarding terminology and
to induce proper reasoning. Other terminologies encountered
within the reading set were also grouped into this table, as
these properties represent similar trade-offs within distributed
and decentralised systems.

Table I elicits safety, agreement, integrity and validity as
properties that relate to each other and to how well a particular
system meets its contextual requirements. For example, within



TABLE I
TAXONOMY OF TRADE-OFF TERMINOLOGY FROM LITERATURE

GOOD FAST CHEAP/COST
Safety [2, 5] Liveness [2, 5] Fault-Tolerance [2]

Agreement [7] Vertical-time [6] Horizontal-space [6]

Validity/Integrity [7] Termination [5] Sharding [3]

Consistency [2, 3] Availability [2, 3] Partition-Tolerance [2, 3]

Correctness [5] V-Scalability(time) [6, 16] H-Scalability(space) [6, 16]

Consensus [18] Scalability [18] Decentralisation [18]

Atomicity [2] Finality [15, 16] Propagation Delay [2]

Linearisability [2] Latency [19] Replication [13, 14]

Information [19] Efficiency [19] Redundancy [19]

a financial context, the correct ordering of events is of
utmost importance to ensure accounting and auditing, whereas
reaching a consensus in a swarm of drones regarding their
average position could sacrifice some measure of correctness
regarding event order.

Liveness and termination relate to vertical scaling or per-
formance, as there needs to be a certain flow of information
to ensure a frequency at which said information can be con-
sidered correctly ordered and agreed upon and is a function
of synchronisation and computation.

The least confusing and most generic terms that result
from Table I are Information, Efficiency and Redundancy.
These stem from information and systems theory where
information was defined by Hartley in 1928 as the lack of
entropy or uncertainty [19]. Typically, a system or product
would lack entropy after it has been tested and qualified to
meet contextual requirements which means information and
correctness point towards similar entities.

Fig. 1. Distributed Technology Correctness, Efficiency and Redundancy
Triangle

In distributed systems, a correct total ordering of events
is the primary requirement and therefore, the remainder of
this work will promote and adopt Correctness, Efficiency
and Redundancy as the terminology to describe the trade-
offs within a distributed system. Figure 1 depicts the current
three technologies placed in their estimated positions along

the spectrum:

1) Correctness - refers to the system or sub-system meet-
ing its requirement(s) and reducing entropy by trading
off against each other: Efficiency and Redundancy.

2) Efficiency - refers to the system’s optimal usage of
resources such as energy, storage and bandwidth to
achieve performance or rather: lack of Redundancy.

3) Redundancy - refers to the system using additional
resources to achieve a higher level of fault-tolerance
or rather: lack of Efficiency.

A. Conflict-free Replicated Data Types

Figure 1 shows that CRDTs sacrifice some measure of
correctness and settles for various consistency models such
as weak-, strong-, strong-eventual-, casual- and just-right
consistency. This is done through less synchronisation to
provide efficiency and redundancy by grouping commutative
operations into data types that possess convergence guar-
antees and by synchronising only when updates and non-
commutative operations occur such as division and subtraction
[14].

CRDTs achieve eventual consensus based on lattice joins
and guarantee convergence only when all updates are propa-
gated to all nodes [13]. The shared state data is organised in
an application-centric manner which results in data not being
present on all other nodes and closer to the participants for a
particular shared state sub-set. This provides better data access
but less shared state redundancy. However, more conflict
resolutions are required to ensure correct global consensus
or ordering of events.

Although CRDTs do not intrinsically satisfy the Byzantine
fault model, attempts have been made to provide this property
at the expense of more synchronisation when updates occur
[20].

CRDTs are therefore highly efficient, decently redundant
but lack correct total ordering of transactions in the context of
a global currency. Examples of where CRDTs are used: *Inter-
Planetary File System (IPFS), †AntidoteDB, ‡Riak, §Redis
and ¶Akka.

B. Proof-of-Resource/Chain-Based

Also from Figure 1, PoX systems sacrifice efficiency and
correctness by redundantly synchronising and storing full
copies of the shared state information on every “full node”.
They can also scale better horizontally [16] as nodes do not
require knowledge of other nodes to tally votes. The implicit
resource-based voting mechanism is intrinsically open and
permissionless as it randomly selects a participant to process a
block of events/transactions and requires no prior knowledge
of other nodes when joining the network.

Thus, PoX probabilistically approaches correct ordering
through implicit resource-based voting and requires a certain
number of blocks to be chained, using hashes, to increase

* https://ipfs.io/ † https://www.antidotedb.eu ‡ https://riak.com
§ https://redis.io ¶ https://akka.io



the likelihood of consensus and therefore sacrifices some
correctness [21].

It was shown by [22] that PoX does not provide better
fault-tolerance than what is required through the results of [8],
implying less than a third of nodes can be Byzantine or faulty
regarding resource-based voting. In Proof-of-Work (PoW),
less than 1/3 of mining power needs to be non-Byzantine
although there is research suggesting that this threshold is
even lower, indicating 1/4 fault-tolerance in terms of selfish
mining [16].

PoX/Nakamoto/chain-based systems are therefore highly
redundant, decently correct (asymptotic or probabilistic) but
lack efficiency when high event throughput is required. Ex-
amples of where PoX is used: Bitcoin’s PoW [11], Intel’s
*Proof-of-Elapsed-Time (PoET) and Ethereum’s Proof-of-
Stake (PoS) [23].

C. Asynchronous Byzantine Fault-Tolerance

Finally, from Figure 1, aBFT systems sacrifice shared state
redundancy and some efficiency by requiring more synchro-
nisation through gossip broadcasts and splits the shared state
into shards to scale horizontally [16]. In time-complexity
terms, they are better at scaling vertically to achieve higher
transactional throughput and lower energy consumption. How-
ever, they either require central points of failure to oversee
shards or they require additional communications to ensure
inter-shard orchestration.

aBFT implementations achieve consensus using explicit
voting which induces a definitive time-point when all nodes
achieve a consensus of event order, with 100% certainty
every r voting rounds. This is convergent as opposed to
asymptotic and refers to finality [15, 16]. The downside is
that this requires knowledge of all node identifiers which is
the limiting factor regarding its horizontal scalability or shared
state redundancy.

Many of the existing aBFT protocols are not fully asyn-
chronous which impacts achieving the full 33% Byzantine
fault-tolerance [16] and many of them are leader-based which
makes them susceptible to follow-the-leader attacks. This can
be addressed through randomised aBFT algorithms which al-
low for much higher levels of asynchrony [16] but introduces
latency because of the need for random broadcast or gossip.

aBFT/explicit-voting systems are therefore highly cor-
rect, decently efficient but lack shared state redun-
dancy/decentralisation which limits the number of nodes being
able to join the network and requires disjoint sections with
additional orchestration.

Examples of where aBFT or explicit voting based
consensus is used: Paxos [24], Raft [25], PBFT [10],
Stellar Lumens/Federated Byzantine Agreement (FBA) [26],
Hashgraph [21].

* https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html

V. RECOMMENDATIONS FOR IOT

PoX systems do not seem like a viable IoT option for
various reasons. They consume too much storage and energy
resources and have limited formal proofs to converge to
a decision. Although PoW does not provide better fault-
tolerance than other schemes when a majority of mining
power or implicit vote is being compromised, it does seem to
present a greater disincentive for attack than other systems,
where compromising a majority of the explicit vote is not
energy-intensive. However, this requires adoption to reach an
acceptable level of security.

aBFT and CRDTs seem more promising in terms of
efficiency although the Directed Acyclic Graph (DAG) data
structure that they use could prove challenging concerning
memory limitations associated with IoT devices as it will limit
shard size, however, aBFT doesn’t require full state history
due to it possessing consensus finality. This means that IoT
nodes participating in the consensus protocol do not need
to store the full history since the consensus mechanism is
not asymptotic. There is also more formal literature available
regarding CRDTs and aBFT to further investigate their appli-
cation.

Another technology worth mentioning to distribute trust is
a Distributed Hash Table (DHT) which can adjust the shared
state redundancy to a certain amount of copies, uniformly
spread out across nodes, which reduces the amount of syn-
chronisation required [27]. This is in contrast to having full
state redundancy per node. This uniformity property presents
other challenges and trade-offs regarding routing and state ef-
ficiency [28] but could be combined with the aforementioned
consensus protocols to achieve an autonomous network that
could serve IoT devices as a Decentralised Storage Networks
(DSN) [29] instead of them persisting the data. The problem
with DSNs or any publicly available service is that it suffers
from the “tragedy of the commons” when free-riders cause
an uneven burden to be carried by a minority of network
participants.

One idealised solution would be to have highly asyn-
chronous state propagation, correct total ordering of events,
adjustable shared-state redundancy and network topology
agnostic- and autonomous routing to ensure efficient state
propagation. It is also required to have an incentive-punitive
mechanism in place when nodes join and leave the network to
avoid continuous reconfiguration of routing state information
(list of peer nodes) and Sybil attacks. This implies some
combination of a DHT and aBFT which is what the team
behind Protocol for Asynchronous, Reliable, Secure and Effi-
cient Consensus (PARSEC) [30] known as Massive Array of
Internet Disks with Safe Access for Everyone (MAIDSAFE)
is attempting [29, 31]. Although the technology is still under
construction, there have been interesting developments such as
self-authentication and peer-to-peer Public Key Infrastructure
(PKI) [32, 33]. To prevent the 33% fault-tolerance from being
easily compromised, the MAIDSAFE network implements
node-ageing as a function of node service-time, data-retention,
-mutation and -distribution. They are also aiming at inte-
gration with Prof. Tim Berners Lee’s Socially-Linked-Data



(SOLID) which could have future potential as far as Self
Sovereign Identity (SSI) is concerned. SSI integration could
be a use case where IoT devices are assigned to and from an
SSI to always have devices accounted for by human beings.

Regardless of which combination of technology is used
from Figure 1, cryptographic primitives are required to apply
authentication and incentive-punitive mechanisms to limit
attempts by bad actors within the system and to achieve
permissionless operation. Apart from state propagation,
cryptography remains a fundamental challenge for IoT
devices and introduces a bottleneck in achieving low latency,
distributed, secure and permissionless consensus. As a
security requirement, this implies one signature generation
for every message sent and one verification for every message
received when IoT devices participate in an asynchronous
Byzantine fault-tolerant consensus protocol which is an
expensive operation.

VI. LIGHTWEIGHT CRYPTOGRAPHIC PRIMITIVES

As the fundamental difference between traditional dis-
tributed databases and DLTs is the inclusion of cryptography,
distributing trust in an IoT context requires that these devices
can efficiently do the same cryptographic calculations to
reduce latencies and ensure efficiency. In terms of the con-
sensus protocol, three predominant cryptographic primitives
are usually used [34]:

1) Block Ciphers - ensures Confidentiality of information
while at rest and in transit and are used to build other
functions such as hash-functions or Message Authenti-
cation Codes (MAC).

2) Hash-functions - induces either uniform distribution of
information in key-value pair lookups such as DHTs
as well as Integrity checks and immutability within
systems under the assumption that no hash collisions
exist per particular hash function.

3) Digital Signatures - ensures source Authenticity and
provides a measure of identification.

There are two main categories of cryptography namely
symmetric and asymmetric, and the same is true for
lightweight cryptography. Lightweight symmetric ciphers re-
quire less memory, run comparatively faster and are usually
combined with asymmetric primitives to establish a session
key for a symmetric cipher to provide a confidential communi-
cations channel. A wealth of established symmetric algorithms
exists; among those, the most prominent representatives are
the block ciphers: Advanced Encryption Standard (AES) and
Data Encryption Standard (DES). There are several symmetric
stream ciphers which prove to be more efficient when com-
pared to block ciphers, where stream ciphers are preferred in
some embedded applications even though block ciphers are
more secure [35]. Recent primitives are the PRESENT block
cipher and PHOTON hash function [36].

Lightweight asymmetric ciphers aim to operate on devices
with limited resources, yet require more computational power
and are slower than symmetric counterparts [36]. An example

from the asymmetric cryptography family is Elliptic Curve
Cryptography (ECC), which is considered to be the most
effective for resource-constrained devices and is standardised
by the National Institute of Standards and Technology (NIST).
The Rivest–Shamir–Adleman (RSA) algorithm is the most
popular asymmetric primitive, supporting key sizes from 1024
to 4096 bits, whilst ECC offers the same security but with
shorter keys and lower computational requirements [37]. In
terms of digital signatures, the most popular ECC-based signa-
ture scheme is the Elliptic Curve Digital Signature Algorithm
(ECDSA).

In summary, the predominant disadvantage of using
asymmetric- over symmetric cryptography is the cost of
implementation and speed, which remains a challenge for IoT
devices. With the growth of IoT, information security is a
concern [1], thus cryptographic primitives have been actively
proposed and analysed as the NIST aims to develop crypto-
graphic standards that can work within resource-constrained
devices. The search for lightweight cryptographic algorithms
continues whereby NIST is assessing possible use cases and
applications that require lightweight algorithms [38, 39].

In addressing some challenges or limitations associated
with using cryptography, the Reduced Instruction Set
Computer: Five (RISC-V) has been presented as a possible
hardware domain solution which is discussed in the following
section.

VII. REDUCED INSTRUCTION SET COMPUTER: FIVE
(RISC-V)

When resource-constrained devices attempt cryptographic
computations, a solution often adopted is to implement cryp-
tographic primitives in hardware, such as an Application-
Specific Integrated Circuit (ASIC) or Field-Programmable
Gate Array (FPGA) but, these technologies and their asso-
ciated tooling are often proprietary and expensive; presenting
a barrier to entry for researchers and hobbyists [40]. Another
barrier is the archaic hardware descriptor languages used to
define these hardware accelerators.

RISC-V aims to solve these issues as the first royalty-free,
extensible and open Instruction Set Architecture (ISA) specifi-
cation in contrast to previous patented implementations. With
an ISA being the gateway between hardware and software, the
intention is to allow for numerous software-defined hardware
extensions that leverage common software development [41]
to provide an ideal base for specialised accelerators, open to
anyone to freely contribute. It is difficult to predict all possible
advantages that could result from this technology and so, the
following list are some that come to mind:

• Because it is an open ecosystem, it has potential to
reduce formal verification overhead so that developers
can share and gain more security features such as side-
channel attack resistance, which have not been addressed
by standards such as FIPS-140 [42].

• Lightweight, quantitative and modular design provides
simpler and controllable hardware implementations [43].



• It was designed to implement all ranges of computing
devices, such as cloud computing, data centres, network
equipment and embedded or IoT devices.

• It can be tailored to address-ultra-low power situations
and numerous other use cases such as high-speed com-
pression [43] which is highly beneficial for IoT.

• It could provide backwards compatibility for IoT devices
that need to interact with existing systems that use older
cryptographic primitives.

• It would be much easier to conduct a security audit due
to its royalty-free and open nature.

Although still in its infancy, RISC-V is gaining traction
with 48 contributors on GitHub spread out across academia,
industry and open-source operating system projects [44, 45].
Western Digital is rolling out more than a billion RISC-
V devices per annum and NVIDIA is also adopting the
technology for their new graphics accelerator platforms. The
introduction of RISC-V has presented the opportunity for
the next phase of development in microprocessor hardware
architectures [46] and as with any new technology, challenges
are expected which might hinder its adoption:

• It runs the risk of producing a non-coherent standard and
could result in an explosion of hardware architectures
that require support and testing.

• It still lacks a mature and stabilised tooling ecosystem
that is generic across all implementations.

• In the big data and server context, it is still unclear
whether RISC-V would be faster, more efficient and cost-
effective than existing platforms and ecosystems as a
whole.

VIII. CONCLUSION

This research surveyed the basic types of distributed con-
sensus or trust protocols from an IoT perspective, instead
of conducting an exhaustive exercise across the numerous
distributed ledger projects, whereby trade-offs and recom-
mendations were provided. This research also highlights the
security-critical and latency inducing building blocks of ex-
isting distributed consensus technologies and two potential
paths to follow to achieve secure and performant IoT namely:
lightweight cryptography and hardware acceleration using
RISC-V. We show that both lightweight cryptography and
RISC-V possess much potential, but each presents challenges
that are still to be resolved which could take many years.
Firstly, the use of cryptography can only address efficiency
when lightweight cryptographic primitives that meet the needs
of IoT devices and security are identified, accepted, peer-
reviewed and standardised, but could lack legacy crypto-
graphic compatibility. Secondly, if the hardware approach
is adopted; RISC-V could become to hardware what Linux
has become to the software domain. This could allow for
highly efficient and context-specific devices to participate
directly in a much-needed distributed consensus protocol
to avoid central points of failure. It becomes evident that
the surveyed technologies are still in the fermentation stage
when requiring the permissionless setting where the optimal
generic solution might lie in a combination of them. The

permissionless requirement is much-needed for IoT to en-
able decentralised control and is only achievable by using
cryptography. Therefore, it might be useful if researchers
and developers constrain their thinking to limited resource
environments when constructing solutions. Further research
and experimentation with technologies such as RISC-V are
required by perhaps building an IoT specific distributed ledger
test bench using the cheapest and smallest possible embedded
devices to demonstrate the effectiveness and practicality of
current consensus protocols.

REFERENCES

[1] B. Schneier, “The internet of things will upend our industry,” IEEE
Security & Privacy, vol. 15, no. 2, pp. 108–108, Mar. 2017. [Online].
Available: https://doi.org/10.1109/msp.2017.39

[2] M. Kleppmann, “A critique of the CAP theorem,” CoRR, vol.
abs/1509.05393, 2015. [Online]. Available: http://arxiv.org/abs/1509.
05393

[3] E. Brewer, “CAP twelve years later: How the "rules" have changed,”
Computer, vol. 45, no. 2, pp. 23–29, feb 2012. [Online]. Available:
https://doi.org/10.1109/mc.2012.37

[4] M. Rauchs, A. Glidden, B. Gordon, G. C. Pieters, M. Recanatini,
F. Rostand, K. Vagneur, and B. Z. Zhang, “Distributed ledger tech-
nology systems: A conceptual framework,” SSRN Electronic Journal,
2018. [Online]. Available: https://doi.org/10.2139/ssrn.3230013

[5] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Transactions on Software Engineering, vol. SE-3, no. 2, pp. 125–143,
mar 1977. [Online]. Available: https://doi.org/10.1109/tse.1977.229904

[6] ——, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
Jul 1978. [Online]. Available: https://doi.org/10.1145/359545.359563

[7] G. Bracha, “Asynchronous byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, nov 1987. [Online].
Available: https://doi.org/10.1016/0890-5401(87)90054-x

[8] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” vol. 4, no. 3. ACM, 1982, pp. 382–401. [Online].
Available: http://people.cs.uchicago.edu/~shanlu/teaching/33100_wi15/
papers/byz.pdf

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” vol. 32, no. 2.
ACM, 1985, pp. 374–382. [Online]. Available: http://macs.citadel.edu/
rudolphg/csci604/ImpossibilityofConsensus.pdf

[10] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,”
in OSDI, vol. 99, 1999, pp. 173–186. [Online]. Available: http:
//pmg.csail.mit.edu/papers/osdi99.pdf

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Dec
2008, accessed: 2015-07-01. [Online]. Available: https://bitcoin.org/
bitcoin.pdf

[12] S. Haber and W. Stornetta, “How to time-stamp a digital document,”
Journal of Cryptology, vol. 3, no. 2, 1991. [Online]. Available:
https://doi.org/10.1007/bf00196791

[13] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia, “A commutative
replicated data type for cooperative editing,” in 2009 29th IEEE
International Conference on Distributed Computing Systems. IEEE,
jun 2009. [Online]. Available: https://doi.org/10.1109/icdcs.2009.20

[14] N. M. Preguiça, C. Baquero, and M. Shapiro, “Conflict-free replicated
data types (crdts),” CoRR, vol. abs/1805.06358, 2018. [Online].
Available: http://arxiv.org/abs/1805.06358

[15] P. Tasca and T. Thanabalasingham, “Ontology of blockchain
technologies. principles of identification and classification,” SSRN
Electronic Journal, 2017. [Online]. Available: https://doi.org/10.2139/
ssrn.2977811

[16] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication,” in International Workshop on Open Problems in
Network Security. Springer, 2015, pp. 112–125. [Online]. Available:
http://vukolic.com/iNetSec_2015.pdf

[17] S. Gilbert and N. Lynch, “Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, no. 2, p. 51, jun 2002. [Online]. Available:
https://doi.org/10.1145/564585.564601

https://doi.org/10.1109/msp.2017.39
http://arxiv.org/abs/1509.05393
http://arxiv.org/abs/1509.05393
https://doi.org/10.1109/mc.2012.37
https://doi.org/10.2139/ssrn.3230013
https://doi.org/10.1109/tse.1977.229904
https://doi.org/10.1145/359545.359563
https://doi.org/10.1016/0890-5401(87)90054-x
http://people.cs.uchicago.edu/~shanlu/teaching/33100_wi15/papers/byz.pdf
http://people.cs.uchicago.edu/~shanlu/teaching/33100_wi15/papers/byz.pdf
http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf
http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/bf00196791
https://doi.org/10.1109/icdcs.2009.20
http://arxiv.org/abs/1805.06358
https://doi.org/10.2139/ssrn.2977811
https://doi.org/10.2139/ssrn.2977811
http://vukolic.com/iNetSec_2015.pdf
https://doi.org/10.1145/564585.564601


[18] G. Slepak and A. Petrova, “The DCS theorem,” CoRR, vol.
abs/1801.04335, 2018. [Online]. Available: http://arxiv.org/abs/1801.
04335

[19] J. Irvine and D. Harle, Data Communications and Networks: An
Engineering Approach, 1st ed. John Wiley & Sons, Inc., 2002.

[20] W. Zhao, M. Babi, W. Yang, X. Luo, Y. Zhu, J. Yang, C. Luo, and
M. Yang, “Byzantine fault tolerance for collaborative editing with
commutative operations,” in 2016 IEEE International Conference on
Electro Information Technology (EIT). IEEE, may 2016. [Online].
Available: https://doi.org/10.1109/eit.2016.7535248

[21] L. C. Baird, “The swirlds hashgraph consensus algorithm: fair, fast,
byzantine fault tolerance,” Swirlds, Inc., Tech. Rep. SWIRLDS-TR-
2016-01, 2016. [Online]. Available: http://leemon.com/papers/2016b.
pdf

[22] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Financial Cryptography and Data Security. Springer,
2014, pp. 436–454. [Online]. Available: http://arxiv.org/pdf/1311.0243

[23] V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform,” 2014, accessed: 2016-08-22.
[Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper

[24] L. Lamport, “The part-time parliament,” vol. 16, no. 2. ACM, 1998,
pp. 133–169. [Online]. Available: https://www.microsoft.com/en-
us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf

[25] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in 2014 USENIX Annual Technical Conference
(USENIX ATC’ 14). Philadelphia, PA: USENIX Association, 2014,
pp. 305–319. [Online]. Available: HTTPs://www.usenix.org/conference/
atc14/technical-sessions/presentation/ongaro

[26] D. Mazieres, “The Stellar Consensus Protocol: A Federated Model
for Internet-level Consensus,” 2015, accessed: 2016-08-01. [Online].
Available: https://www.stellar.org/papers/stellar-consensus-protocol.pdf

[27] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer
information system based on the XOR metric,” in Peer-to-Peer
Systems. Springer Berlin Heidelberg, 2002, pp. 53–65. [Online].
Available: https://doi.org/10.1007/3-540-45748-8_5

[28] J. Xu, A. Kumar, and X. Yu, “On the fundamental tradeoffs
between routing table size and network diameter in peer-to-peer
networks,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 151–163, jan 2004. [Online]. Available:
https://doi.org/10.1109/jsac.2003.818805

[29] G. Paul, “Secure decentralised storage networks,” Ph.D. dissertation,
Electronic And Electrical Engineering, 11 2017. [Online].
Available: https://pure.strath.ac.uk/ws/portalfiles/portal/70804098/Paul_
2017_Secure_decentralised_storage_networks.pdf

[30] P. Chevalier, B. Kamiński, F. Hutchison, Q. Ma, and S. Sharma,
“Protocol for Asynchronous, Reliable, Secure and Efficient Consensus
(PARSEC),” 2018. [Online]. Available: https://docs.maidsafe.net/
Whitepapers/pdf/PARSEC.pdf

[31] G. Paul, F. Hutchison, and J. Irvine, “Security of the maidsafe
vault network,” 5 2014, wireless World Research Forum Meeting
32 (WWRF32); Conference date: 20-05-2014 Through 22-05-2014.
[Online]. Available: https://strathprints.strath.ac.uk/48569/1/Paul_etal_
wwrf32_vault_network.pdf

[32] D. Irvine, “"Peer to Peer" Public Key Infrastructure,”
2011. [Online]. Available: https://docs.maidsafe.net/Whitepapers/pdf/
PeerToPeerPublicKeyInfrastructure.pdf

[33] ——, “Self Encrypting Data,” 2015. [Online]. Available: https:
//docs.maidsafe.net/Whitepapers/pdf/SelfEncryptingData.pdf

[34] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang, “Cryptographic
primitives in blockchains,” Journal of Network and Computer
Applications, vol. 127, pp. 43–58, feb 2019. [Online]. Available:
https://doi.org/10.1016/j.jnca.2018.11.003

[35] A. K. Jadoon, L. Wang, T. Li, and M. A. Zia, “Lightweight
cryptographic techniques for automotive cybersecurity,” Wireless

Communications and Mobile Computing, vol. 2018, pp. 1–15, jun
2018. [Online]. Available: https://doi.org/10.1155/2018/1640167

[36] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos,
“Lightweight cryptography for embedded systems – a comparative
analysis,” in Data Privacy Management and Autonomous Spontaneous
Security. Springer Berlin Heidelberg, 2014, pp. 333–349. [Online].
Available: https://doi.org/10.1007/978-3-642-54568-9_21

[37] B. T. HAMMAD, N. JAMIL, M. E. RUSLI, M. R. Z’ABA, and I. T.
AHMED, “Implementation of lightweight cryptographic primitives,”
Journal of Theoretical & Applied Information Technology, vol. 95,
no. 19, 2017.

[38] NIST, “NIST Now Accepting Lightweight Cryptographic Algorithm
Nominations,” www.nist.gov, 2018, https://www.nist.gov/news-
events/news/2018/08/nist-now-accepting-lightweight-cryptographic-
algorithm-nominations.

[39] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report on
lightweight cryptography,” Tech. Rep., Mar 2017. [Online]. Available:
https://doi.org/10.6028/nist.ir.8114

[40] S. D. Mascio, A. Menicucci, G. Furano, C. Monteleone, and M. Ottavi,
“The case for RISC-v in space,” in Lecture Notes in Electrical
Engineering. Springer International Publishing, 2019, pp. 319–325.
[Online]. Available: https://doi.org/10.1007/978-3-030-11973-7_37

[41] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli,
J. Kwak, R. Jevtic, S. Bailey, M. Blagojevic, P.-F. Chiu, R. Avizienis,
B. Richards, J. Bachrach, D. Patterson, E. Alon, B. Nikolic, and
K. Asanovic, “An agile approach to building RISC-v microprocessors,”
IEEE Micro, vol. 36, no. 2, pp. 8–20, mar 2016. [Online]. Available:
https://doi.org/10.1109/mm.2016.11

[42] J. R. Kiniry, D. M. Zimmerman, R. Dockins, and R. Nikhil, “A
formally verified cryptographic extension to a risc-v processor,” in
Proceedings of Second Workshop on Computer Architecture Research
with RISC-V (CARRV 2018). New York, NY, USA: ACM Press,
2018, p. 5 pages. [Online]. Available: https://carrv.github.io/2018/
papers/CARRV_2018_paper_5.pdf

[43] Z. Cao, Q. Lv, Y. Wang, M. Wen, N. Wu, and C. Zhang, “A compression
instruction set design based on RISC-v for network packet forwarding,”
Journal of Physics: Conference Series, vol. 1026, p. 012001, may 2018.
[Online]. Available: https://doi.org/10.1088/1742-6596/1026/1/012001

[44] A. Thomas, “Building the risc-v software ecosystem,”
2016. [Online]. Available: https://riscv.org/wp-content/uploads/2016/
01/Tues1515-riscv_software.pdf

[45] A. Armstrong, C. Pulte, S. Flur, I. Stark, N. Krishnaswami, P. Sewell,
T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M. Norton,
P. Mundkur, M. Wassell, and J. French, “ISA semantics for ARMv8-a,
RISC-v, and CHERI-MIPS,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1–31, jan 2019. [Online]. Available:
https://doi.org/10.1145/3290384

[46] M. Clark and B. Hoult, “rv8: a high performance risc-v to x86 binary
translator,” 2017. [Online]. Available: http://rgdoi.net/10.13140/RG.2.
2.30957.69601

Morné Pretorius obtained his M.Eng in Computer and Electronic Engineer-
ing at the Potchefstroom Campus of the North-West University in 2008 and
has worked in the embedded systems industry since 2009, in particular, the
cryptographic hardware space since 2013. His current research interests are
distributed ledger technologies concerning the internet of things.

Sthembile Mthethwa obtained her MSc in Computer Science (focused in
Blockchain technology) from the University of Fort Hare. Currently, she
works as a researcher in the field of information security with interests in
distributed ledger technologies.

http://arxiv.org/abs/1801.04335
http://arxiv.org/abs/1801.04335
https://doi.org/10.1109/eit.2016.7535248
http://leemon.com/papers/2016b.pdf
http://leemon.com/papers/2016b.pdf
http://arxiv.org/pdf/1311.0243
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
HTTPs://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
HTTPs://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1109/jsac.2003.818805
https://pure.strath.ac.uk/ws/portalfiles/portal/70804098/Paul_2017_Secure_decentralised_storage_networks.pdf
https://pure.strath.ac.uk/ws/portalfiles/portal/70804098/Paul_2017_Secure_decentralised_storage_networks.pdf
https://docs.maidsafe.net/Whitepapers/pdf/PARSEC.pdf
https://docs.maidsafe.net/Whitepapers/pdf/PARSEC.pdf
https://strathprints.strath.ac.uk/48569/1/Paul_etal_wwrf32_vault_network.pdf
https://strathprints.strath.ac.uk/48569/1/Paul_etal_wwrf32_vault_network.pdf
https://docs.maidsafe.net/Whitepapers/pdf/PeerToPeerPublicKeyInfrastructure.pdf
https://docs.maidsafe.net/Whitepapers/pdf/PeerToPeerPublicKeyInfrastructure.pdf
https://docs.maidsafe.net/Whitepapers/pdf/SelfEncryptingData.pdf
https://docs.maidsafe.net/Whitepapers/pdf/SelfEncryptingData.pdf
https://doi.org/10.1016/j.jnca.2018.11.003
https://doi.org/10.1155/2018/1640167
https://doi.org/10.1007/978-3-642-54568-9_21
https://www.nist.gov/news-events/news/2018/08/nist-now-accepting-lightweight-cryptographic-algorithm-nominations
https://www.nist.gov/news-events/news/2018/08/nist-now-accepting-lightweight-cryptographic-algorithm-nominations
https://www.nist.gov/news-events/news/2018/08/nist-now-accepting-lightweight-cryptographic-algorithm-nominations
https://doi.org/10.6028/nist.ir.8114
https://doi.org/10.1007/978-3-030-11973-7_37
https://doi.org/10.1109/mm.2016.11
https://carrv.github.io/2018/papers/CARRV_2018_paper_5.pdf
https://carrv.github.io/2018/papers/CARRV_2018_paper_5.pdf
https://doi.org/10.1088/1742-6596/1026/1/012001
https://riscv.org/wp-content/uploads/2016/01/Tues1515-riscv_software.pdf
https://riscv.org/wp-content/uploads/2016/01/Tues1515-riscv_software.pdf
https://doi.org/10.1145/3290384
http://rgdoi.net/10.13140/RG.2.2.30957.69601
http://rgdoi.net/10.13140/RG.2.2.30957.69601

	Introduction and Background
	Distributed Systems History
	Distributed Technologies
	Trade-offs
	Conflict-free Replicated Data Types
	Proof-of-Resource/Chain-Based
	Asynchronous Byzantine Fault-Tolerance

	Recommendations for IoT
	Lightweight Cryptographic Primitives
	Reduced Instruction Set Computer: Five (RISC-V)
	Conclusion
	References
	Biographies
	Morné Pretorius
	Sthembile Mthethwa


