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Abstract
Transient spatiotemporal events occur within a short interval of time, in a particular location. If such events occur
unexpectedly with varying durations, frequencies, and intensities, they pose a challenge for near-real-time monitoring.
Lightning strikes are examples of such events and they can have severe negative consequences, such as fires, or they precede
sudden flash storms, which can result in damage to infrastructure, loss of Internet connectivity, interruption of electrical
power supply, and loss of life or property. Furthermore, they are unexpected, momentary in occurrence, sometimes with
high frequency and then again with long intervals between them, their intensity varies considerably, and they are difficult
to trace once they have occurred. Despite their unpredictable and irregular nature, timely analysis of lightning events is
crucial for understanding their patterns and behaviour so that any adverse effects can be mitigated. However, near-real-time
monitoring of unexpected and irregular transient events presents technical challenges for their analysis and visualisation.
This paper demonstrates an approach for overcoming some of the challenges by clustering and visualising data streams with
information about lightning events during thunderstorms, in real time. The contribution is twofold. Firstly, we detect clusters
in dynamic spatiotemporal lightning events based on space, time, and attributes, using graph theory, that is adaptive and
does not prescribe number and size of clusters beforehand, and allows for use of multiple clustering criteria and thresholds,
and formation of different cluster shapes. Secondly, we demonstrate how the space time cube can be used to visualise
unexpected and irregular transient events. Along with the visualisation, we identify the interactive elements required to
counter challenges related to visualising unexpected and irregular transient events through space time cubes.
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Introduction

An event occurs in a certain place during a particular
interval of time and is characterised by its start and end
times, its spatial coordinates, and observed descriptive
attributes (Kisilevich et al. 2010; Andrienko et al. 2015).
In this paper, we focus on transient spatiotemporal events
that occur unexpectedly and within a very short interval of
time, such as within a few seconds or less. Their duration
varies and is unpredictable, and their frequencies and
intensities vary considerably. An example of such events are
lightning strikes, which can lead to a number of negative
consequences, such as fires, preceding sudden flash storms,
resulting in damage to infrastructure, loss of Internet
connectivity, interruption of electricity power supply, and
loss of life or property (Podur et al. 2003; Iordanidou
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et al. 2016; Wu et al. 2017; Mofokeng et al. 2019). The
challenge presented by lightning strikes is their unexpected,
momentary occurrence with considerable variation in their
frequency and intensity, and the difficulty to trace once they
have occurred. Despite their unpredictable nature, timely
analysis thereof is crucial in order to understand the patterns
and behaviour so that adverse effects may be mitigated.

Transient spatiotemporal events, as observations of a
phenomena, are often captured by sensors. Information
about them may be transmitted by the sensing devices,
typically as streams of data with the expectation that they
will either be processed immediately or stored in a database
for analysis later. Unexpected and irregular transient events
pose a number of technical challenges for real-time
monitoring related to the analysis and effective visualisation
of the streams of data with information about them.

This paper describes an implementation of real-time
analysis and sense making of transient events by a human
expert. Determining lightning clusters during a storm
is used as a case study. Clustering of lightning strikes
assists users to understand and assess areas that have
been affected by lightning over time. Due to the high
frequency of lightning strikes, clustering is necessary to
enable the analysis of the resulting patterns. The clustering
of lightning events in real-time requires analysis of multiple
aspects of the lightning event. We achieve clustering of the
lightning events by a graph-based clustering method using a
connected components algorithm. Apart from the efficiency
in retrieval of the clusters, the advantage of the graph-
based methods lies in its ability to support various node
connectivity relationships using multiple edge attributes.
This is important for lightning observations that consist of
various attributes such as type of lightning strike, intensity
of the strike, make and model of the sensor network the
observations were acquired from, and many others. The
algorithm presents an extensible clustering method that can
support multiple relationship attributes between real-time
events. This graph-based method provides a framework
for adding events and event attributes in real time, to be
analysed and visualised. We follow the visual analytics
approach of using geospatial techniques for the analysis
and aiding sense making through interactive visualisations,
while allowing the user to influence the analysis process, as
and when required, based on their domain knowledge (Keim
et al. 2008; Andrienko et al. 2010).

This study had two objectives. Firstly, we show how
graph theory can be used to detect clusters in transient,
unexpected, and highly dynamic spatiotemporal events,
using space, time, and multiple event attributes. Secondly,
we demonstrate an application of the Space Time Cube
as a dynamic spatiotemporal visualisation environment, for
visualising unexpected and irregular transient events. As
part of the second objective, we also identify the interactive

elements required to counter the analysis and visualisation
challenges that affect this type of data.

The paper is organised as follows: Section “Related Work”
provides a review of literature with respect to the various
clustering topics, and visual analytics of event data. Section
“Method” details the graph-based spatiotemporal event
clustering methodology developed in this study. Section
“Visualisation and Interaction” illustrates how visual ana-
lytics was used to provide insights into real-time lightning
clustering patterns. Section “Visualisation Results” presents
the results of lightning clusters that were detected in real-
time over different periods. Section “Discussion” discusses
the merits and disadvantages of methods developed in this
study, while mentioning recommendations of future work.

RelatedWork

In order to understand the different aspects applied in this
work, three topics are reviewed, namely spatiotemporal event
clustering in Section “Spatiotemporal Data Clustering”, light
ning event clustering in Section “Lightning Event Clustering”,
and streaming data clustering in Section “Streaming
Data Clustering”. These sections lay the groundwork for
the work done to meet the first objective of detecting
clustering patterns in transient, unexpected, spatiotemporal
events with highly dynamic attribute values and variable
data frequency. Following the review of various clustering
methods, we present an argument for the method applied
in this section that details the similarities and contributions
to existing methods. We further review state-of-the-art
methods and open research challenges in the way visual
analytics of transient events has been applied and highlight
the challenges, relative to this study, in order to address the
second objective of this research.

Spatiotemporal Data Clustering

Clustering of spatiotemporal data is a method of assessing
similarities in data with the purpose of finding new
and interesting patterns. These groupings of data can be
defined by attribute similarity, and spatial and temporal
proximity, resulting in detection of different cluster types.
In recent literature, the most widely used classification
of clustering methods is that by Han et al. (2011),
who classify clustering methods into four categories,
namely partitioning, hierarchical, density-based, and grid-
based methods. In clustering methods, the main difference
between spatial and spatiotemporal clustering is the
introduction of the time variable. The time variable can be
treated as either an attribute or a dimension. Where time is
treated as a dimension, for example observations recorded
as [(X, Y, T ) + attribute], spatiotemporal clustering
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methods have been developed based on the existing spatial
clustering methods (Shi and Pun-Cheng 2019). We treat
the time element of spatiotemporal lightning event sensor
observations as a third dimension; therefore, extension of
spatial clustering methods is considered.

Two recent reviews of spatiotemporal data clustering are
found in literature, namely by Ansari et al. (2019) and
Shi and Pun-Cheng (2019). Ansari et al. (2019) present
a comprehensive review of spatiotemporal clustering
which begins with a taxonomy of spatiotemporal data
types, followed by a discussion of clustering approaches,
spatiotemporal patterns, and software tools available. The
taxonomy classifies spatiotemporal data types as events,
geo-referenced data items, geo-referenced time series,
moving objects, and trajectories. The clustering approaches
are discussed in relation to the data types presented in the
taxonomy. Of particular interest to this study, from Ansari
et al. (2019) review, is clustering of events. According to
literature, individual event data items have no identification
(Tork 2012); as a result, events can not be tracked or
accessed by their identity over time, in clustering methods.
Therefore, event clustering focuses on discovering groups
of events that occur close to each other in space and
time, and also share similar attributes (Kisilevich et al.
2010). Examples of event clustering algorithms listed by
Ansari et al. (2019) include ST-GRID, Fuzzy C-Means,
space-time scan statistics, and ST-DBSCAN. ST-GRID
partitions spatial and temporal dimensions into gridded
cells, where the grid cell size is determined using the
k − dist graph. The event points within a cell are counted
and if the number of points is equal to or greater than
k + 1, then the cells are merged as a cluster. ST-DBSCAN
is an extension of the density-based clustering method,
DBSCAN and differentiates between core points, noise, and
adjacent clusters. It makes use of two parameters, spatial
neighbourhood radius, and temporal neighbourhood radius,
which are both determined using the k − dist graph, and
a core point is determined if the number of points in its
neighbourhood is equal to or greater than the threshold.
Space time scan statistics is based on the scanning window
process where a cylindrical scanning window is defined
where an appropriate radius is selected to detect clusters
of significant size based on a statistical significance test.
Spatiotemporal Extended Fuzzy C-Means makes use of a
distance function that considers both spatial and temporal
dimensions by means of a multiplicative parameter λ.

While Ansari et al. (2019) taxonomy classifies data types
as described above, Shi and Pun-Cheng (2019) taxonomy of
data types refers to the fundamental types of spatiotemporal
data; points, lines, and polygons. Although cognisant of
these other data types in the taxonomy, Shi and Pun-
Cheng (2019) review only addresses clustering of point-
based data, therefore excluding topics such as trajectory

clustering, which are mentioned by Ansari et al. (2019).
However, this review is relevant to this study because
lightning event observations are point based. Shi and
Pun-Cheng (2019) divide existing clustering methods into
hypothesis testing–based methods and partitional clustering
methods. Hypothesis testing–based methods originate from
the field of statistics, where hypothesis testing is used
to determine the probability that a given hypothesis is
true or false. These methods include space-time interaction
methods, spatiotemporal k-nearest Neighbour (KNN) test,
and scan statistics. Space time interaction methods assess
the interaction between the space and time dimensions
separately. An example of such an application is the
Knox method, where the critical space and time distances
respectively are manually defined beforehand, and pairs of
data are assessed for nearness based on the critical distance.
Spatiotemporal KNN tests assess the k nearest neighbour in
space and time simultaneously. Based on the concept of a
scan window, this method uses a circular scan window with
different radii to find circular clusters of two-dimensional
spatial data with a statistical significance test where the
upper limit of the circle should not include more than 50%
of all the dataset, normally. Each point could be the centre
of a circular scan window that contains different numbers of
other points. In 3-dimensional space where time is the third
dimension, the circle becomes a cylindrical scan window.
Partitional clustering methods use distance functions to
determine whether a point belongs to a cluster or noise.
These include density-based methods, such as DBSCAN,
kernel density estimation, and windowed nearest neighbour.

We note that Ansari et al. (2019) and Shi and Pun-Cheng
(2019) report on similar clustering approaches for event
data. The former mentions applications and algorithms that
use these approaches, whereas the latter classifies these
existing approaches and provides examples. Both reviews
agree that no one method of clustering is suitable for all data
types. The role of user-specific parameters to the clustering
process is thus vital. The ability to adjust parameters of the
clustering method is required to archive optimum results.
Shi and Pun-Cheng (2019) further state that apart from the
need for development of new clustering algorithms, there is
also a need for predefined thresholds (e.g. distances, radius,
and density) based on expert knowledge. These conclusions
are discussed in support of the clustering method applied in
this study later in Section “Relevance of Related Work to
Event Clustering”.

Lightning Event Clustering

Lightning strikes are classified as events and more
particularly transient events. The clustering behaviour of
lightning strikes has been studied by many, for example
for the purpose of determining the long-term behaviour
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of lightning strikes in a specific region (Mofokeng et al.
2019; Podur et al. 2003; Iordanidou et al. 2016), or for
the purpose of now-casting for early warning and alerting
purposes (Kohn et al. 2011; Strauss et al. 2013). This paper
is concerned with real-time analysis for early warning and
alerting purposes. The existing methods of determining
clusters of lightning events make use of spatiotemporal
partitional clustering methods of point-based event data as
discussed by Shi and Pun-Cheng (2019). We discuss two
examples based on the work of Podur et al. (2003) and
Mofokeng et al. (2019).

Podur et al. (2003) review a two-decade-long time series
of retrospective lightning events to determine clustering
events that lead to wildfires. They used a nearest-neighbour
statistic, K-function, to test whether the events are random,
clustered, or regular; and the Kernel density estimator to
analyse the spatial intensity of the events. Iordanidou et al.
(2016) use k-means analysis to determine the clusters of
lightning points in space and time. In their method, they
start with k random initial points as centres of the clusters
and assign the points to the closest clusters. Subsequently,
the centres of the clusters are updated to be the mean of the
constituent points. They decide the number of clusters using
G-means which splits the data into groups until the data is
assigned to each cluster following a Gaussian distribution.
Mofokeng et al. (2019) used average nearest neighbour
(ANN) analysis to determine the spatial clustering pattern
of lightning events.

The studies above all show clustering on retrospective
data. In the case of near-real-time clustering, two main
studies were identified. Kohn et al. (2011) discuss dynamic
clustering in near-real-time, using K-means for now-casting
of lightning events, for purposes of early warning detection.
Strauss et al. (2013) proposed the use of a kernel density
estimator on a temporal sliding window on lightning data
for detection and tracking of active cells. In their method,
Strauss et al. (2013) apply a fixed-width temporal window,
which slides in time with a constant rate, for discrete time-
steps, in order to screen for new incoming lightning events.

The methods applied to lightning events are consistent
with the partitional clustering approach of spatiotemporal
events as described by Shi and Pun-Cheng (2019).
In addition, the sliding window approach is consistent
with analysis of sequential data and temporally dynamic
phenomena, whereas the size of the window may be defined
in varying terms through applications (Dietterich 2002;
Datar et al. 2002; Mansalis et al. 2018). The sliding window
approach is employed in this study.

Streaming Data Clustering

Stream clustering on the other hand is a more recent, active
area of study, as a result of the increased popularity of data

streams (Nguyen et al. 2015; Dasgupta et al. 2018). A
data stream is a continuous flow of data where the sys-
tem has no control over the volume of data that is arriving,
and only a small fraction of the data is archived while the
remainder is processed offline (Babcock et al. 2002; Das-
gupta et al. 2018). Clustering in data streams is usually
used to provide a real-time view on highly dynamic data.
Some of the reasons why data streams differ from conven-
tional data sources, in terms of data mining requirements,
are (1) they are continuously flowing and never ending in
nature, (2) there is no knowledge of the complete data-
set as compared to conventional datasets, and (3) random
access to data is not possible due to the single pass con-
straint (Dasgupta et al. 2018; Gama 2010; Hahsler et al.
2017). As a result of these differences, there have been a
number of studies around clustering of events within data
streams. Silva et al. (2013) surveyed existing stream cluster-
ing methods and categorised them as methods that perform
object clustering and those that perform attribute cluster-
ing. Object clustering is the most common and takes the
form of a two-step approach. The first step is data abstrac-
tion and the second is the clustering step. Silva et al. (2013)
define attribute clustering as the case with the objective
to find “groups of attributes that behave similarly through
time, under the constraints assumed in a data stream sce-
nario”. Silva’s work describes a taxonomy that classifies
the existing clustering methods in terms of seven aspects.
These aspects are data structure, window model, outlier
detection mechanism, number of user-defined parameters,
offline clustering algorithm, cluster shape, and type of
clustering problem. Aggarwal (2013) describes clustering
within data streams in the context of the four main classical
categories, in alignment to Han et al. (2011), namely parti-
tioning, density methods, probabilistic methods, clustering
in high-dimensional streams, and discrete and categorical
stream clustering methods, while touching briefly on work
extended to other data domains such as categorical, text, and
uncertain data. Mansalis et al. (2018) evaluated the perfor-
mance of different algorithms for data stream clustering.

These notable surveys and evaluations discussed high-
light different aspects about stream clustering; the work
of Aggarwal (2013) is more relevant to this paper as it
can be related to the spatiotemporal clustering approaches
discussed in previous sections. Based on the reviews,
the main clustering algorithms, classified according to
the basic approaches discussed above, include partitional
methods—CluStream, ClusTree and STREAM; density-
based methods—DenStream, D-Stream (grid based); and
hierarchical methods—BIRCH. The main clustering meth-
ods applied are k-means, DBSCAN, and BIRCH. In data
streaming terms, the method we apply is under the category
of attribute clustering, which is less commonly employed
compared to object clustering approaches.
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Relevance of RelatedWork to Event Clustering

Having reviewed the state-of-the-art in all three relevant
topics, related to establishing clustering patterns, the
greatest challenge to clustering of lightning events in
real-time is posed by the streaming nature of the data.
Important aspects to consider, and issues that have been
found to be challenging for data stream clustering include
the ability of a clustering algorithm to adapt to the
underlying changes that happen within a data stream due
to the evolving nature of the data; the ability to handle
limited time; and the ability to handle multidimensional
data. Some clustering algorithms such as CluStream
prescribe the number of clusters that can be detected and
this is problematic for streaming data particularly highly
dynamic data. Spatiotemporal clustering methods having
been researched for much longer cover a lot of cases and
data types of spatiotemporal events. The majority of the
spatiotemporal clustering methods are either grid-based or
look at a circular/cylindrical neighbourhood which does
not necessarily explore all types of connections that occur
between events.

Based on these reviews, in order to achieve the first
objective of this paper, we apply a clustering method that
has both aspects of hypothesis testing and the partitional
approach as categorised by Shi and Pun-Cheng (2019).
The advantages of the method employed in this study are
as follows: firstly, this method is adaptive; the number
and size of clusters are not determined beforehand. The
method is not limited by the highly dynamic and evolving
nature of the data as connections between events are
confined to a sliding window. Secondly, this method
improves the ability to handle multidimensional cases,
where the dimensions are defined by space, time, and
several attributes of lighting strikes (multiple attributes).
The graph-based clustering approach supports as much
clustering criteria in a single framework, in line with the
fact that events may possess multiple descriptive attributes
that need to be accounted for in a clustering algorithm.
This is important since multiple attributes as well as
derived characteristics from the attributes can be attached to
events. This allows the use of various threshold measures
and criterion from different algorithms in one graph. In
most cases, clustering algorithms use single predefined
measures but do not provide a framework for aggregating
attributes to establish more complex relationships and other
derived attributes. Graphs allow for different and complex
relationships through path traversals thereby extending
point-based clustering to path clustering and path discovery.
For example, this is useful in establishing a lighting trail
along high-risk dry forested areas where clustering in linear
paths is required. Third and finally, most clustering is
radius-based and focuses on finding clusters in a circular

or rectangular neighbourhood. However, graphs allow
different clustering shapes to be established, for example
shortest path linear clusters, circular clusters, and free form
shapes.

Visual Analytics of Clustering Events

The sections above discuss the comprehensive studies in
event clustering and pattern discovery, as well as the
advantages of the clustering method used in this paper, in
line with the first objective. In conclusion, the review of
existing event clustering methods highlighted the usefulness
of visualisation of clustering patterns, and ability to perform
interactive analysis thereof based on domain knowledge.
This aligns with the second objective of this paper and a
state-of-the-art review of visualisation and visual analytics
in the context of spatiotemporal events is thus discussed.

The visualisation and visual analytics of events, which
forms the second objective of the paper, also remain
an active field of study. Interesting research topics in
visualisation and visual analytics of spatiotemporal events
have emerged in literature over time, including those that
focus on visual analytics at multiple levels of details (Silva
et al. 2019), temporal evolution of events (Lukasczyk
et al. 2015), and frameworks (Andrienko and Andrienko
2016; Robinson et al. 2017). Since the importance of
user input and inclusion of domain knowledge in pattern
discovery and spatiotemporal analysis has been highlighted
in recent studies, this can be fully exploited with the ability
to visualise the results and make meaningful deductions.
Andrienko et al. (2015) proposed an algorithm for real-time
detection and tracking of spatio-temporal event clusters.
Their work further developed a visual analytics system that
consists of a dynamic map and an interactive interface that
allows for changing clustering parameters and visualisation
of results. This work is significant as it highlights two
important concepts that are used as reference in this paper.
Firstly, clustering of spatiotemporal events is more effective
when allowing input of user domain–specific parameters
interactively. Secondly, visualisation is an important step in
clustering, as it allows the analysts to review their results
which if not done properly can be difficult to deduce.
Therefore, visual analytics is critical to understanding
and reviewing patterns that result from the clustering.
Visualisation of dynamic events is also affected by the
characteristics of streaming data as discussed in Section
“Streaming Data Clustering”. In the case of lightning data,
the fact that the events occur in short burst and are irregular
makes it particularly difficult to determine and visualise the
areas affected in real-time. An option for visualisation and
exploration of lightning events using the space time cube
has been presented by Peters and Meng (2013). The basic
approach of 3D visualisation in space and time is similar
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to Peters and Meng (2013); however, we go a step further
to demonstrate the visual effects of dynamic change over
time (age of events and the patterns that emanate from
clustering of lightning events over time). We also illustrate
how interactivity within a 3D visualisation can be used in
this case to overcome the challenges that result from this
type of data in a real-time, streaming environment.

The method of determining patterns of lightning strikes
in real-time presented in this paper provides two contribu-
tions to the existing knowledge as described in the reviews
above. Firstly, in relation to the first objective of this
paper, the clustering of spatiotemporal transient events, that
occur unexpectedly with varying characteristics, combines
hypothesis testing, a category described by Shi and Pun-
Cheng (2019), and geometric graph-based principles (which
includes aspects of partitional clustering), which have not
been found to be applied much to this type of data in lit-
erature. The method also provides advantages based on
challenges that were identified in literature as discussed in
Section “Relevance of Related Work to Event Clustering”.
Secondly, in relation to the second objective of the paper,
the visual analytics approach makes use of the space time
cube while adding interactive elements to visualise transient
spatiotemporal events that occur unexpectedly and at irreg-
ular periods. We present in detail how the space time cube is
formulated and constructed for the purpose of visualisation
of dynamic, transient spatiotemporal events, while illustrat-
ing patterns that would otherwise remain unseen over time.
While we make use of the space time cube as a visualisation
tool, the scope of this study does not include a statement
about the efficacy of the tool for the users. This would how-
ever be determined through conducting user studies, such as
the framework developed by Kveladze et al. (2013).

Method

As a demonstration of a method for finding patterns in
unexpected, transient events, clusters of lightning activity
are determined in a short term thunderstorm. The data
is made available through a data stream. The clusters
of lightning are detected by a graph-based method and
visualised in an interactive space time cube, to show
progression of the event over time. The method for
determining real time cluster patterns for lightning events
follows a visual analytics approach, illustrated in Fig. 1, and
detailed in the sections that follow.

Overview of Method

Following the visual analytics methodology illustrated in
the framework, Fig. 1, the first step of the algorithm for
lightning cluster detection in a real-time data stream, is the

setting of the “User Model”. The user model contains all
information that the user provides as inputs to the method.
The five decisions made by the user model are as follows;
firstly, selection of the area of interest (AOI), which at
this point is defined by the rectangular bounding box of
a user’s real-world area of interest. This area has a dual
purpose; it sets out the area of analysis as well as the
user’s view port of interest during visualisation of results.
The second step is the setting of the observation period
of interest. This is also used both during the data analysis
process as well as by the visualisation model in setting up
the view time of interest (VToI). Thirdly, selection of the
data stream endpoint, in this case, a WebSocket endpoint
that is streaming swordfish common data model (McFerren
and van Zyl 2016) formatted data. The fourth step of the user
model is selecting the pattern discovery method and setting
the user-defined data filters and threshold values. In this
case, lightning strikes of interest based on the attributes, and
proximity thresholds are defined. The fifth step is selecting
the visualisation tools and associated interactions to display
the results. These data filters are used as inputs for the
pattern discovery analysis.

The user model is marked up as an ECMA 404 JSON
formatted document. This format can be interpreted and
transferred easily within different parts of the framework
represented in Fig. 1, shown as arrows in the diagram. This
encoded document is sent as a settings document to both the
design model and to the visualisation application. Parts of
it are used to create a payload used by the stream processor
within the design model.

The second step of this methodology is the determination
of the “Data Model”. In agreement with the literature,
in order to detect significant lightning clusters within a
storm event, we require some domain knowledge. The
understanding of the domain and characterisation thereof is
represented by the “Data Model” in the framework diagram
Fig. 1. Important information that is considered in this
approach includes the type and characteristics of significant
lightning strikes, the location and distance between incident
lightning strikes, and the observed time of the strike. These
properties are found in the decoded sensor observation
message, which is derived from the data stream. The data
used in this paper is described in Section “Lightning Sensor
Observations”.

The third step takes place in the “Design Model”, where
the user inputs as defined by the “User Model” and the data
described by the “Data Model” are used for pattern-seeking
analysis, which in this case is the determination of clustering
patterns in spatiotemporal, irregular, and transient events—
lightning strikes. The algorithm used for the detection of
clusters in lightning events that take place within the design
model is described in Section “Clustering of Lightning
Events” and Section “Algorithm Implementation”.
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Fig. 1 Conceptual model for
determining real-time patterns
from sensor observations (from
Sibolla et al. (2018))

Following the detection of clusters of lightning activity,
the cluster outputs are visualised according to step 4,
that described the “Visualisation model” in this case
using a space time cube where cluster formation, shape,
age, and progression over time is illustrated based on
semiotics and principles of cartography. This is described in
Section “Visualisation Method”.

Lightning Sensor Observations

Following Fig. 1, the data model provides a description of
the data and domain of lightning observations. This under-
standing of the domain is significant as it facilitates the
interpretation of the patterns and visualisations discovered
from the lightning events. Lightning activity can be classi-
fied into four kinds: cloud to ground (CG), cloud to cloud
(CC), inter cloud (IC), and cloud to air. Cloud to ground
lightning is generally associated with thunderstorms and
destructive behaviour (Mofokeng et al. 2019). Therefore, in
this study, we will be focusing on cloud to ground lightning
strikes.

While the method described in this paper is not
dependent on study area, it was tested with lightning activity
within South Africa; hence, the clustering thresholds will
be discussed in the South African context. South Africa
is a lightning-prone country, which experiences significant
lightning-related damage and loss of life (Mofokeng et al.
2019). The northern regions of the country exhibit a
significant amount of lightning activity which is related to

flash floods, short-term thunderstorms, and wildfires (Frost
et al. 2018; Adepoju and Adelabu 2019).

The data used in this study is derived from the
South African Advanced Fire Information System (AFIS)
procured sensor network. These sensors are used by AFIS
specifically to assist with the detection of fire ignition
sources within well-known fire ecosystems across South
Africa. The sensors report the location of a lightning strike
as well as other properties of the strike. As illustrated in
Fig. 2, these sensors report their observations in real time
to a central server where they are then streamed in real
time. The data is decoded, transformed into the swordfish
common data model (McFerren and van Zyl 2016;
Sibolla et al. 2018)—which is modelled from the OGC
Observations and Measurements standard—and transported
through an MQTT gateway. The implementation of MQTT
is similar to the OGC Publish and Subscribe standard;
however, at the time of this exercise, no other direct
implementation of the standard could be found, and
therefore MQTT was used. Standards compliance ensures
that the method can be reused, following adherence to the
same standard.

Clustering of Lightning Events

The clustering of lightning events references the design
model in Fig. 1, which refers to determining patterns
from the data. The clustering algorithm presented in this
paper is based on the use of graphs in establishing
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Fig. 2 A standards compliant
architecture of the lightning
sensor data; from sensor to the
visualisation application

pairwise relationships and forming clusters. The graph-
based algorithm consists of four major steps. Firstly,
establishing pairwise relationships of lightning events using
Delaunay triangulation; secondly, a graph of lighting
observations is created from the triangulation followed
by the retrieval of clusters using connected components.
Finally, alpha shapes algorithm is used to retrieve concave
cluster boundaries. The detailed description of each of these
steps is described in the following section.

Determining Pairwise Relationships Between Observations

The clustering begins with the creation of a Delaunay
triangulation, where the vertices are defined by the
locations of the lightning strikes e(xi ,yi ). According to
Lee and Schachter (1980), a Delaunay triangulation of
a set of discrete points V = {v1, ..., vn}, N ≥ 3 in
a Euclidean plane is such that the circle circumscribing
any three points in the triangulation contains no point
of the same set inside it. Lee and Schachter (1980)
describe Delaunay triangulation extensively with the use
of lemmas and corollaries and provide two algorithms for
the implementation. The Delaunay triangulation presents a
data structure that finds the closest optimal neighbour to
each event thereby establishing pairwise relationship of only
the next closest event, thus making it suitable in creating
a graph. The pairwise relationships from the triangulation
are used in the next section in creating the graph data
structure. In other words, the triangulation is stored in a
graph structure.

Graph Data Structure for Lightning Observations

By definition, graphs are designed to find connections and
relations between discrete components based on any given
attribute. Since clustering is based on establishing and
finding relationships between objects, graph theory was thus
employed in this study. According to Bondy et al. (1976),
Wilson (1979), and Phillips et al. (2015), a graph is made up
of vertices and edges as defined in Eq. 1. Vertices are then

connected by edges or links based on any chosen attribute.
An edge links two vertices thereby establishing pairwise
relationships. From the Delaunay triangulation, a graph is
created using the triangulation vertices as nodes and the
triangulation edges as graph edges. While adding the edges
to the graph, attributes of each edge are calculated and added
to each edge. The attributes used in this paper are Euclidean
distance, type of lightning strike, and intensity.

G = (V , E)

where : G represents the graph

V is a set of vertices

E is a set of edges

(1)

In line with the principles of graph theory, in this
study, the graph represents the network of spatiotemporal
sensor observations, the sensor observations are equivalent
to the vertices, and the edges define the relations between
two observations. The graphs used to define the sensor
observations are undirected and simple; the relationships
between the observations are bi-directional (i.e. undirected
edges)and they do not contain loops as defined in Fig. 3.

Fig. 3 Illustration of a simple undirected graph
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Retrieval of Lightning Clusters

In order to find clusters of lightning events, connected com-
ponent analysis is used. Connected components analysis
(Cormen et al. 2009; He et al. 2017) is a graph theory algo-
rithm that is used to establish a set of connected nodes or
vertices, based on predefined criteria that are determined
based on edge attributes, such as but not exclusive to dis-
tance. The diagrammatic representation presented in Fig. 4
shows how clusters are formed with a simplistic case that
uses only distance as a criterion. In the figure illustration,
edge weights are calculated based on the distance between
two incident nodes, a threshold weight of 2 is used in the
connected component analysis and clusters of points within
a distance threshold of 2 are identified. This then leads to
the identification of three components as seen on the figure
on the right. In this case the connected components then rep-
resent the clusters. In real world application the threshold is
often set as a result of domain knowledge. In addition to dis-
tance and attribute based criteria, the edge weights can be
based on an unlimited set of attributes and/or equations that
can be used to determine a relationship.

Retrieval of Cluster Boundaries

The output of the connected component analysis is a
grouping of points that belong to the same cluster that
meets the predefined threshold measure. The next step is
to get the bounding polygon that encompasses the points
in a component. In this step, based on the clustering
of points discussed above, alpha shapes are used to
define the clustering areas as polygons. A compact shape
representation of a set of unorganised points in a cluster

is required to extract the boundary of the cluster. Since
the boundary can either be concave or convex, a boundary
retrieval method that can approximate both shapes optimally
without area overestimation is required. Alpha shapes
have proven to be the most efficient in reconstructing the
best geometrical shapes from a point set. Convex hull–
based methods are limiting since they tend to overestimate
areas. Given a set of unorganised points, alpha shapes
algorithms reconstruct the best shape that follows the point
set boundary (Edelsbrunner 1992; Edelsbrunner and Mücke
1994; Bernardini and Bajaj 1997).

Alpha shapes are used to describe a generalisation of the
bounding polygon that contains a set of points. Given a set
of points P in a Euclidean plane as before, where:

P = Pi(i = 1, ..., n) and n ε R,

with the Delaunay triangulation of the points representing a
graph:

G(Vp, Ep),

where Vp is a set of vertices and Ep is a set of edges. The
alpha shape is described as the sub-graph:

Gα(Vα, Eα) where each edge is connected by any two
points that lie on the boundary of a circle with a radius α

(Mapurisa 2015). In this step, cluster boundaries are formed
for visualisation.

Algorithm Implementation

Algorithm 1 shows the implementation details of the
clustering method described above and is discussed in this
section.

Fig. 4 An illustration of connected component analysis, showing the complete graph with edge weights on the left, and the identified connected
components based on maximum edge weight of 2 on the right
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As shown in the algorithm, the first step is to read the
user inputs from the user settings document. This step sets
the filtering requirements as defined by the user, namely
area of interest and viewer time of interest and the threshold
criteria. The viewer time of interest thus defines the total
period of observation as well as the size of the time interval.
Once the user-defined area of interest and viewer time of
interest are set, the second step reads the incoming messages
from the data stream. Steps 3 and 4 filter the incoming
sensor messages to keep only those that are within the
user-selected bounding box and time period. Clustering of
lightning strikes is done per time interval as selected by
the user, and within the area of interest of the viewer.
In step 3, the incoming messages are filtered by input
time such that messages that occur during the same time
ti are processed together, where ti falls between the start
and end times. Step 4 of the algorithm involves message
filtering based on whether the data falls within the area
of interest of the viewer. An observation falls within the
area of interest if the coordinates of such a point lie within
the user-defined bounding box. This defines observations

e(xi ,yi ) which are then processed to determine time-varying
clustering of events in step 5.

Once all events that occur with a time step are loaded,
the pairwise relationships are determined as described
in Section “Determining Pairwise Relationships Between
Observations” using the Python library “SciPy.Spatial” to
construct the triangulations. A triangulation based on a
selected area in South Africa, within one time stamp
(5 min), is shown in Fig. 5.

The Delaunay triangulation above is used as an input
for the connected component analysis as shown in Fig. 4.
This is done using the SciPy Python library module
scipy.sparse.csgraph.connected components. A distance
threshold is used in edge filtering leaving only the required
connection between events within the graph. This threshold
is set as a user variable—4 km used in this case. Previous
studies of historical (retrospective) data have shown that
clustering activity of lightning strikes happens within a
range of 1–8 km within the study area (Adepoju and
Adelabu 2019; Mofokeng et al. 2019).
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Fig. 5 Delaunay triangulation of lightning observations within a 5-min
time step across South Africa

Fig. 6 Results of connected component analysis on the lightning data

Fig. 7 Detected lightning cluster polygons based on the alpha shapes method

The connected component results from the above dataset
are shown in Fig. 6. Points that belong to the same cluster
have a similar color.

The output of the connected component analysis is a
grouping of points that belong to the same cluster that
meets the predefined threshold measure. The next step is
to get the bounding polygon that encompasses the points
in a component. In this step, based on the clustering of
points identified above, alpha shapes are used to define the
clustering areas as polygons.

In this study, the alpha shapes were implemented using
the Python alphashape 1.0.2 library. Following on from
clusters identified above and depicted in Fig. 6, the cluster
bounding polygons were determined as shown in Fig. 7.
The alpha shapes were buffered by a distance of 1 km to
illustrate the area of influence of the lightning strikes at the
outer boundary.

Step 5 of algorithm 1 is processed iteratively for all time
steps ti until the end time set by the user is reached, and all
clusters within this time range have been detected.

Visualisation and Interaction

Visualisation and interaction form the visualisation step of
the methodology discussed in Fig. 1; for this application,
the visualisation is done through a Web-based application
that is developed by the authors, geoStreamViewer. The
visualisation of transient observations is guided by (1)
the viewer’s area of interest, (2) the observed properties
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Fig. 8 Conceptual illustration of
the space time cube

of the phenomenon being observed, and (3) the viewer’s
time of interest for observations. In this case, the lightning
strikes had already been filtered in the clustering algorithm;
therefore, all lighting strikes received were significant, and
belonged to a cluster, and therefore no further categorisation
was required. The cluster patterns that are derived represent
the occurrence of significant lightning strikes during a user-
selected time period. The visualisation of these patterns
aims to display occurrence by highlighting birth and
cessation of a clustering transient event. The age of the
observed patterns, between birth and cessation is displayed
to the user. A Space Time Cube, created with CesiumJS,
with a timeline and clock, is used as the visualisation
environment for the resulting data.

The space time cube was developed as early as the
1970s (Gatalsky et al. 2004; Kraak 2003) to represent two-
dimensional space and adding time as a third dimension
to illustrate spatio-temporal movements and events. Several
adaptations of the space time cube have been developed
to visually show patterns in spatio-temporal data. These
adaptations of the space time cube include representation of
spatial events (Gatalsky et al. 2004), temporal data (Bach
et al. 2017), movement analysis (Andrienko et al. 2014;
Demšar and Virrantaus 2010), and eye movement data (Li
et al. 2010).

In this study, the space time cube is defined as a
rectangular prism, where length and width are defined by
the bounding box that encompasses a specific geographic
area of interest; and the height of the rectangular prism
represents the time stamps of the view time of interest,
which can also be referred to the as the time window of
interest of the observations. Each slice of the rectangular
prism represents a single time moment, which is equal
to the observation time, as in Fig. 8. The surface area
of each slice represents the thematic distribution of a
selected observed property that can be modelled to display

the patterns discussed, such as heatmaps, choropleths, or
discrete classified points.

VisualisationMethod

Algorithm 2 Visualisation of lightning clusters.
Input: Input JSON formatted user settings
Input: Input JSON formatted clusters description
Output: Space time cube visualisation lightning event

cluster polygons
1 Set up base of space time cube using the user’s AOI
description

2 Set up visualisation timeline using the user’s Viewer
Time of Interest (VToI) description

3 Set up access to the WebSocket to receive processed
cluster messages

4 Get description of the visualisation method from user
configuration

5 Create CZML data visualisation object
6 Update czml with new clusters as they become avail-
able Display time oriented clusters on space time cube

The first step in the visualisation process is to read
the user configuration from the JSON input. How these
user configuration variables are used are described in the
following 4 points:

1. The area of interest described similarly to the clustering
pattern algorithm above is used to define the base of
the Space Time Cube. Instead of rendering the whole
globe in CesiumJS, only the area of interest is displayed
to enhance in-browser performance, and to help the
user focus on their data region of interest excluding
unnecessary data.

2. Viewer Time of Interest is defined by the start time,
end time, and time interval (in seconds, minutes, or
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Fig. 9 CesiumJS, Animation, and timeline widgets

hours). These user properties are used to configure
the timeline and the clock widgets attached to the
Space Time Cube visualisation. The start and end times
are used to define the startTime and stopTime of the
timeline widget as defined in CesiumJs. These times
are provided using the ISO8601 time standard, with
assistance of an added date time picker widget. The
interval within the visualisation model is used to define
the animation time steps (clockStep in CesiumJs) on the
timeline (Fig. 9).

3. The URL for the data source is provided in the form of
a WebSocket; for real-time data, this method provides
the data in JSON format.

4. A description of the type of observations to be
visualised. This allows for the filtering and matching of
pattern methods to data types to guide the user about
relevant methods for their data.

The visualisation of clusters in geoStreamViewer
requires the user to provide the area of influence as men-
tioned in the cluster pattern algorithm discussed above.
The area of influence is then used to define a buffer dis-
tance, once the bounding shapes are determined. The user
is also allowed to select the base colour used to present
the cluster polygons, as well as the preferred height of the
space time cube. An illustration of how these are applied
follows.

Having configured the visualisation environment as
per the user needs, the following step is the time-based
visualisation and animation of the cluster polygons. The
steps towards this are:

Setting up the Space Time cube as a CesiumJS viewer.
The viewer is set up such that it allows for rendering of
the cube in 2D and 3D perspectives, with a choice of either
satellite image or street map background images, which
also define the base of the cube. This is shown in the
screenshot of the viewer in Fig. 10. Once the space time
cube has been set up, the following step is to receive the
JSON objects defining the derived cluster polygons. The
results of the pattern discovery method described in Section
“Algorithm Implementation” are received as a stream of
time stamped JSON formatted objects that describe the
cluster polygons and points within them, the time interval in
which the clusters formed, and any additional properties that
describe the clusters. Although CesiumJS is able to visualise
the GeoJSON data format, the native CesiumJS object
for visualisation of animations, Cesium Markup Language
(CZML) is used as it was found to be more suitable for
streaming data. The overall structure of CZML is described
in Zhu et al. (2018). A CZML document is JSON based
and consists of a list of JSON formatted objects stored
in an array, called packets. The first packet consists of a
description of the document; the rest of the packets describe
the data to be visualised in the viewer.

Fig. 10 CesiumJs, Animation,
and timeline widgets
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For every time stamped data object that is received from
the stream, a CZML packet is created and the CZML
document is updated. The definition of the packets is such
that it highlights the birth, duration, and cessation of an
event, as well as to describe the behaviour of this event
during its period of existence. The availability property
of the packet is used to ensure that the event is tracked
throughout the users’ view time of interest as discussed
in previous sections. The event is defined by the polygon
property as a time-varying object. The polygon property
includes the positions of the event. The positions of the
event describe the geometric coordinates and the interval
during which these positions are valid as well as the
description of how they are displayed. Each geometric
description is accompanied by the interval and style that
is used to display it during this interval. The custom style
object developed for this visualisation is defined by:

style = f ((rgb), α, ti)

= [color .r, color .g, color .b, α]
where : rgb = color

α = ((ti − ts)/(tc − ts)) × 255
and : ts = viewer ′s start time

tc = current viewer time

ti = event observation time

(2)

The style object is designed such that one colour is used
to represent the event, and the colour fades out with the
age of the event, to the point that the event polygon tracks
are translucent when the event has ended (ceases to exist).
The colour used to represent the event is as per the viewer’s
preference. Since the data is binary, in the sense that only
occurrence or non-occurrence of the event is monitored, it
would not add any value to use multiple colours to visualise
the polygons.

The height variable in the space time cube is also meant
to show the progressive nature of the events that occur using
the z axis (height attribute); with the thickness of the height
slice representing the duration of an event. The height of
each time stamped event is defined by:

he = f (tc, hc)

= (ti/(te − ts)) × hc

where : he = cube height of event

hc = total cube height

te = viewer ′s end time

(3)

The height of each event cluster slice is defined by:

extrusionheight = heightslice

heightslice = hs
(4)

Once a packet is successfully created, it is added to the
main CZML document and the visualisation is updated.This

procedure is repeated for all time-stamped clusters that are
detected within the viewer-specified period.

Visualisation Results

The outcome of the time varying visualisation process is
shown in Fig. 11. The figure shows 5 time steps of lightning
events that were clustered per 5-min interval. Time “T1”
records the birth of the event, when the first lightning
incident occurred. At “T2”, the region affected by the
lightning strikes starts increasing. As the lightning strikes
and cluster regions grow over time, the clusters that formed
earlier and during birth of the event begin to show age and
slowly become faint in colour. At “T5” (the final diagram),
the event has ended, but since it occurred during the viewer’s
time of interest the footprints of the occurrence remain, and
if the user were to scroll back in time along the timeline
widget they would still be able to see how the event unfolded
as it happened. This illustration is relevant for a short-
term visualisation of a single event made up of multiple
time-varying clusters of incidences.

Figure 12 provides a wider picture of a longer term view
time of interest. In this figure, the viewer’s period of interest
is increased to 1 week, over the whole of South Africa. The
same principle of fading colour over time is still applied.
In addition to there being more data in the cube, a new
trend is observed. The data when extruded along the full
length of the cube shows darker shaded and lighter shaded
columns of different heights. The shorter columns represent
events that occurred over a short time within the week-
long period, whereas the taller columns occurred over a
longer period. The lighter shaded columns show events that
occurred earlier on in the week, closer to the start time
of the user’s week-long period. The darker shaded periods
show more recent events within the viewer’s time of interest.
There is also a variation in thickness of the columns. The
thicker columns represent events that covered a wider region
as opposed to thinner columns that show events that covered
a narrower region. These explanations can be provided to
the user in the form of a map legend.

The space time cube can also be flattened from three
dimensions into a two-dimensional map; this view when
used with the timeline animation allows the user to view
the time-based progression of an event with a closer view
on how the event behaves through time. This is a view
that is most common for visualisation of animations. This
feature is important because it guides users who are not
familiar with the space time cube and data visualisation in
3 dimensions to slowly ease into it while still being able to
revert to a more familiar option.
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Fig. 11 Progression of a
lightning storm event,
illustrating the age of
observations by (z attribute) and
colour on a Space Time Cube.
The images refer to time steps
“T1” to “T5” progressively

Discussion

This paper demonstrates a methodology for determining
real-time patterns in lightning strikes from sensor observa-
tions, where lightning strikes represent irregular transient
observations that are characterised by highly dynamic and
variable attribute values. A methodology for determining
clustering patterns in these types of events is illustrated
with the intention of showing areas that may be adversely
affected by the occurrence of these events timeously, such
that mitigation or protection strategies can be employed.

The methodology developed in this paper follows the
visual analytics approach that includes, firstly, spatiotempo-
ral analysis for the detection of patterns; secondly, allowing
human interaction to provide domain expertise in order to

guide the analysis process; and thirdly, visualisation to show
the resulting patterns in real time using concepts of car-
tography and semiotics, to illustrate the behaviour of the
phenomenon of study as it unfolds.

The use of algorithms within the paper aims to provide
not only spatiotemporal analysis methods and visualisation
but also to provide technical guidelines for application
developers undertaking similar work.

The contribution of this paper is based on two
objectives, firstly to show how graph theory can be used
to determine clustering patterns for irregular occurring
transient observations of highly dynamic characteristics.
The second objective is to illustrate how a space time cube
can be used to visualise arising clustering pattern evolution
in real-time.

Fig. 12 Lightning cluster events
for a week across South Africa
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We therefore discuss the results, advantages, and
shortcomings discovered with the method in relation to
these two objectives.

Transient observations, by definition, do not occur at
regular times; therefore, algorithms for discovery of patterns
and visualisation need to be highly adaptive and dynamic
since observations can either be very dense or sparse.

The use of a graph-based method for detection of
clustering patterns of lightning strikes in real-time proved to
have advantages for these types of data. Firstly, the method
proved to be adaptive to the underlying characteristics of
the data. Segmenting the data into sliding temporal windows
allowed the stream of lightning sensor observations to be
analysed as it evolved; hence, concept drift was not an
issue, as each analysis window is self-contained. As with
some other methods, the number of clusters is not defined
beforehand, and the graph connections determined the
number and size of the clusters driven by the amount of data
received. The second advantage of the use of graphs is the
ability to allow multiple types of clustering criteria. Sensor
observations of lightning strikes have multiple dimensions
defined by the space, time,and several descriptive attributes.
In this study, the clustering criteria used were the Delaunay
triangulation to determine the distance between observation
and time interval between lightning strikes to determine the
temporal sliding window for analysis, as well as attributes
of the observations, namely type of lightning strike and
intensity. The third and final observed advantage of this
clustering method is that it allowed for the formation of free-
form shape of lightning cluster polygons. The connections
between lightning event points were not based on a regular-
shaped region, therefore allowing for more connections
between events to be detected. The use of alpha shapes
to delineate the cluster boundary shapes as opposed to a
convex hull prevented the overestimation of affected area
also resulting in more realistic shapes.

Visualisation of transient irregular events faces the
challenge of overcrowding and sparsity in different regions
of the same area of interest. This challenge has been
overcome by allowing user-configured parameters namely
height and start and end times of the timeline, for the space
time cube viewer. It has been found that setting shorter
time periods of view enables the data to be distributed
“freely” within the cube. Alternatively, if longer time
periods of visualisation are desired, similar to Fig. 12, then
user interaction becomes a key factor. One of the major
advantages of choosing CesiumJS for development of the
Space Time Cube is that it has been possible to allow the
user to zoom in and out and fly between visualised items in
order to get a closer look and visually explore the data more
intuitively.

If the data is too dense or sparse, a further enhancement to
the visualisations that could be implemented is the binning

of the visualisations. In this case, the data was binned
and limited to the height of the space time cube so as to
ensure that it does not stack to an uncontrollable height
which would make it less intuitive. A related issue occurs
when the time period is too long: the change in colour,
which represents the age of the observations, becomes
either too gradual or too abrupt depending on how fast and
frequent the data is arriving. During this study, we found that
implementing the style equation as shown in Eq. 2 allows
for a gradual change in colour that is also relative to the
stage of occurrence within the time of interest.

While the results of the clustering and visualisation
of observations of lightning strikes in real-time seemed
satisfactory, the usability of the visualisations for users was
not assessed. Literature has shown that frameworks for user
studies have been developed. It would be important to use
one of the existing frameworks to assess the usability of
the space time cube under such highly dynamic conditions
where the data characteristics are rapidly changing, and the
flow of data is highly variable.
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