Modelling compound flooding at the Breede Estuary, South Africa Sunna Kupfer^{1*}, Sara Santamaria-Aguilar¹, Lara van Niekerk^{2,4}, Melanie Lück-Vogel^{2,3}, Athanasios T. Vafeidis¹, ¹Coastal Risk and Sea-Level Rise research group, Institute of Geography, University of Kiel, Kiel, Germany ²Coastal Systems Research Group, Cluster: Smart Places, CSIR, Stellenbosch, South Africa ³Department of Geography and Environmental Studies, Stellenbosch University, Stellenbosch, South Africa ⁴Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa *Corresponding Author: kupfer@geographie.uni-kiel.de Coastal Hazards in Africa, 2020 #### Introduction #### **Compound flooding** can occur through: 1. two or more extreme events occurring simultaneously or successively - 2. Amplified impacts due to co-occurrence - 3. Co-occurring events, which are not themselves extreme, becoming an extreme event when combined - Global dependency studies: intense storms can lead to storm surge, high waves and river discharge occurring simultaneously - → low-lying coastal areas, connected to a river, **estuaries**, are prone to compound flooding ## Study Area - Breede Estuary - Largest permanently opened estuary of South Africa - Prone to flooding from river discharge and oceanic drivers - There is a dependency of extreme river discharge and waves - Data availability ## Objectives - Estimate potential impacts of compound flooding - ***Tides** - ***Waves** - River discharge - **Surge** - Estimate influence and interaction of individual drivers - Estimate the sensitivity of flood impacts to changes in intensity of input drivers ## Hydrodynamic model set-up #### Delft3D Interaction of waves with FLOW input | Boundary conditions | Delft3D
Module | Open
boundary | Intensity/return period | Data type | Peak values | | |---------------------|-------------------|------------------|-----------------------------|--------------------|--|---------------------------| | River discharge | FLOW | Upstream | 100yr | Time series | 3295 m³/s | | | Tides | FLOW | Ocean | Spring high tide | Time series | 2.6 m | * Vonkemann et al. (2017) | | Waves1 | WAVE | Ocean | 100yr (ESE-EVA*) | Constant sea state | $H_s = 6.2 \text{ m}; T_p = 12 \text{ s}$ | | | Waves2 | WAVE | Ocean | 100yr (EVA-all-directions*) | Constant sea state | $H_s = 9.3 \text{ m}; T_p = 19.95 \text{ s}$ | | - * Calibration: parameter testing of bottom roughness and horizontal viscosity - ❖ Validation: reproduction of spring tide, neap tide and average tide event & high river discharge ## Scenarios | Scenario | River Discharge | Tides | Waves | |---------------------|-----------------|--------|----------------------------| | Compound | 100yr | Spring | 100yr (ESE-EVA) | | NoWAVE | 100yr | Spring | - | | NoDischarge | - | Spring | 100yr (ESE-EVA) | | Extr. Wave Compound | 100yr | Spring | 100yr (All-directions-EVA) | #### **Results & Discussion** #### **Compound** vs. **NoWAVE** vs. **NoDIS** | | River | | | |-------------|-----------|--------|----------------------------| | Scenario | Discharge | Tides | Waves | | Compound | 100yr | Spring | 100yr (ESE-EVA) | | NoWAVE | 100yr | Spring | - | | NoDischarge | - | Spring | 100yr (ESE-EVA) | | Extr. Wave | 100yr | Spring | 100yr (All-directions-EVA) | | Compound | | | | #### **Results & Discussion** ## Compound vs. NoWAVE vs. NoDIS: **Differences in flood depth** - → Without waves, river discharge causes stronger effects → dominating flood driver - → Accounting for waves leads to blocking of river discharge #### **Results & Discussion** #### **Compound** vs. Extr. Wave Compound | | River | | | |-------------|---------------------|--------|----------------------------| | Scenario | Discharge | Tides | Waves | | NoWAVE | 100yr-long | Spring | - | | NoDischarge | Constant-low | Spring | 100yr (ESE-EVA) | | Compound | 100yr-long | Spring | 100yr (ESE-EVA) | | Extr. Wave | 100yr-long | Spring | 100yr (All-directions-EVA) | | Compound | | | | #### Conclusion - *Larger impacts during compound flood scenarios vs. scenarios excluding drivers - → Underestimation of flood impacts, when not considered - Further simulations to explore: - ❖SLR and changes in wave climate - Sensitivity of compound flooding to additional storm surge (despite low effect in SA) - \diamond Events, where one or more drivers are moderate \rightarrow challenge due to data availability - Assessing compound flood impacts at other South African estuaries remains a challenge due to sparse availability of data ## References