

Modelling compound flooding at the Breede Estuary, South Africa

Sunna Kupfer^{1*}, Sara Santamaria-Aguilar¹, Lara van Niekerk^{2,4}, Melanie Lück-Vogel^{2,3}, Athanasios T. Vafeidis¹,

¹Coastal Risk and Sea-Level Rise research group, Institute of Geography, University of Kiel, Kiel, Germany

²Coastal Systems Research Group, Cluster: Smart Places, CSIR, Stellenbosch, South Africa

³Department of Geography and Environmental Studies, Stellenbosch University, Stellenbosch, South Africa

⁴Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa

*Corresponding Author: kupfer@geographie.uni-kiel.de

Coastal Hazards in Africa, 2020

Introduction

Compound flooding can occur through:

1. two or more extreme events occurring simultaneously or successively

- 2. Amplified impacts due to co-occurrence
- 3. Co-occurring events, which are not themselves extreme, becoming an extreme event when combined
- Global dependency studies: intense storms can lead to storm surge, high waves and river discharge occurring simultaneously
 - → low-lying coastal areas, connected to a river, **estuaries**, are prone to compound flooding

Study Area

- Breede Estuary
 - Largest permanently opened estuary of South Africa
 - Prone to flooding from river discharge and oceanic drivers
 - There is a dependency of extreme river discharge and waves
 - Data availability

Objectives

- Estimate potential impacts of compound flooding
 - ***Tides**
 - ***Waves**
 - River discharge
 - **Surge**
 - Estimate influence and interaction of individual drivers
 - Estimate the sensitivity of flood impacts to changes in intensity of input drivers

Hydrodynamic model set-up

Delft3D

Interaction of waves with FLOW input

Boundary conditions	Delft3D Module	Open boundary	Intensity/return period	Data type	Peak values	
River discharge	FLOW	Upstream	100yr	Time series	3295 m³/s	
Tides	FLOW	Ocean	Spring high tide	Time series	2.6 m	* Vonkemann et al. (2017)
Waves1	WAVE	Ocean	100yr (ESE-EVA*)	Constant sea state	$H_s = 6.2 \text{ m}; T_p = 12 \text{ s}$	
Waves2	WAVE	Ocean	100yr (EVA-all-directions*)	Constant sea state	$H_s = 9.3 \text{ m}; T_p = 19.95 \text{ s}$	

- * Calibration: parameter testing of bottom roughness and horizontal viscosity
- ❖ Validation: reproduction of spring tide, neap tide and average tide event & high river discharge

Scenarios

Scenario	River Discharge	Tides	Waves
Compound	100yr	Spring	100yr (ESE-EVA)
NoWAVE	100yr	Spring	-
NoDischarge	-	Spring	100yr (ESE-EVA)
Extr. Wave Compound	100yr	Spring	100yr (All-directions-EVA)

Results & Discussion

Compound vs. **NoWAVE** vs. **NoDIS**

	River		
Scenario	Discharge	Tides	Waves
Compound	100yr	Spring	100yr (ESE-EVA)
NoWAVE	100yr	Spring	-
NoDischarge	-	Spring	100yr (ESE-EVA)
Extr. Wave	100yr	Spring	100yr (All-directions-EVA)
Compound			

Results & Discussion

Compound vs. NoWAVE vs. NoDIS: **Differences in flood depth**

- → Without waves, river discharge causes stronger effects → dominating flood driver
- → Accounting for waves leads to blocking of river discharge

Results & Discussion

Compound vs. Extr. Wave Compound

	River		
Scenario	Discharge	Tides	Waves
NoWAVE	100yr-long	Spring	-
NoDischarge	Constant-low	Spring	100yr (ESE-EVA)
Compound	100yr-long	Spring	100yr (ESE-EVA)
Extr. Wave	100yr-long	Spring	100yr (All-directions-EVA)
Compound			

Conclusion

- *Larger impacts during compound flood scenarios vs. scenarios excluding drivers
 - → Underestimation of flood impacts, when not considered
- Further simulations to explore:
 - ❖SLR and changes in wave climate
 - Sensitivity of compound flooding to additional storm surge (despite low effect in SA)
 - \diamond Events, where one or more drivers are moderate \rightarrow challenge due to data availability
- Assessing compound flood impacts at other South African estuaries remains a challenge due to sparse availability of data

References

