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Abstract. AwezaMed Covid-19 is a multilingual speech-to-speech trans-
lation application for screening patients for Covid-19. It enables English-
speaking health care providers (HCPs) to conduct screenings by asking
questions to patients in all other official languages of South-Africa. It
uses a multimodal computational grammar translation system to enable
English speech and screen-based input, which can be translated to pro-
duce synthetic speech in the target languages. Grammatical Framework
is used for the translation system, utilising a semantic interlingua. Be-
cause of this, each utterance translated by the application is represented
by a semantic tree, which could be exploited for knowledge representa-
tion.
In this paper, we describe how the machine translation architecture de-
signed for multilingual speech-to-speech translation can be adapted for
knowledge representation consistent with existing knowledge representa-
tion formalisms, namely openEHR archetypes and RDF triples, which
could be recorded seamlessly by HCPs during the screening.

Keywords: Grammatical Framework · openEHR · Linked Data · RDF

1 Introduction

South Africa is a multilingual society with 11 official languages. English serves
as a lingua franca in many spheres and it is the language in which most health
care providers (HCPs) are educated at tertiary level. However, large numbers
of South Africans are not proficient in English, creating a language barrier to
health care in many settings. At hospitals and clinics, it is often the case that
other staff, including security guards and cleaners, are called upon to interpret
in cases where the HCP and patient do not share a common language. This has
a detrimental effect on efficient use of staff, patient privacy and the ability of
HCPs to provide respectful care.
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The Covid-19 pandemic has focused attention on the ability of health care
systems to cope with enormous amounts of patients at once, as well as the need to
record information that may aid in understanding and responding to dangerous
viral outbreaks. Both these factors are severely affected if language barriers exist
between HCPs and patients.

To enable communication for screening patients for Covid-19, a speech-to-
speech mobile translation application was developed to translate spoken English
utterances to spoken utterances in all other official languages of South Africa.
AwezaMed Covid-19 uses automatic speech recognition (ASR), grammar-based
machine translation (MT) and text-to-speech (TTS) to enable communication
by an HCP to a patient. The application was adapted from a different version
of AwezaMed geared towards maternal health. [10]

In this paper, we describe how AwezaMed Covid-19 can be adapted for knowl-
edge representation within existing frameworks, which could be recorded seam-
lessly by HCPs during the screening. In Section 2 we contextualise our work.
Various factors contributed to the choice to provide translations in only one
direction, namely from the HCP to the patient, which leads directly to the abil-
ity to enable knowledge representation, and we discuss them in Section 3. In
Section 4 we describe the multilingual translation system, and in Section 5, we
describe our main contribution, namely an extension to the translation system
that enables knowledge representation of patient information. We discuss the im-
plications of this proof-of-concept implementation in Section 6, before providing
concluding remarks.

2 Contextualisation

The amount of patient data, including Covid-19 information, is constantly in-
creasing world wide and there is an urgent need to have a clear picture of the
development and spread of the pandemic, also in developing countries such as
South Africa. Indeed, the rapid acquisition, publication and interoperability of
such data have a high priority. In the past three decades various standards, vo-
cabularies and knowledge representations have been developed for this purpose,
for example, ISO standards,3 SNOMED-CT,4 openEHR,5 HL7,6 and FHIR.7

This resulted in patient information [13] encoded in a variety of formalisms
(knowledge representations).

openEHR is a technology for creating and managing electronic health care
records (EHRs), “consisting of open specifications, clinical models and software
that can be used to create standards, and build information and interoperabil-
ity solutions for healthcare”.8 An important aspect of how openEHR deals with

3 https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100343.pdf
4 https://www.snomed.org/snomed-ct/five-step-briefing
5 https://www.openehr.org/
6 https://www.hl7.org/
7 http://hl7.org/fhir/
8 https://www.openehr.org/about/what is openehr
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knowledge is its two-level model [5], consisting of the reference model (RM),
which defines models of information content, such as data types and data struc-
tures, and the archetype model (AM), in which more specific domain knowledge
can be described, such as the results of a laboratory test. The RM is stable
and implemented in software,9 while the goal of the AM is to allow clinicians
to develop formal models that reflect their domain knowledge [7]. The Clinical
Knowledge Manager (CKM) is a platform for sharing and collaborating on such
domain knowledge models in the form of archetypes and templates.

In recent months, an archetype for Covid-19 symptoms10 was contributed, in
the form of a specialisation of the existing archetype for symptoms. A template
for Covid-19 was also developed [8], which includes archetypes for assessments,
clinical background, treatment and discharge, and is available in the CKM.11

In openEHR, archetypes typically model healthcare concepts, such as blood
pressure, while templates typically model forms, documents and messages. Archetypes
are defined in ADL (Archetype Description Language) and can be queried using
AQL (Archetype Query Language), analogous to how SPARQL can be used to
query RDF (Resource Description Framework) triple stores. An essential differ-
ence between using openEHR and RDF to represent clinical knowledge, is the
kinds of system interoperability they aim at. openEHR intends to enable inter-
operability in health care systems with a focus on electronic health care records,
whereas RDF is domain independent and intended to be used at web scale.

The Semantic Web can be thought of as a suite of semantic web technologies
together with Linked Data, a set of best practices for sharing data on the web.
These semantic web technologies allow the creation of data stores on the web, the
building of vocabularies, and the writing rules for handling data. Linked Data are
supported by technologies such as RDF, SPARQL, OWL, and SKOS.12 In RDF,
a description of a resource13 is represented as a number of triples, each of which
codifies a statement about semantic data and consists of a subject, predicate and
object [4, 1]. These subjects, predicates and often also the objects14 themselves
are URIs of concepts that reside in precise formal vocabularies and ontologies.
RDF, therefore, relies on semantics by reference.15 As the abstract data model
of the Semantic Web, RDF is considered one of the dominant graph technologies
currently driving semantic computing over web-scale distributed data.

More specifically, semantic web technologies and Linked Data, combined with
big data analytics, have become key to making patient data semantically inter-
operable and to helping create predictive models on how epidemics might spread

9 https://specifications.openehr.org/releases/BASE/latest/architecture overview.html
10 https://ckm.openehr.org/ckm/archetypes/1013.1.4399
11 https://ckm.openehr.org/ckm/templates/1013.26.291
12 https://www.w3.org/standards/semanticweb/
13 A web resource, or simply resource, is any identifiable thing, whether digital, physi-

cal, or abstract. Resources are identified using Uniform Resource Identifiers (URIs)
14 The object can also be a literal. Literals are used for values such as strings, numbers,

and dates. See https://www.w3.org/TR/rdf11-concepts/
15 https://www.w3.org/TR/rdf-mt/
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around the world16 [13]. It is therefore important to ensure that patient data,
also for Covid-19, is exposed as Linked Data as accurately and as seamlessly as
possible.

Grammatical Framework (GF) [16] is a programming language for grammar
engineering, which uses a semantic interlingua for multilingual machine trans-
lation. It has become the de facto standard in multilingual controlled natural
language applications [17]. GF has been used in a number of knowledge repre-
sentation projects. For example GFMed [11] is a question answering system for
biomedical interlinked data. It employs GF grammars for a controlled language
targeted towards biomedial information and the SPARQL query language. In [3]
an approach to multilingual ontology verbalisation of controlled language based
on GF and the lemon model17 is presented.

A number of knowledge representation projects in the indigenous South
African languages have been reported. For example, [6] discuss isiZulu verbal-
isation patterns for basic logic constructs and devised algorithms to generate
grammatically correct isiZulu sentences.

To the best of our knowledge, AwezaMed Covid-19 is unique in that it is the
only speech-enabled mobile application currently in existence that supports mul-
tilingual, multimodal machine translation to all South African languages based
on a semantic interlingua. This paper describes how knowledge representation
can be added.

3 The speech-to-speech translation architecture

In this section, we discuss the choice of a semantic interlingua translation ar-
chitecture for our specific use case, namely facilitating screening of patients for
Covid-19, and the effect this has on the way the application can facilitate mul-
tilingual communication between HCPs and patients.

3.1 Choosing a suitable translation architecture

Deep learning techniques have made enormous progress in the last few years
and are the state-of-the-art in machine translation for the large languages of the
world. They rely on the very large amounts of data that have become available
for many languages. However, all the official South African languages excluding
English are so-called under-resourced languages, which means that the same
amounts of data are not available – and in many cases do not exist – as for
the larger languages of the world. This means that other techniques are worth
investigating if a specific use case could benefit from it.

Available MT capability for English to other South African languages
The health care domain requires a high level of accuracy in machine transla-
tion. Achieving appropriate accuracy using state-of-the-art data-driven machine

16 https://www.ontotext.com/blog/linked-data-solutions-in-healthcare/
17 https://lemon-model.net/
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translation techniques depends on two major factors: the availability of domain
appropriate parallel data for each language pair, and the linguistic similarity be-
tween the source and target languages. [12] report BLEU scores for translation
from English to isiXhosa and isiZulu of 37.11 and 44.07, respectively. However,
these scores are the result of training and testing on the single domain JW300
corpus. When the same systems were tested on the Autshumato test corpus of
government documents [14], BLEU scores dropped dramatically to 1.42 and 1.56,
respectively.

In contrast to approaches that rely on large amounts of data, a grammar-
based approach can provide a more controlled form of domain appropriate trans-
lation, where coverage is constrained, but a high level of accuracy is guaranteed.

The goal of GF is reduce the amount of effort and time traditionally required
by rule-based machine translation [16], so that building multilingual domain
specific machine translation systems for real world applications is feasible.

Speech-to-speech and mobile application integration GF is well-suited
to supporting multimodal, multilingual translation applications [2]. Its diverse
module system makes it possible to linearise the same utterance in different
languages, as well as different formats for the same language that enables support
for the formatting conventions of ASR and TTS.

Given the way a grammar limits the domain of supported utterances, it must
also support a touch input modality that can present the translatable content
of the application to the user in a compact and intuitive way. This acts both as
a mechanism for familiarising users with the domain covered by the application,
as well as a fallback mechanism for when speech recognition fails.

Different roles of participants in a screening The nature of the utterances
used by HCPs during a screening is relatively structured and predictable. This
is especially true when the domain is limited to a subdomain of health care, such
as screening for Covid-19. The grammars in AwezaMed were developed in close
consultation with various HCPs to cover relevant and useful content.

In contrast to HCPs, who have specific domain knowledge and are responsible
for driving the communication during a screening in order to arrive at a correct
finding, patients are not domain experts. Their answers to questions arise from
their experiential knowledge of their health, and may range widely in terms of
detail, focus and applicability. Hence, constrained domain grammars are not
suitable to model typical patient utterances.

3.2 A communication model for grammar-based machine
translation

Limiting speech-to-speech translation to only cover utterances uttered by the
HCP has an obvious impact on the kinds of utterances that will enable HCPs
to conduct an entire screening using the application. Specifically, HCPs will
have to understand the patient responses without the help of the application.
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Hence, the communication model of the AwezaMed application limits almost all
utterances to binary questions (i.e. requiring only a “yes” or “no” answer from
the patient). In reality, therefore, the content of the application is such that
statements of fact are presented to the patient in the form of questions which
they can confirm or deny. The HCP need only understand the words for “yes”
and “no” in the patient’s language, or understand gestures such as nodding or
shaking of the head, to establish relevant observations about the patient’s health.

We see, therefore, how an analysis of the specifics of the use case leads to
the choice of architecture and communication model, namely a GF-based do-
main grammar that translates binary questions posed by the HCP in the source
language to a target language that the patient understands.

4 Semantic interlingua machine translation for Covid-19
screening

We turn now to the mechanism employed by GF to support domain grammars,
namely a semantic interlingua architecture. The goal of a GF domain grammar,
known as an application grammar, is to start with the semantics of the domain,
and express it in one or more natural languages [15]. The semantics is defined
via categories and functions in an abstract syntax, while one or more concrete
syntaxes define how such categories and functions are linearised as strings.

Developing a concrete syntax therefore involves defining a linearisation cat-
egory in the form of a record for each category in the abstract syntax, and a
linearisation function for each function in the abstract syntax, which defines
how types of records are combined into new ones. Parsing is based on inversion
of the linearisation rules in a non-trivial way [15]. GF can therefore be seen as a
multi-source, multi-target compiler [9], where any string in one of the concrete
syntaxes of the grammar can be translated to any other language by parsing the
source utterance string into an abstract syntax tree and linearising the tree into
a string in the target language.

The way in which semantically equivalent translation is achieved can be
understood by considering Wittgenstein’s notion of a language game [15]. An
application grammar is effectively the definition of a specific language game,
where translation is possible if the same language game can be played in both
the source and target languages. Stated differently, starting with the semantics of
a domain, translation is possible if the same abstract syntax tree, capturing some
meaning in a specific domain, can be expressed as natural language utterances in
two or more languages. Because translation is achieved via a semantic interlingua
in the form of the abstract syntax, as long as the utterance in the source language
represents the intended meaning of the user in the context of the domain, the
user can be confident that the translation of the utterance represents the same
meaning in the target language.
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4.1 Implementing multilingual, multimodal machine translation for
a mobile application

The application contains four application grammars, namely Symptoms, for ask-
ing about symptoms associated with Covid-19, Medical History, for establishing
the presence of possible comorbid conditions, General History, covering allergies
and substance usage, and Covid-19, which is mainly for relaying information and
instructions related to Covid-19. For the purpose of showing how the grammar
enables translation via a semantic interlingua, our focus will be on the Symptoms
grammar.

Semantic trees in the abstract syntax The Symptoms application grammar
allows the HCP to ask questions about Covid-19 related symptoms, including
whether a patient has a certain symptom, whether the symptom started more,
less or about a certain number of days ago, whether the symptom is persistent
and whether the symptom is worsening. Fig. 1 shows an example of an abstract
syntax tree, which is expressed in English as “Did the fatigue start about two
days ago?”. In each node label, the function name used to construct that partic-
ular constituent appears to the left of the colon, while the category type of the
constituent appears to the right.

Q03_PointTimeSymptomQ :  Ut t

S11_Fat igue  :  Symptom AboutAgo :  PointTime

NS02  :  Sma l lNumber

Fig. 1: Semantic tree for “Did the fatigue start about two days ago?”

Multiple languages and modes Each concrete syntax provides rules for lin-
earising semantic trees to strings. A detailed discussion of how GF provides
parameters and tables to implement grammar rules is beyond the scope of this
paper, and the interested reader is referred to [16]. It suffices to say that the
implementation of a concrete syntax for a specific language enables the GF run-
time to generate strings in that language in a compositional way to represent
the meaning of an abstract syntax tree.

The difference between the way the tree in Fig. 1 is expressed in English
and isiZulu can be seen by comparing Fig. 2 and Fig. 3, which show how the
semantic constituents of the abstract syntax tree are linearised into strings in
the two languages. In order to facilitate the discussion in Section 5, the strings
are colour coded, with strings in violet contributed by the Symptom category,
green by the PointTime category, orange by the SmallNumber and black by the
Utt category, which is the start category.
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U t t

S y m p t o m PointTime

d id s t a r tt h e f a t i gue

S m a l l N u m b e r

a b o u t d a y s a g ot w o

Fig. 2: Parse tree for expressing “Did the fatigue start about two days ago?”
with ASR formatting conventions

U t t

S y m p t o m PointTime

k u q a l e n a ?U k u k h a t h a l a

S m a l l N u m b e r

c i s h e ez insukwini ez id lu leezimbi l i

Fig. 3: Parse tree for expressing “Did the fatigue start about two days ago?” in
isiZulu

Grammar-driven dynamic screen Note that the English string in Fig. 2
contains no punctuation or capitalisation. This is because the grammar contains
a concrete syntax specifically for defining the appropriate English strings with
formatting that follows the conventions of the ASR component of the application.
For the isiZulu strings, which must be displayed on the screen and also serve as
input to the text-to-speech component, capitalisation and punctuation must be
included.

However, in addition to the speech modalities supported by the grammar,
the touch modality must also be supported. To this end, another version of the
English concrete syntax exists that adds markup to a capitalised and punctuated
English string, which can be used to determine which parts of the string must be
“live”, in the sense that the user could click on it to change it. Fig. 2 shows the
parse tree for the example utterance generated by this concrete syntax (slightly
simplified for readability), while Fig. 5 shows how the user interface uses the
information encoded in the marked up string. Each function in the grammar that
produces an Utt, which is the start category of the grammar, corresponds to a
so-called dynamic utterance, which could be thought of as a dynamic, grammar
driven template for presenting many utterances on a single screen in an intuitive
way.

5 Knowledge representation of patient responses

How does this speech-to-speech architecture, chosen due to the constraints pro-
vided by the use case, enable knowledge representation of patient responses?
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U t t

S y m p t o m PointTime

Did s t a r t ?[Symptom :  the  fa t igue]

S m a l l N u m b e r

[PointTime :  about] d a y s a g o[Smal lNumber  :  two]

Fig. 4: Simplified parse tree for expressing “Did the fatigue start about two days
ago?” with dynamic utterance markup

(a) Dynamic utterance (b) Making a selection

Fig. 5: Screen elements derived from dynamic utterance markup

5.1 From questions to observations

When a binary question is put to the patient, and the patient answers in the
affirmative, the semantic tree of the utterance effectively represents an observa-
tion about the patient. For example, if the question “Did the fatigue start about
two days ago?” is confirmed by the patient, the statement “The patient reports
fatigue, which started two days ago” could be noted as an observation.

Practically speaking, the HCP might use the application to input some binary
question in English which the app would then translate to the appropriate target
language. When the patient answers in the affirmative, the HCP would want to
capture this information in an electronic health record. In order to do this, the
application should be extended with two specific features:

– Implementation of a patient information section for creating and updating
patient entities in a suitable data repository. This would allow each screening
session to add the observations obtained to a specific patient’s health record.

– Implementation of a check box next to each dynamic utterance in the ap-
plication, which would allow HCPs to immediately mark some utterance as
being confirmed by the patient.

The first features concerns the management of patient EHRs in healthcare
systems. Our focus is on to the second feature, which would allow capturing of
clinical observations in a seamless and semantically interoperable way.
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5.2 Generating knowledge representations with GF

In openEHR, an OBSERVATION is a type of ENTRY suitable for symptoms,
test results and other similar clinical information. In this section we show how
the Symptoms grammar can be extended to generate knowledge representations
in the form of openEHR OBSERVATIONs, as well as RDF triples that similarly
represent the observation.

Since our goal is to describe the mechanism by which a semantic interlingua
can be used to express the confirmation of natural language binary questions as
formal knowledge, we focus on generating just those snippets of code in both
formalisms. Representing administrative information, that would connect these
observations to patients is outside the scope of this paper.

Representing knowledge according to openEHR specifications can be done
in JSON, and similarly, RDF triples can be encoded using Turtle. In order to
generate JSON and Turtle code that represent observations, we added two con-
crete syntaxes to the existing translation architecture. Therefore, in addition to
multiple languages and speech modalities, the grammar was extended to support
two formal knowledge representation formalisms.

In the case of openEHR, the JSON code generated by the grammar would
be integrated into a COMPOSITION structure that includes all necessary ad-
ministrative information, while the RDF triples generated by the grammar can
be added to a triple store that similarly connects the observation to the relevant
administrative information.

As with any other concrete syntax, linearisation categories and linearisation
functions were be defined in order to generated JSON and Turtle code. Given
the context-free nature of JSON and Turtle, records containing a single string
sufficed as linearisation categories, and straight-forward token concatenation was
employed in the linearisation functions. Fig. 6 and Fig. 7 show strings generated
by the two new concrete syntaxes, with the same colour coding as before.

The openEHR JSON concrete syntax generates code consistent with the
Covid-19 symptom archetype, and uses the SNOMED-CT vocabulary to refer
to specific symptoms. The RDF Turtle concrete syntax uses SNOMED-CT in
the same way, in addition to the FHIR ontology.

In both code snippets, the string < SYSDATE - 0000-00-02> is generated
by the grammar with the intent that the host application resolve this based on
the system time of the mobile device. The host application must also generate a
unique identification number for each observation. Due to the differences in how
observations are included in the different data repositories, the Turtle snippet
includes the string OBSERVATION ID that must be replaced. In the case of the
openEHR JSON code, this string occurs in a different part of the COMPOSITION

data structure, and is therefore not shown here.

The reason that the onset time concept in the Turtle code is defined sepa-
rately as shown, is because RDF provides more freedom to define time related
concepts, via the W3C Time ontology,18 than is possible given the Covid-19

18 https://www.w3.org/TR/owl-time/
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{ "content":

{ "archetype_node_id": "openEHR-EHR-CLUSTER.symptom_sign-cvid.v0",

"type": "OBSERVATION",

"name": { "value": "Covid-19 symptom" },
"archetype_details":

{ "archetype_id": { "value": "openEHR-EHR-CLUSTER.symptom_sign-cvid.v0" } },
"data":

{ "archetype_node_id": "at0001",

"type": "ITEM_TREE",

"name": { "value": "components" },
"items": [

{ "archetype_node_id": "at0001.1",

"type": "ELEMENT",

"name": { "value": "Symptom/Sign name" },
"value":

{ "type": "DV_CODED_TEXT",

"value": "Fatigue",

"defining_code":

{ "terminology_id": { "value": "SNOMED-CT" },
"code_string": "84229001" } } },

{ "archetype_node_id": "at0152",

"type": "ELEMENT",

"name": { "value": "Episode onset" },
"value":

{ "type": "DV_DATE_TIME",

"value": "<_SYSDATE_ - 0000-00-02>" } } ] } } }

Fig. 6: Generated JSON snippet of the tree in Fig. 1
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@base <http://example.org/> .

@prefix rel: <http://www.perceive.net/schemas/relationship/> .

@prefix fhir: <http://hl7.org/fhir/> .

@prefix time: <http://www.w3.org/2006/time#> .

@prefix sct: <http://snomed.info/id/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<_OBSERVATION_ID_>

a [ fhir:ClinicalImpression sct:84229001 ] ;

sct:405795006 <onset_time> .

<onset_time>

a time:Instant .

time:hasTime "<_SYSDATE_ - 0000-00-02>"^^xsd:dateTime .

Fig. 7: Generated Turtle snippet of the tree in Fig. 1

symptom archetype available in openEHR. In the latter, the symptom onset
can be given as a time instant of type DV DATETIME. However, the Time on-
tology allows more complex time concepts, with properties time:before and
time:after. These properties can be used to represent binary questions in the
grammar such as “Did the fatigue start more than two days ago?” and “Did
the fatigue start less than two days ago?”. The latter example is represented as
follows, and is generated when the PointTime constituent is created using the
LessThanAgo function instead of the AboutAgo function:

<onset_time>

a time:Instant .

time:after "<_SYSDATE_ - 0000-00-02>"^^xsd:dateTime .

Depending on the choice of knowledge representation formalism, the applica-
tion could disable check boxes for any instances of dynamic utterances it cannot
represent. Another solution might be for a clinician to contribute an openEHR
archetype for symptoms that contains additional item elements for expressing
relative time concepts.

6 Discussion

Electronically capturing our observation, namely “The patient reports fatigue,
which started two days ago”, would typically require that an HCP select the
symptom, fatigue, from a list on a screen, and select the date of two days ago
from a calendar widget. This is time consuming and interferes significantly with
the interaction between the HCP and patient.

The essence of our contribution is in providing a proof-of-concept implemen-
tation of core components that would enable a seamless process for capturing
patient information, even in cases where the HCP and patient do not share a
common language. Relatively complex information can be captured by speaking
it as a question, letting the application translate the input to speech in a differ-
ent language, and checking a box when it is confirmed. In this way, we let the
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communication act facilitated by the mobile application do the heavy lifting of
establishing the semantic content of the information to be captured.

Our implementation covers 396 unique utterances. We have implemented four
utterance types, which reference 12 Covid-19 related symptoms, three different
ways of expressing relative time, and 10 small numbers for counting days. In
implementing the knowledge representation concrete syntaxes to support these
utterances, concepts and formal information models that correspond to the ut-
terances were identified within the openEHR and HL7 frameworks. This includes
the openEHR archetype for Covid-19 symptoms, the SNOMED-CT vocabulary
and several other ontologies.

In order to transform the existing AwezaMed app into a knowledge represen-
tation aid for Covid-19 screening as described in this paper, the steps identified
in [13] could be implemented in two phases:

– Ontology Development Other utterances supported by the grammar must
be analysed and the concepts they express must be associated where pos-
sible with existing knowledge representation concepts. In cases where the
necessary terms, classes, properties and constraints do not exist, ontology
development is required.

– Semantic Data Creation This phase entails the extension of the applica-
tion with the two features mentioned in Section 5.1, as well as its integration
with real data repositories containing semantic data of real patients.

7 Conclusion

The starting point of our work was an existing speech-to-speech translation
application, which was implemented using a semantic interlingua, chosen due to
the constraints of the use case. We extended this architecture to provide a way
to formally represent the knowledge gained while using the application.

This extension was implemented as additional concrete syntaxes in the ap-
plication’s GF translation system: in addition to linearising (or parsing) a se-
mantic tree as a binary question in multiple languages, it was also linearised by
the grammar into two knowledge representation formalisms.19

By implementing the extension according to established formalisms, namely
openEHR and RDF, which exist within larger frameworks for representing knowl-
edge in health care systems and on the web, we have shown how an application
such as AwezaMed could integrate with such systems to contribute to the ac-
quisition, publication and interoperability of health care information. This, in
turn, would serve to enable better understanding and improved responses to
viral pandemics such as Covid-19.

19 The natural language formulation of the observation, namely “The patient reports fa-
tigue, which started about two days ago” could also be linearised by various concrete
syntaxes, resulting in multilingual human readable statements about the observa-
tions made during the screening.
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