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Abstract 

Humankind often needs to accurately model, identify and spatially quantify aboveground 
phenomena on the Earth’s surface for informed decision-making. Height data derived from digital 
elevation models (DEMs) is often used to achieve this. This study conducted a deterministic 
assessment of three normalised digital surface models (nDSMs) of different spatial resolutions, 
namely 2m, 4m and 12m, derived from VHR digital stereo aerial photography, tri-stereo Pléiades 
imagery and Tandem-X InSAR data, respectively. Covering a predominantly built-up area within 
a city landscape, the nDSMs were vertically and volumetrically compared to assess their quality 
and fit-for-use. In each case a consistent systematic evaluation was accomplished against a lidar 
derived reference surface at matching spatial resolutions (co-registered) using a semi-automated 
GIS routine. The relative height and volumetric errors were statistically analysed and described, 
including those computed individually over nine urban land cover/land use (LCLU) classes and 
several selected large buildings. Higher vertical accuracies were reported across single storey 
structures and areas with no to little or short vegetation, as apposed to substantially lower 
accuracies obtained over multi-levelled buildings and tall (dense) woody vegetation. Here 
significant underestimations of volumes exacerbated by lower spatial resolutions were also 
observed across each nDSM. Conversely, notable volume overestimations were found over 
predominantly grass-covered areas in especially the finer-scaled nDSMs. VHR elevation data is 
recommended to model and quantify aboveground elements spatially in 3D (e.g. buildings, 
earthworks and woody vegetation) in urban landscapes, but a sensitivity test beforehand remains 
critical to ensure more reliable outcomes for users and stakeholders alike.  

 

1. Introduction and Background 

State-of-the-art remote sensing (RS) technology nowadays has enabled mankind to model and 
map the Earth’s surface and features of interest thereon in increasingly higher detail and accuracy. 
Whether relying on radar, laser or various other ortho-optic data acquisitions from near-space high-
resolution satellite image (HRSI) systems or by manned and unmanned aerial surveys, the captured 
spatial data enables users to generate a DEM for their specific needs. A quality, consistent 
(seamless) DEM offers large potential benefits not only to those involved in geomorphometry 
(Sofia et al., 2016), but also to a variety of other disciplines (Hajnsek et al., 2014). Often the need 
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exists to reliably model, identify, demarcate (or extract) and quantify existing aboveground 
anthropogenic or natural phenomena. Provided quality geo-referenced height data is available over 
the target area can the linear dimensions (e.g. size, structure or form) and volume of these features 
or objects be estimated using the appropriate RS/GIS software and specialised algorithms 
(Beumier and Idrissa, 2016). For example, it may involve creating complex geo-spatial geometries 
of built-up structures to assimilate building types (Krauss and Reinartz, 2010) or detect urban 
changes (Beumier and Idrissa, 2012) in 2.5 or virtually in 3D. Lacking in-field observations, the 
constructed building information might serve as proxies for their uses and possible number of 
inhabitants (Alahmadi et al., 2016) for the pricing of insurance policies or risk management, or to 
report on informal settlement growth trends (Kuffer and Sliuzas, 2017), as well to investigate 
cityscape designs (Biljecki et al., 2015) and urban heat island formation (Voelkel and Shandas, 
2017). The elevation data can also be applied to monitor civil construction progress or 
aboveground mining activities (Yoshida et al., 2019). In addition, research may want to use DEMs 
to quantify aboveground biomass or develop an accurate canopy height model (CHM), often in 
context of CO2 storage and emission calculations (He et al., 2018; Raciti et al., 2014) or natural 
resource management (Urbazaev et al., 2016; Ginzler and Hobi, 2015; Deng et al., 2014), 
respectively. Nonetheless, to achieve the above a fit-for-use seamless DEM with the optimal 
spatial resolution – normally strongly related to the user requirements, application and scope of 
the assessment – is vital.  

A DEM constructed from topographic data always retain a physical support size that equals the 
original scanning resolution. This is the fixed area or volume of the land surface sampled and 
subsequently represented by the elevation value at the grid cell node (Hengl and Evans, 2009). In 
other words, it is the average value of all possible elevations in that pixel. For example, laser sensor 
measurements would have a smaller support size (in millimetres) and irregular spatial distribution 
in comparison to a passive air- or spaceborne sensor (in metres) with regular postings. Gridded 
DEM construction methods consisting of different interpolation and filtering techniques routinely 
produce seamless DEM from the sampled elevation data that correspond to terrain relief (Kramm 
and Hoffmeister, 2019; Reuter et al., 2009). The initial DSM represents a continuous land surface 
referenced to mean sea level (MSL) that includes the orthometric height of first return off-terrain 
objects such as buildings and vegetation in metres.  Thus, a gridded DEM is a digital representation 
of continuous elevation values over a topographic surface by a regular array of x,y, and z values 
(Nelson et al., 2009). The vertical and horizontal components are each referenced to their particular 
datum. A DSM may be further converted to a digital terrain model (DTM) – a digital representation 
of variables relating to the Earth’s topographic surface (Beumier and Idrissa, 2016). The ‘bare 
Earth’ DTM is still referenced to MSL, but now technically devoid of any man-made features and 
vegetation after being subjected to a choice of various editing, filtering and interpolation processes 
(Barbarella et al., 2019). Some of the main production challenges faced in these processes is to 
preserve the scale characteristics of different DEM (Poli et al., 2009) and to preserve terrain 
continuity (Doytsher et al., 2009). The nDSM or digital height model (Longbotham et al., 2012) 
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can then be generated by computing the vertical offset (in metres) between the overlapping DSM 
and DTM cell node values (Peeroo et al., 2017). If subtracting an earlier DEM from a later one to 
detect and measure any spatial changes (Hsieh et al., 2016), it is called DEM differencing. 
Fundamentally representing a height model, the nDSM values would commonly range from zero 
metres at ground level, i.e. the DTM, to the vertical height of the tallest feature or elevation point 
observed in the DSM (Figure 1).  

 
Figure 1. Various seamless DEM types generated from air- or spaceborne sensor data 

If the DEM ground sampling distance (GSD) equates to exactly one metre, would each cell 
value theoretically also represent the precise volume (m3) of that pixel in 3D space, as referenced 
from the land surface (Gröhmann et al., 2011). By definition though, since only a single elevation 
value can be stored per grid cell or pixel, this dimension will only resonate true for solid materials 
or city fabrics at a particular scale and much less so where storied vegetation, tunnels, overhangs 
and other typical occlusions occur in urban landscapes.  

The need to analyse the quality and accuracy of a DEM with a sensitivity test prior to its use 
has been recommended by many (Santos et al., 2020; Chudý et al., 2013; Temme et al., 2009; 
Höhle and Höhle, 2009). Through the broad literature review conducted, very few studies 
performed a consistent fine-scale nDSM accuracy evaluation in a predominantly urban setting 
(Peeroo et al., 2017; Beumier and Idrissa, 2016), whilst also taking in consideration the influence 
of the different urban LCLU types on DEM accuracy (Breytenbach and Van Niekerk, 2019; 
Alganci et al., 2018; Balenović et al., 2015). Together with a locally produced photogrammetric 
DEM data set, is the performance of other contemporary commercial wide-area DEM editions, 
e.g. the GEO Elevation Suite (Airbus, 20191) and near global WorldDEM™ products (Airbus, 
20192), also largely untested hitherto domestically. The research therefore questions the 3D 
performance of fine-scale nDSM when applied in a characteristically heterogeneous urban 
environment along with abundant woody vegetation. This study aimed to determine the quality 
(i.e. vertical and volumetric accuracy) of these three different fine-scaled nDSMs over a well-
established urbanized area. It also addresses uncertainties regarding the influence that spatial 
resolution and prevailing LCLU elements may have on DEM accuracy at the anticipated work 
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scale. It includes the systematic computation of descriptive error statistics across nine primary 
urban LCLU types and a substantial number of dissimilar large buildings.  

 

2. Materials and Methods  

2.1. Study Area  

The study area is located in the City of Tshwane, South Africa. The 3.2 km2 site displays 
relatively gentle topography with mixed natural vegetation that occurs mainly along the low hills 
running through the central part of the study area (Figure 2).  

 
Figure 2. Location of the study area within the City of Tshwane  

The most dominant land cover consists of various sized patches of natural or cultivated grass 
(24%) interspersed with larger woody vegetation types such as shrubs, bushes (11%) and trees 
(32%). Single and multi-levelled buildings (15%) and the associated heterogeneous urban 
impervious surfaces and transport infrastructure (14%) occur in the landscape, together with some 
natural bare soils and rocks (3%) and a solitary retention dam (1%).  

 

2.2. Data Collection and Pre-Processing  

The DEMs obtained, prepared and evaluated in terms of their vertical accuracy and volumetric 
correctness over the area of interest were overlapping samples of i) an experimental  
photogrammetric 2m DSM and DTM, ii) the Elevation4™ DSM and DTM products at 4m postings 
(Airbus, 20191), and iii) the 0.4 arc-second (12m) WorldDEM™ DSM and DTM products (Airbus, 
20192). The technical specifications and origins of the source data, including the RS technology 
used to realise the respective DEM products above are listed in Table 1. All the elevation grids 
were hydrologically corrected 32-bit precision DEMs obtained as GeoTIFFs. The commercial data 
was (re-)projected to Lo29-WGS84 using a bi-linear interpolator (Wise, 2011) and by 
implementing the ‘Snap Raster’ setting in the ArcGIS 10.7 ‘Project Raster’ tool environment. This 
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ensured precise pixel-to-pixel co-registration with the relevant matching reference grid at the same 
spatial resolution in each instance. Since all the DSMs are ultimately normalised by subtracting its 
corresponding DTM, any possible absolute vertical bias due to different vertical datums associated 
with some data pairs were thus negated. Three normalised DSMs or height models were 
constructed from these subsets and their quality systematically evaluated against a base nDSM 
derived from a lidar point cloud. Henceforth these nDSMs were (mostly) referred to in this paper 
as the APnDSM2, E4nDSM4 and WDnDSM12, respectively.  

Table 1. The three elevation grids and reference data, their specifications and sources, the 
enabling RS configuration and relevancy, respectively  

Sample grid Grid 
size Source Supplier

/ Owner 
Data origin 
(platform) 

Product coordinate 
system Year 

APnDSM2 2m 50cm Aerial 
photographs 

CSIR 
Pretoria 

Digital mapping 
camera 

TM (Lo29), 
Hartebeesthoek1994 2012 

E4nDSM4 4m Elevation4™ 
DEMs 

Airbus 
(France) 

Tri-stereo HRSI 
(Pleiades1-B) UTM-35S, WGS84 2013 

WDnDSM12 12m WorldDEM™ 
DEMs 

Airbus 
(France) 

Single-pass InSAR 
(Tandem-X) 

Geographic, 
WGS84-G1150 2014 

Reference 
nDSM 1m Airborne laser 

scanning 
City of 

Tshwane ALS50-II LiDAR TM (Lo29), 
Hartebeesthoek1994 2013 

Lidar have gained in popularity in those spheres of industries where highly detailed and accurate 
3D data is essential (ASPRS, 2013). Routinely mounted on a variety of airborne platforms, 
airborne laser scanning (ALS) systems can capture accurate topographic data related to the Earth’s 
surface. By measuring the location and attitude of the cruising aircraft, the Euclidean distance to 
ground and scan angle (with respect to the base of the laser scanner housing), a precise 3D ground 
position for the impact point of each laser pulse can be determined (Tinkham et al., 2012). This 
yields direct, 3D measurements of the ground surface, vegetation, buildings and various 
infrastructures as required (Peeroo et al., 2017; Basgall et al., 2014). The ability to digitize either 
the signal strength or the range to the reflecting surface is dependent on that surface having 
adequate reflectivity (Demir et al., 2009). Provided each target results in adequate signal strength 
for detection, a lidar system is normally capable of detecting up to four targets for each outbound 
laser pulse (i.e., first, second, third and last return). The base DSM, DTM and derived nDSM 
reference grids used in this case study originated from ALS data, which fundamentally ascribed to 
the recommendation that the reference data should be three times better than the tested data 
(ASPRS, 2013). Surveyed from a manned aircraft flying at an altitude of around 1,500m, it covered 
the entire Tshwane metropole. The required vertical accuracy for the ALS survey was set to 0.08m 
(RMSE) whilst premarks were utilized as ground control points. The ALS post-survey validation 
results, sampled across 30 points, revealed a mean vertical difference of +0.078m, standard 
deviation of 0.059m, and RMSEz measuring 0.062m. Acquired simultaneously with this mission 
was optical data captured with a Kodak KAI-11002 dual charge coupled device to produce VHR 
digital RGB aerial ortho-photos (10cm GSD). With multi-pulse mode enabled using an ALS50-II 
lidar instrument and with 30% strip overlap achieved, this resulted in (on average) eight 
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observations per square metre on ground level. The return-signal intensity data was processed into 
a dense point cloud and ultimately classified into discreet ground and non-ground points using a 
single algorithm across the entire dataset. These classified x,y,z measurements in turn formed the 
primary input when generating both a seamless 1m DSM and DTM, also hydrologically-corrected 
with the ANUDEM algorithm using the drainage enforcement option (Hutchinson et al., 2011). 
These 32-bit baseline products came in the preferred geodetic reference framework (i.e. Lo29-
WGS84). The primary nDSM used to generate the upscaled (bi-linearly) reference surfaces 
matching the postings of the test nDSMs over the study area was produced from these two base 
elevation grids.  

DEM quality is inherently influenced by surface morphology and vegetation structure as shown 
earlier. Tinkham et al. (2012) however found that vegetation structure have almost no influence 
on lidar derived DEM errors, whereas increased variability in the vertical error metrics was 
observed on steeper slopes (>30°). It thus illustrates that lidar classification algorithms are not 
limited by high-biomass forests, but rather that slope and sensor accuracy both play important 
roles. The lidar data was thus well suited to reliably model vegetation and man-made structures in 
the derived base DSM. The resulting base 1m nDSM was also employed to enhance the required 
LCLU classification layer over the study area. A VHR (1.24m) multi-spectral WorldView-3 image 
collected over the study area in 2014 was first used to perform a supervised LCLU classification 
that initially comprised of twenty-three land cover classes. After significantly improving the 
classification result with the incorporation of the classified height data (Gxumisa and Breytenbach, 
2017), further extensive manual edits and corrections were performed (mainly concentrated on the 
built-up zones) to ultimately deliver a highly accurate LCLU dataset at 2m GSD. Similar to the 
multi-DSM evaluation approach followed by Alganci et al. (2018) where accuracy was assessed 
across seven primary urban land cover categories within the Istanbul metropolitan area in Turkey, 
this study proceeded to derive nine primary classes from the initial 23 LCLU classes in the study 
area for evaluation purposes.  

 

2.3. Computing Height Errors and Accuracy Statistics  

Several established statistical descriptors were computed as listed in Table 2 to evaluate the 
relative (point-to-point) accuracy of each nDSM as measured against the corresponding co-
registered reference surface. Other than mean (ME) and standard deviation (SD) of the height 
errors, Euclidean distance based mean absolute error (MAE), quadratic mean (RMSE) and 
normalised mean absolute deviation (NMAD) measures were also calculated because they are 
regarded as less sensitive to resolution differences and equally useful when variates have positive 
and negative signs (Höhle and Höhle, 2009; Kramm and Hoffmeister, 2019). Using various 
ArcGIS 10.7 tools in the ‘Model-Builder’ environment, the above error metrics were computed 
for each height raster in an automated manner across its entire surface and within each of the nine 
LCLU classes that were prepared beforehand (Figure 3, right). Along with the generally smaller 
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residential dwellings and complexes too concealed by cultivated (urban) tree canopy cover, the 
built-up LCLU mix varied between large institutional and government buildings (including an 
international conference centre facility), together with small zones related to commercial and light 
industrial activities or educational facilities.  

Table 2. The applied vertical error statistics, formulas and their respective variables  

 

 

Figure 3. The spatial distribution of the nine primary LCLU types (on the left) and the sampled 
72 large buildings along with the NDVI mask in green shades (on the right)  
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Since all the different RS technology involved in this study have appreciably different 
vegetation penetration capabilities (Deng et al., 2014) and because a DEM grid can by definition 
only have a single elevation/height value per cell node (Reuter et al., 2009), the next accuracy test 
determined the height errors only across several solid, large individual buildings – the overall 
majority having level rooftops. Seventy-two large buildings were selected in total and their exact 
footprints were digitally captured in GIS (Figure 3, left) using the 10cm RGB orthophotos and 
verified by several field inspections. The minimum footprint size was set at three pixels of the 
coarsest subset being tested, i.e. 432m2 (3×12m×12m). To account for possible occlusions by tree 
canopies over any of these 72 built-up structures, a distinct vegetation layer was produced. This 
was achieved by first classifying the VHR multi-spectral WorldView3 and RGB images with a 
modified NDVI algorithm before combining the outputs and temporally adjusting it. This layer 
(also shown in Figure 3) was finally converted to a simple 1/0 Boolean mask (zero being vegetation 
free) at a 2m grid resolution. Thus, all non-zero cells traversed during sampling were summed and 
expressed as a percentage of the total number of intersecting grid cells per building footprint. This 
ratio could thus later be correlated against individual results exhibiting excessive height errors to 
consider whether the presence of any tree cover occlusions could possibly have been a major 
contributing factor to the erroneous offset. 

All height offsets computed thus far described the average errors over the complete nDSM, 
individual LCLU classes or buildings in question and the total sum thereof would be nonsensical. 
Yet, this is different when measured in 3D space as volume per pixel. Aboveground volume (Va) 
at each cell node was equated as height multiplied by cell area (m3) for each nDSM before 
comparing it with the corresponding pre-processed reference volumes. The total summed volume 
represented by the extracted reference grid cells over a particular class or area can then be 
subtracted from the summed volume produced by the corresponding cells in the sample data (ΔVa) 
in order to estimate its 3D dimensions and magnitude (Gröhmann et al., 2011).  

 

3. Evaluation Results  

3.1. Relative Height Accuracies  

Statistical analysis of the relative vertical offsets measured between the three nDSMs and their 
corresponding reference grid over the study area produced different height accuracies for each. All 
the computed error statistics are listed in Table 3, including the respective sample sizes. The 
APnDSM2 performed best in terms of vertical accuracy (i.e., 1.67m NMAD), followed by the 
E4nDSM4 (i.e., 2.44m NMAD), and the WDnDSM12 slightly worse (i.e., 2.79m NMAD). With 
negative mean errors for all nDSMs overall, it suggested a general underestimation of the actual 
heights. In all three cases, these were mostly contributable to the height inaccuracies in the source 
data over the vegetative component of the land cover, particularly larger trees and dense bushes. 
The significant magnitude and spatial distribution of these relative vertical errors along with 
others, here classified in natural breaks (Jenks), can be viewed in Figure 4. The topographic height 
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errors of the APnDSM2 were the most uniformly distributed, whereas the E4nDSM4 did have 
some other localised areas that produced noticeable errors – with both positive and negative offsets 
discernible. 

Table 3. Point-to-point height error statistics computed across the entire extent  

Subset n 
Relative vertical error statistics (m) 

ME SD MAE RMSE NMAD 
APnDSM2 795,616 -1.02 2.67 1.78 2.32 1.67 
E4nDSM4 200,530 -0.81 3.03 2.11 2.69 2.44 
WDnDSM12 22,287 -1.77 3.35 2.69 3.67 2.79 

 

 
Figure 4. Magnitudes and spatial distributions of the relative height errors for the (left) 

APnDSM2, (middle) E4nDSM4, and (right) WDnDSM12. 

So did the WDnDSM12, but more pronounced as evident with the underestimations in areas of 
dense and/or high vegetation in general. Thus, regardless of the sensor involved, here the blue 
shades observed over the dense patches of vegetation substantiated the general under measurement 
of height. Localised height overestimations (red shades) were also more prominent with the 
WDnDSM12, particularly on the extreme hills tops and ridges (in the central part of the study area) 
and in parts of the formal residential areas. These relatively larger underestimations across all the 
three nDSMs in tall vegetation, together with the prominent positive errors found along the vertical 
break lines (footprint perimeter) of many large buildings were also clearly expressed in the detailed 
accuracy statistics computed across each of the nine LCLU classes (Table 4). Conversely, rocks, 
bare soils or with areas with scarce or short vegetation (e.g., cultivated grass) generally recorded 
the best vertical accuracies. When the built-up component were scrutinized, the same reasonable 
accuracies applied for single storey houses, but – as with tall trees – rapidly deteriorated when 
most multi-storey buildings were encountered. Similarly, the lower than expected accuracies in 
the ‘Built-up–Artificial/Bare/Paved’ class could possibly also be attributed to extensive tree 
canopy cover along paved roads, urban streets and courtyards, including within paved parking 
areas, here also often covered with translucent carport structures and numerous stationary vehicles 
during daytime. Although artificially levelled, the accuracies over the waterbody class differed by 
0.3m at most between the three nDSMs.  
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Table 4. Relative height error statistics within each of the nine primary LCLU classes  
APnDSM2 

n 
Relative height error statistic (m) 

LCLU ME SD MAE RMSE 
VEG – Trees 255,543 -3.17 2.71 3.39 4.18 
VEG – Tall shrub/Grass 93,502 -0.95 1.69 1.61 1.94 
VEG – Grass 145,627 0.82 1.62 0.96 1.82 
VEG – Grass & Bare soil 44,950 0.15 1.42 0.72 1.43 
BLT – Artificial/Bare/Paved 110,876 0.23 1.85 0.96 1.86 
BLT – Single storey 63,102 -0.05 1.81 1.28 1.81 
BLT – Multi storey 54,580 -0.67 2.80 1.72 2.88 
NAT – Bare rock/Gravel/Soil 25,655 -0.91 1.40 1.17 1.67 
WTB – Artificial dam 1,781 0.29 1.58 0.78 1.60 

E4nDSM4      
VEG – Trees 63,979 -3.47 3.28 3.81 4.77 
VEG – Tall shrub/Grass 23,194 -0.75 1.61 1.35 1.78 
VEG – Grass 36,523 1.05 1.64 1.57 1.95 
VEG – Grass & Bare soil 11,276 1.19 1.45 1.42 1.88 
BLT – Artificial/Bare/Paved 29,273 1.12 1.68 1.57 2.02 
BLT – Single storey 15,760 -0.18 1.58 1.15 1.59 
BLT – Multi storey 13,649 -0.43 2.58 1.63 2.62 
NAT – Bare rock/Gravel/Soil 6,427 0.19 1.24 1.02 1.25 
WTB – Artificial dam 449 0.54 1.64 1.08 1.72 

WDnDSM12      
VEG – Trees 8,191 -4.16 3.19 4.36 5.24 
VEG – Tall Shrub/Grass 2,178 -1.13 1.98 1.91 2.28 
VEG – Grass 3,725 0.62 1.67 1.23 1.78 
VEG – Grass & Bare soil 933 0.00 1.24 0.84 1.24 
BLT – Artificial/Bare/Paved 3,378 0.77 2.09 1.61 2.20 
BLT – Single storey 1,731 -0.61 1.91 1.57 2.00 
BLT – Multi storey 1,504 -4.15 3.54 4.33 5.46 
NAT – Bare rock/Gravel/Soil 606 -0.92 1.50 1.42 1.76 
WTB – Artificial dam 41 1.07 1.57 1.43 1.88 

 

Examining the relative mean height errors computed across each of the 72 large building 
footprints, the APnDSM2 and E4nDSM4 performed notably well (Table 5).  

 

Table 5. Relative height errors and statistics measured across seventy-two large buildings  
Subset Relative vertical height errors and statistics (m) 

MIN MAX ME SD MAE RMSE 
APnDSM2 -2.43 2.54 -0.15  0.69 0.50 0.69 
E4nDSM4 -2.72 1.31 -0.21 0.73 0.55 0.76 
WDnDSM12 -12.10 0.95 -4.76 2.73 4.80 5.48 

Calculated at around -15cm and MAE at 50cm, the APnDSM2 demonstrated high accuracy with 
the E4nDSM4 around 5cm less accurate according to the same descriptors. This opposed to the 
coarser WDnDSM12 that underestimated the mean height at -4.8m, and a MAE of the same 
magnitude. The consistent underestimations evident in all the assessed grids nonetheless confirms 
the considerable influence that the collection of incorrectly classified land cover and/or height 
pixels commonly found along the perimeter of these built structures (due to the original view-
angles and the distinct presence of shadows) have on the overall accuracy of the data when 
included within their footprints. Plotting the vertical mean height errors per nDSM across all 72 
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buildings arranged from lowest (~3.9m) to tallest (~16.3m) mean reference structure height 
(Figure 5(a)), the accuracies of the two higher resolution datasets were clearly superior, seemingly 
irrespective of building height overall.  

 
Figure 5. Mean height errors measured across 72 large buildings when arranged by the reference 

(a) mean building height, (b) footprint area and (c) possible tree canopy cover percentage 

Their error values were clustered closely around the x-axis and significantly diverging from 
zero and each other in only a few instances, yet not necessarily with the taller building structures. 
In contrast, the WDnDSM12 displayed a significantly larger and divergent decrease in accuracy 
(mean heights underestimations) as the built-up structures became taller. When arranged from 
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smallest (~463m2) to largest (~8,834m2) reference building footprint area (Figure 5(b)) or from 
none (zero) to largest (~15%) proportion of each building that might potentially be covered by tree 
canopies (Figure 5(c)), it was apparent that neither had any discernible influence or correlation on 
the vertical mean accuracies obtained. Thus, the physical aerial extent of the 72 large buildings 
and (possible) vegetation cover played no significant role in the relative height accuracy results on 
these structures for all three nDSMs.  

 

3.2. Aboveground Volumetric Accuracies  

The accuracy results from the aboveground volumetric assessment over the nine land cover 
types can be inspected in Figure 6.  

 

Figure 6. The aboveground volumetric differences computed over nine land cover types  

The VEG–Trees class produced the largest total Va discrepancies, with substantial 
underestimations by all three nDSMs assessed (i.e., the WDnDSM12 the most at -4,905,460m3, 
the E4DSM4 at -3,550,440m3 and the APnDSM2 at -3,245,100m3). Under-measurements were 
also returned over multi-storey buildings, but notably smaller in magnitude (i.e., the APnDSM2 at 
-146,180m3 and E4nDSM4 at -94,980m3). Conversely, overestimations of Va were observed where 
cultivated grass species were more abundant and over built-up impervious and artificial surfaces 
(e.g., across the paved transport network and tennis courts). Here the E4nDSM4 was less accurate 
and to a lesser extent the APnDSM2, whereas the WDnDSM12 was at times comparatively more 
accurate than the E4nDSM4 in these land cover types. The four remaining LCLU classes returned 
relatively smaller volumetric differences from the three nDSMs. Another way to comprehend the 
volumetric errors is to express it as percentage over- or underestimation per LCLU class as 
measured against their respective reference volume totals (Figure 7). In the VEG–Trees class the 
APnDSM2 Va underestimation was around 39%, the E4nDSM4 about 46% and the WDnDSM12 
just over 62%, whereas the finer-scaled data sets underestimated the multi storey class by less than 
8% and the WDnDSM12 around 52%.  
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Figure 7. Percentage aboveground volumetric under/over estimations over nine land cover types 

The BLT–single storey class had the least deviation, where the APnDSM2 underestimated Va 
by almost 2%, the E4nDSM4 at around 5% and the WDnDSM12 by almost 18%. Areas with tall 
shrubs and bush recorded volume underestimations from around 26% (E4nDSM4) to almost 43% 
(WDnDSM12). On the other hand, the E4nDSM4 overestimated the (mixed) grass and bare soil 
class volumes by almost 160%, the artificial and bare built-up areas by almost 127% and the VEG–
grass class by 112%. In last-mentioned class the APnDSM2 notably overestimated Va at around 
470% compared to the WDnDSM12 at about 70%. With the retention dam being relatively small 
and the water surface/level artificially smoothed in all the data sets, were the differences regarded 
as inconclusive here. 

Observation of the Va accuracies across the 72 large buildings, this time sorted from smallest to 
largest reference volume (Figure 8(a)), largely echoed the error trends observed earlier when mean 
height was considered. The APnDSM2 performed best in estimating aboveground building 
volume, followed closely by the E4nDSM4, but now only faltered significantly with the (last) two 
largest sized structures. The WDnDSM12 volume errors displayed a similar, but relatively 
smoother, more gradual correlation with total building volume than with building height, and again 
with diminishing accuracy (underestimations) as the total volume increased per building. Once 
more, it was distinguished that the building footprint area did not have any significant influence in 
the volumetric differences found here (Figure 8(b)) with any of the nDSMs tested.  

 

4. Discussions  

In terms of relative height accuracy the fine-scale APnDSM2 results demonstrated its 
superiority, with the E4nDSM4 following closely. The RMSE and NMAD values concurred with 
those reported by Kramm and Hoffmeister (2019) and demonstrated their usefulness for a variety 
of applications that employs 3D data in an urban context.  The WDnDSM12 consistently produced 
the lowest vertical accuracy results, other than the relatively better outcomes produced within 
certain land cover types, particularly where cultivated grass and areas with less to no vegetation 
were encountered.  
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Figure 8. Volumetric differences measured across 72 large buildings when arranged by the 

reference building volume (top) and footprint area (bottom) 

However, all three nDSMs produced relatively larger erroneous offsets where multi-levelled 
(dense) woody vegetation or buildings were encountered in comparison to the other LCLU classes. 
Here significant underestimations were returned in both height and volume as these features 
increased in the vertical dimension – the WDnDSM12 in particular. Taking into consideration the 
WorldDEM™ product’s global coverage at 0.4 arc-sec degree however, it would imply some over-
filtering and/or excessive interpolation to realistically achieve the same standard and fall within 
the mission specifications at all relevant locations worldwide. Conversely, significant 
overestimations of Va may occur over natural and cultivated grass surfaces as demonstrated by 
even the fine-scaled ortho-optic products, with the APnDSM2 producing a notably overestimation 
of around 470%. Seeing that the aerial proportion of VEG–Trees (32%) and VEG–Grass (24%) 
classes combined covers more than half the study area, may such under- and overestimations be 
viewed as problematic for some decision-makers. This might lead to substantial under- and 
overestimations of aboveground biomass, building volumes or other process-based changes if not 
factored into the calculations. 

Research by Gröhmann et al. (2011) attested that the larger the cell size, the less accurate DEM 
volume calculations became. This was clearly demonstrated by the APnDSM2 and E4nDSM4 
being highly accurate when measured over the exact extent of (mainly) level-roofed large 
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buildings, whereas the coarser WDnDSM12 showed notable deterioration in accuracy, especially 
when the building height or volume progressively increased. In concurrence with other past 
research, the VHR ortho-optic models would in practice thus be most useful in the more localised 
and fine-scaled urban geometric applications such as change detection, cityscape designs or 
construction progress monitoring that depend on accurate topographic height data (Beumier and 
Idrissa, 2016; Krauss and Reinartz, 2010). The wide-area WorldDEM™ products would 
effectively be more suitable for geo-spatial investigations on a larger metropolitan or regional work 
scale (Breytenbach and Van Niekerk, 2019) than localised studies, particularly when processing 
time is also taken into account. The total 2D footprint size and possible tree canopy cover 
percentage nonetheless had no discernible influence in or correlation with the vertical accuracy 
results obtained across the 72 large buildings assessed. The last-mentioned factor may however 
only apply to the larger multi-levelled buildings and not the smaller single storey built-up 
structures, such as residential dwellings and individual small business set-ups, which are here 
substantially more obscured by cultivated tree canopies.  

 

5. Conclusion  

When considering specialised DEM applications in a predominantly urban setting, VHR 
elevation data (e.g. DEMs derived from dense point clouds) will provide better outputs than the 
available high to medium resolution (near global) topographic products. Comparatively this was 
clearly demonstrated in this study by the 12m WDnDSM12 that (due to relatively high spatial 
autocorrelation) produced the lowest vertical height and volumetric accuracy overall as opposed 
to the significantly higher accuracies produced by the 2m APnDSM2 and 4m E4nDSM4. 
Nevertheless, all three nDSMs underestimated the height and volume of dense woody vegetation 
and large buildings, especially the coarser dataset. In addition, significant overestimations over 
predominantly grass-covered areas by all three data sets were also demonstrated – the APnDSM2 
in particular.  Thus, some caution should be appropriated if calculating critical aboveground 
building, earthworks and vegetation volumes in relation to urban change detection or monitoring 
applications and subsequent decision-making at a local scale. A sensitivity test and evaluation of 
user parameters in line with the project goals beforehand is therefore recommendable. Despite the 
abundant fine-scale topographic data and seamless DEM products available nowadays, more 
research towards the most effective and efficient methodology to construct a quality DTM from 
the first stage DSM (Beumier and Idrissa, 2016) is needed to in turn arrive at a fit-for-use nDSM. 
Concerning fine-scale HRSI and aerial ortho-optic data, the correct choice of ground filtering 
algorithm remains pertinent to effectively remove all man-made structures and correctly process 
areas with high density vegetation (Barbarella et al., 2019), particularly in comparison to the 
advantageous multi-returns and small support size offered by lidar data (Basgall et al., 2014).  
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