
OTA Firmware Updates for LoRaWAN Using Blockchain

Njabulo S. Mtetwa

Department of Computer Science

University of Zululand

KwaDlangezwa 3886, South Africa

mthethwansm@gmail.com

Nombuso Sibeko

 Department of Computer Science

University of Zululand

KwaDlangezwa 3886, South Africa

 nombuson@gmail.com

Paul Tarwireyi

Department of Computer Science

University of Zululand

KwaDlangezwa 3886, South Africa

tarwireyip@unizulu.ac.za

Adnan M. Abu-Mahfouz

Council for Scientific and Industrial

Research (CSIR)

Pretoria 0184, South Africa

a.abumahfouz@ieee.org

Abstract— LoRaWAN is one of the LPWAN technologies that has

become popular in both industries and research. LoRaWAN aims

to provide long-range communication and empowers low-

powered devices to last for years in the field. LoRaWAN relies on

the symmetric cryptography to provide end-to-end encryption.

Even though LoRaWAN relies on symmetric cryptography, there

are recent works that try to enhance security of LoRaWAN by

incorporating technologies like Blockchain. Blockchain is a

decentralized peer-to-peer network that provides tamperproof

and immutability of data. This paper proposes a Blockchain-

based firmware update mechanism to enhance firmware update

in LoRaWAN as well as managing the update process. This

mechanism aims to provide updates by ensuring authenticity, and

integrity of the firmware. The mechanism focuses more on devices

that are too constrained in resources, hence for that purpose we

evaluated the cost involved in some cryptographic operations

taken to ensure security during firmware updates. We conclude

that the approach is feasible for constrained devices in

LoRaWAN network by evaluating the memory usage of the

cryptographic operation used by the end device.

Keywords— LoRaWAN, Security, Firmware, Blockchain,

Resource-constrained devices, Internet of Things, LPWAN

I. INTRODUCTION

The Internet of Things (IoT) has been growing

exponentially [1] in the past few years and more devices are

still expected in the future. Several communication

technologies such as Wi-Fi, Cellular, and Low-Power Wide

Area Network (LPWAN) are used to establish a connection

between the vast of connected devices. LoRa in conjunction

with LoRaWAN are mostly used and popular LPWAN

technology with the aim of providing long-range

communication and low-power consumption [2]. LoRa refers

to a physical layer utilizing a chirp spread spectrum technique

to provide long-range connectivity whereas LoRaWAN is a

protocol that builds on top of LoRa and creates the network

layer for managing traffic.

Most of the IoT devices were built with no security in mind

hence; they are vulnerable to some attacks. Vulnerabilities

enable hackers to gain access to the devices illegally, which

can bring harm to the entities that rely on the IoT devices. For

instance, one of the top hacks took place in 2015 called the jeep

hack [3]. This hack was performed by two researchers who

took advantage of many vulnerabilities including the firmware

update vulnerability and reverse engineered the firmware to

retrieve sensitive information such as, encryption algorithms,

sensitive URLs, API and encryption keys. The researchers

were able to take control of a jeep using the vehicle’s

Controller Area Network (CAN) bus that enables

communication between different elements on vehicle such as

steering wheel, breaks, heaters, locks, headlights etc. The CAN

messages were sent to take control of various elements of the

vehicle to make it speed up, slow down and even veer off the

road. The lack of security on firmware update made this attack

possible therefore, reliable mechanisms are required to ensure

security during the firmware updates. Open Web Application

Security Project (OWASP) listed vulnerabilities that attackers

use to compromise the IoT devices [4]. The attacks include

insufficient authentication authorization, lack of transport

encryption, privacy concerns, inadequate security

configuration, insufficient physical security and insecure

firmware updates. Attackers use these vulnerabilities to

illegally gain access to devices and perform nefarious activities

such as retrieving sensitive user information like passwords,

encryptions keys etc.

 LoRaWAN provides security of the LoRa end devices

through symmetric-key cryptography. Advanced Encryption

Standard (AES) is utilized as an encryption algorithm to

provide end-to-end encryption between LoRa devices and the

servers. Despite the fact that LoRaWAN guarantees security

through symmetric cryptography the replay attack can occur

if the network does not appraise it [5]. Recently, some works

have taken advantage of integrating LoRaWAN with other

technologies as a means of adding extra layer of security. One

of these technologies is Blockchain technology. Blockchain

technology is a decentralized peer-to-peer network that is not

managed by a third party [6]. Blockchain consists of many

nodes that validates a group of transaction where each node

saves a copy of a Blockchain ledger. This has an advantage

since the data is distributed and is not controlled by one entity

or the third party. One can deploy a smart contract, which

cannot be updated, or manipulated by any entity; hence,

Blockchain enables data to be immutable and tamper-proof.

Asymmetric cryptography and hashing is a security behind the

Blockchain.

 A study by [7] integrated LoRaWAN with Blockchain to

improve security in a join procedure since it is subject to replay

attack. The proposed mechanism utilized Ethereum

Blockchain where the gateway and network server are

connected to Blockchain via an agent node through an interface.

In [8], the authors propose a Blockchain based solution to build

an open, trusted decentralized, tamper-proof system for

LoRaWAN. In the proposed system, Blockchain was

integrated on the network server, however the system was only

proposed then in [9] came up with a proof of concept by

implementing the forwarding network server and integrated

Blockchain with it. The aim of these integrations is to

strengthen the security of LoRaWAN and to mitigate the

vulnerabilities in IoT. Most of these vulnerabilities are found,

after the devices are deployed and operating in the field. This

means that the device manufacturers are expected to release

new firmware versions to fix bugs, to improve device

functionality and all this has to be done securely.

In this paper, we propose and implement the mechanism on

how Blockchain can be utilized to provide security in firmware

updates to LoRa end devices. We propose a mechanism that

can be suitable for the devices that are constrained in resources.

Blockchain acts as an extra layer of security to determine

integrity and authenticity of the firmware on top of LoRaWAN.

The proposed system is validated using the LoPy and

expansion board 2.0 that is ESP32 chip based. The Ethereum

test network called rinkeby is used as a public Blockchain

network together with the InterPlanentary File System (IPFS)

for storing the firmware image [10]. For the transmission of

LoRa packets, we utilize the Things Network stack v3.8.3. The

Preliminary results show that the approach is feasible for

constrained devices in LoRaWAN network.

II. RELATED WORK

The LoRa Alliance [11] has come up with the new

specification to make the firmware update more easily in

LoRaWAN. These specifications include multicast,

fragmentation, clock synchronisation. There is not much work

based on providing firmware updates in LoRaWAN, therefore

we also look on the few ones using LoRaWAN and how other

constrained devices are being update on the Internet of Things.

Recently, the authors of [12] implemented a simulation tool

called FUOTASim to show how firmware update can be

achieved in LoRaWAN. The work also shows how the large

number of LoRa devices can be updated using new LoRa

specifications. The security during firmware update was out of

the scope for this work. In [13] the authors propose how the

LoRa devices could be updated; however, the method uses the

traditional network technology to convey firmware image to

the end device. This is not considered as a good solution for

the devices operating on battery; hence, it may consume more

power during the firmware updates and not suitable for the

devices that are deployed in certain areas with no internet

connection.

There are also Blockchain-based firmware updates

mechanisms that target constrained devices. The authors [14]

proposed a scheme that utilizes a Blockchain technology to

securely check the firmware version, validate the correctness

of the firmware and download the latest firmware for the

embedded devices. In the proposed scheme, every IoT device

represented a node in the Blockchain, which means they are

required to store the Blockchain ledger in their local storage.

The challenge with this is that most of the IoT devices have

limited resources such as energy, computation and storage

capacity. This mechanism might be difficult to be implemented

in the real-world IoT environment.

The authors of [15] propose and implemented a

decentralized firmware update framework called Código

network, which was implemented on top of the Ethereum

Blockchain, and the IPFS network. The target was to achieve a

framework, which will allow no single point of failure,

scalability, transparency of firmware updates, equivalent

security code with code signing. The code signing, which was

achieved through the use of digital signature and also through

the use of Ethereum smart contract checked whether the

firmware has been corrupted. This was achieved by comparing

the hash stored in the smart contract with the hash of the

firmware. The proposed solution was experimented with

10MB of the firmware image. The firmware was distributed in

three different storages including the central server, BitTorrent

and IPFS. The proposed mechanism is completely not suitable

on the constraint networks and for constrained device such as

class 0, class 1 since; it consists of the firmware image with

large size of 10MB.

In this paper, we to provide a Blockchain based firmware

update mechanism for LoRaWAN considering the security

constrained devices.

III. PROPOSED ARCHITECTURE

In this section, we start by listing the requirements of the

propose system and then explain the proposed architecture

illustrated in Fig. 1. The architecture has two subsystems.

LoRaWAN and independent Blockchain network.

A. Proposed Architecture Requirements

The goal of the proposed architecture is to.

1) Suitable for resource constrained devices: The

integration of Blockchain and LoRaWAN must suit LoRa

devices which fall in class-0 and class-1 (constrained

devices).

2) No utilization of any traditional wireless technology:

The proposed architecture must only rely on LoRa and

LoRaWAN to deliver the firmware to the end device. This

ensures the end device does not consume lot of energy

during the firmware update process.

3) Authenticity and Integrity: This is an important part of

the firmware updates. The authenticity and the integrity of

the firmware must be achieved.

4) No single point of failure: The update mechanism must

be able to get the requested firmware image even if the

manufacturer’s node/repository is not available.

5) Multi-vendor/heterogeneous IoT devices: LoRaWAN

consists of different devices from different manufacturers,

therefore, the update mechanism must be design to support

heterogeneous IoT device network with multiple

manufacturers.

B. LoRaWAN

LoRaWAN consists of four components namely, LoRa end

device, LoRa gateway, network server, application server and

update service.

Fig 1. System architecture.

1) LoRa end device: An entity that needs firmware

updates. These devices are very constrained with low

processing; storage capabilities hence, it becomes difficult

to incorporate advance cryptographic techniques. They are

low-powered and most of the time they wake up, send data

to the gateway then go back to sleep. In this proposed

architecture, Blockchain is not integrated on the end

devices because of the resources they have.

2) LoRa gateway: The gateway receives LoRa packet from

the LoRa end devices and transmit packet to at least one or

more network servers attached to it.

3) Network Server: The network server is responsible for

handling du-duplication of packets from multiple gateways,

handles devices join requests, queuing the downlink

messages and send sends them to the gateway. The network

session key (NkwSKey) is used for integrity validation of

messages between the end device and the network server

4) Application Server: Uses application session key

(AppSKey) to encrypt and decrypt the payloads. It has of

multiple integrations such as HTTP, Message Queuing

Telemetry Transport (MQTT), etc. MQTT integration is

used to connect the application server and the update

service. The interception of possible Blockchain network

and LoRaWAN is based possible through this integration

5) Update Service: Update service is connected with

application server via MQTT protocol. The entire update

process is controlled by the update service which does these

number of tasks:

• Subscribes and listens to registered devices MQTT

topics from the application server.

• Handles the device firmware requests.

• Connects to the InterPlanentary File System (IPFS),

Blockchain network and continuously listens for

any new incoming firmware update event on the

Blockchain.

• Get the latest firmware from the IPFS and performs

the fragmentation based on the SF or data rates

used by the end device.

• Performs cryptographic operations such as

generating the session keys to be used by the end

device during that particular session of firmware

update, encrypt confidential data i.e. integrity hash,

moreover it determines the authenticity and the

integrity of the firmware image before, the image

is sent over LoRaWAN.

• Update the state of the end device to the

Blockchain.

C. Blockchain and IPFS

The manufacturers share their device firmware image

shared publicly. This enables the device owners to download

the image and update their devices. In our proposed

mechanism, the public Blockchain is used to publicly share the

firmware information like metadata. The firmware image is

public stored on the decentralized IPFS, which enable high

availability of the firmware. Manufacturer of the devices needs

to own a blockchain node that synchronizes with the network

together with the IPFS node, which is connected to the IPFS

network. In our mechanism, we used the infura service nodes

for both IPFS and blockchain instead of running our local

nodes.

IV. FIRMWARE UPDATE INTERACTION

This section mainly explains the interaction between the

components involved during the firmware update process. We

start by describing the assumptions of the proposed system and

then explain the interaction, which is classified in four main

phases: device registration, firmware upload, firmware

initiation, and finally, the entire update process.

A. Assumptions of the proposed architecture

The proposed system has the number of following

assumptions:

1) The firmware update is applied on constrained devices

with low processing capabilities to perform heavy

cryptographic operations.

2) The firmware is stored on the open repository and can

be downloaded by anyone; therefore, there is no need

to encrypt the firmware from our update service to the

end device. However, the content is also shared via SSL

between application server and update service.

Fig 2. Interaction of system components.

Moreover, encrypting each firmware fragment will result in

maximizing the packet size. For instance, if AES-128 is used

in secure modes like CFB/CRT mode the 128 bits (16 bytes)

of extra payload for the initialization vector is required.

3) Encryption and decryption keys are stored in a device

secure module.

B. Device Registration

In order for the end device to receive the firmware updates,

the registration to the update service is required. The update

service needs the smart contract address of the manufacturer

and the wallet address of the manufacturer and the model. This

information is saved encrypted by the update service on the

Blockchain network. A smart contract address will be used by

the update service to locate an ABI of the manufacturer of the

device and then use that ABI to interact with the smart contract

on the Ethereum Blockchain. The update service generates the

update key (UDTKey) of 128 bits which acts as a master key.

UDTKey is used for encryption, decryption of session keys.

C. Firmware Upload

The new firmware image must be uploaded to the public

repository. Decentralized storage IPFS is used to ensure high

availability of the firmware image, so that the update service

gets the firmware even if the manufacturer’s repository is not

available. At this point, the manufacturer creates smart

contracts and is deployed on the Ethereum network. The

firmware image is sent along with the firmware metadata.

Firmware metadata contains information such as the size,

devices the firmware is targeting, location of the firmware

image, the integrity hash of the firmware, the signature of the

manufacturer etc. The purpose of the firmware metadata is to

ensure that the device installs the right firmware from the right

manufacturer. It is recommended to store metadata on

Blockchain since Blockchain is immutable and provides

tamper-proof. The manufacturer signs the metadata with the

private key and produces a signature that is sent along with the

metadata. Ethereum Blockchain signature is based on the

Elliptic Curve Digital Signature Algorithm (ECDSA) with 72

hexadecimal characters (36 bytes) which is quite different from

RSA signature.

D. Firmware Initiation

This section shows how firmware update is initiated. The

firmware update can be started based on two events. The first

is when the device joins a network, secondly is when the

update service captures a new event from the Blockchain that

is triggered by the manufacturer on uploading the new

firmware. Figure 2 shows what happens on each initiation

process. In this phase, we focus more on session key exchange.

The device starts by sending the initiation message, which

consists of the identifier, which is unique for this message and

the nonce value.

The nonce is a number that is used only once to avoid any

replay attack on the session key exchange and for any

confidential data. The update service then generates session

keys and sends them as a downlink message. It is a best practise

not to use the same encryption keys for a long period therefore,

we do not intend to use UDTKey for encryption or decryption

of any confidential data for the entire update session but

instead the UDTKey is used to generate new set of keys for

encryption and decryption of data. AES key and MAC key are

of both 16 bytes each. We consider using symmetric based

cryptography AES and MAC because, are suitable for

constrained devices compare to digital signature that based on

asymmetric cryptography this has been shown is several

studies [16][17].

Fig 3.Cont. Interaction of system components.

Both MACKey and AESKey are shared encrypted using the

UDTKey that was shared earlier with the end device. The

AESKey is used to encrypt and decrypt integrity hash or tag

rather any confidential message that will be shared by an

update service to the end device. We intend to provide the

integrity and authenticity on the end device through the MAC

algorithm called Hash-based Message Authentication Code

(HMAC) in SHA256 mode.

ID IV Nonce DevNonce ServNonce AESKey MACKey

1 4 4 4 16 16

Fig 4. Session key exchange format.

The device obtains payload structured from Figure 4 and

decrypts the session keys with UDTKey and most importantly;

it checks the nonce values for any replay attack. The device

responds with the payload showed in Figure 5 which consist of

the device, service nonce and the current firmware version.

ID IV Nonce DevNonce ServNonce Version

1 4 4 4 N

Fig 5. Device version exchange.

 Once the current version is received, an update service

fetches a smart contract, wallet address and device model from

the Blockchain. The smart contract address is used to locate the

Application Binary Interface (ABI) of manufacturer on

Ethereum network. The wallet address is used for verification

of the manufacturer’s signature. Firmware version and model

of the device is provided on the Blockchain to check for any

new firmware update and if the update is available, the

metadata is retrieved.

The second way the firmware update can be started is

through an event captured on the Blockchain network. This is

illustrated in Figure 2 as the second condition on the sequence

diagram. In this exchange the update service, get the metadata

from the events and then exchange the message shown in

Figure 4.

E. The Entire Firmware Process

Figure 3 illustrates the entire firmware update process. At

this stage, the session keys are exchanged successfully and the

firmware metadata is obtained successfully. The authenticity

and integrity of the firmware have to be determined. The

metadata contains information about where to get the actual

firmware image. We have to decide or not we have been

represented with the right metadata. Despite the fact that

update service is connected via a secure channel with the

Blockchain node, the authenticity of the metadata must be

achieved. Firmware manufacturer has already signed the

firmware with the private key; hence, the corresponding public

key is then used to verify the authenticity of the firmware.

However, because Ethereum Blockchain is not based on RSA

signature but, is based on ECDSA therefore, the verification

process is little different. Every entity on the Blockchain has

three unique set of keys/addresses. The private key, public key

and the wallet address. We perform signature verification by

feeding a function with the message (metadata) together with

the signature (manufacturer’s signature). The function will

then generate a wallet address that signed the metadata in this

case, is the manufacturer’s wallet address. The wallet address

produced from the function is matched against the one

registered by the device earlier on the Blockchain. If the

addresses are the same then we trust the metadata and continue

with the firmware updates.

Metadata consist of the IPFS that is used to download the

firmware image. Even though the content is served over a

secure channel between the IPFS node and the update service,

it is a necessity to achieve integrity. The update service re-

computes the SHA256 hash and compares it with the hash on

the metadata. If two hashes are the same, that means we have

successfully achieved the integrity and we continue with the

firmware update. Since, the firmware updates are automated

meaning, the update service continuously listen for any new

incoming firmware updates for the devices registered to it.

Therefore, it is mandatory to perform cryptographic operations

on top of the application server before; the firmware is

fragmented and sent to the device. This serves as an additional

layer of security at the application level to provide encryption,

integrity and authentication based on asymmetric cryptography.

LoRa end device needs to verify the integrity and

authenticity of the firmware. For that, we use MAC algorithm

based on hashing which is HMAC-SHA256. Before the

firmware image is sent over LoRaWAN the exchange of MAC

tag of 16 bytes takes place to determine the integrity and

authenticity of the firmware. Note, the MAC or tag produced

by the HMAC is of 32 bytes however, instead of sending the

entire MAC we send the truncated MAC of first 16 bytes.

Usually this kind of integrity and authenticity is done before

the bootloader takes over. The MAC tag was encrypted using

the AESKey and signed with the MACKey, which was

exchanged earlier. A device receives the MAC exchange

message showed in Figure 6 then validate the authenticity and

the integrity using an earlier shared MAC session key.

ID TAG IV Nonce DevNonce ServNonce MAC

1 8 4 4 4 16

Fig 6. MAC exchange.

 Once the MAC is successfully exchanged, we do the

fragmentation, which is based on the spreading factor (SF) or

data rate used. For instance, if SF12 is used each fragment must

not be more than 51 bytes. Each fragment is saved on the

storage or flash memory. In case of the lost fragments the flash

memory is scanned to see, any lost fragments then send the list

of fragments missing. After the device has received all the

fragments including the ones of packets lost, it performs the

integrity and authenticity check by recomputing the firmware

image MAC tag and match against the one received from the

update service in Figure 6. If MAC do not match, the update

process disregard firmware and abort the process. Generally,

the bootloader takes control of verifying the firmware before it

is flashed on the device. However, for the scope of this work

we do not focus on the security of the bootloader after the

firmware has been successful verified by the application.

V. RESULTS

A. Implementation

The experiments were performed on UBUNTU 19.04 with

Intel Core i5-4300 CPU @ 2.6GHz. The proposed architecture

utilizes public Ethereum Blockchain network, a public

Blockchain is chosen because, of the nature of firmware

updates which is meant to share the firmware image and it

metadata publicly. The Ethereum Blockchain smart contract

drives the firmware update and ensures the security during the

firmware process. Smart contact is implemented with the

solidity programming language and deployed on the Rinkeby

test network. The infura service node is used to give the access

to the Blockchain network. A web-based manufacturer

interface is implemented to interact with the Blockchain

network via the infura Blockchain node. Figure 7 shows the

implemented interface that allows the manufacturer to sign

firmware, upload the firmware image to the decentralized IPFS

network and publish metadata to the Blockchain network.

Fig 7. Manufacturer interface.

In handling LoRa packets, we run our own private

LoRaWAN servers using the TTN stack v3.8.3. These servers

connect to the RAK831 gateway that forwards LoRa packets

to the LoPy device. The update service is implemented in

python and interacts with the Blockchain network via web3

interface. The firmware image needs a place to be stored and

we use IPFS infura service node that is connected to the IPFS

decentralized network. The firmware mechanism is tested on

the LoPy LoRa end device from Pycom, which uses EU region

with the channel random selected.

TABLE I. EVALUATION PAREMETERS.

Parameters Values

Rx1 Window Both downlink and uplink

Region EU (channels duty cycle

1%)

Gateway 1

Device Antenna Gain 2 dBm

Gateway Antenna Gain 0 dBi

Bandwidth LoRa.BW_125KHZ

Spreading Factor 7 - 12

B. Evaluation

We evaluate the performance based on the device operating

in class A mode. This mode requires an uplink message for a

firmware fragment to be received that therefore, is considered

to be not a good mode for firmware updates, however we

examine the cost involved when device is operating on class A

by applying the delta update. We also evaluate the performance

of Ethereum Blockchain and execution cost of Blockchain

update operations. Our smart contract consists of four main

methods that are presented on Table II.

TABLE II. EXECUTION COST OF BLOCKCHAIN OPERATIONS.

Methods Gas for

execution

Transaction fee

Ether

addMetadata(372B) 521,049 0.000521049

addMetadata(744B) 537,533 0.000537533

addMetadata(1.16KB) 588,670 0.00058867

registerDevice() 50,718 0.00405744

updateDevInfo() 28,968 0.00231744

getMetadata() 0 0

getDevInfo() 0 0

getDevsInfoByModel() 0 0

From Table I, we can observe that, as the metadata increases

in size the gas needed to mine the metadata on the Ethereum

network increases as well. For instance, when the metadata size

increases from 300 bytes to 600 bytes the gas also increases

from 521,049 to 537,533, which means extra 16,484 gas is

required. This is even true for other transactions which

including registering the device and updating the device

information after the successful update. However, when the

update service retrieves the data from the Blockchain there are

no transaction fees. This is because there is no transaction

being added on the Blockchain based on get operations.

We also study the effect of the firmware sizes, which are 1KB,

2KB, 3KB, 4KB and 5KB. Figure 8 depicts that the number of

fragments tends to decrease from the small SF to high SF. This

is because of the limitation on the maximum payload one is

allowed to transmit on a given data rate or SF and the region

the device is operating in. The maximum application payload

for SF12, 11, 10 should not be more than 51 bytes. SF9 limits

no more than 115 bytes and finally for SF8 and SF7 only

fragments less than 222 bytes are allowed. However, 45,104

and 204 were used to ensure that the payload falls under a SF

or data rate. Figure 9(a) shows fragment size used per each SF

and airtime of each fragments size while Figure 8 represents

the total number of fragments needed to be sent depending of

the SF and the firmware size. It is observed that from Figure

9(b) for the same fragment size the airtime tends to differ for

each SF. For instance, using SF12 and SF11 on the fragment

size of 45 bytes the airtime is higher on SF12. We conclude

that at the highest SF the firmware fragments tend to increase,

which leads the higher or increase in airtime.

Fig 8. Number of firmware fragments.

Fig 9. Airtime with corresponding fragment.

Fig 10. Time taken to update.

Firmware size has a huge impact on the update time. The

update time refers to the time where the first firmware

fragment was sent to the end device to where the entire

firmware is verified by the end device. It is observed that from

Figure 10 the update time increases as firmware size increases.

For instance, applying 5 KB of firmware using SF 7 it only

takes 3.55 minutes (213 seconds) whereas, using the SF 12 it

takes 31.1 minutes (1866 seconds). This increase of update

time is due to the airtime of each fragment for a particular SF

or is due to the duty cycle limitation since, the next firmware

fragment has wait for the next opportunity to be sent. We can

conclude that the larger the firmware image, the more time

would take to update the LoRa end device.

Fig 11. Memory usage on the end device and execution of cryptographic
HMAC operation.

Applying firmware update on the constrained device and

performing the cryptographic operation could be very

expensive in resources therefore, it is important to look at the

cryptographic costs involved when securing the device during

the update process. The LoRa end device had 56704 KB of

RAM available before the firmware update. Figure 11(a) and

Figure 11(b) show both memory consumption and time take

for each cryptographic operation.

The MAC verification time of the firmware image tends to

increase as the image sizes increase which also consumes more

memory for verifying the image. This because, the entire

firmware is loaded from the flash memory/storage and read in

small chunk sizes which are appended to form whole binary

that serves as an input the HMAC-SHA256. Therefore, this

leads the firmware size to be directly proportional to both time

and memory. Since end device consist of approximately 56704

KB of RAM this means the mechanism can utilize 10.1% of

RAM in verification of firmware image of 5KB.Now,

considering constrained devices class-0 and class-1.

Constrained devices belonging to these classes consists of

RAM and flash of tens or hundreds of kilobytes. Therefore, if

a constrained device consists of the RAM approximately to

10KB the MAC verification could a take half of the memory

when updating the 5BK image.

VI. CONCLUSIONS AND FUTURE WORK

It is inevitable that bugs and vulnerabilities are only going

to be discovered after IoT devices have been deployed to the

field. This means that the device manufacturers are expected to

release new firmware versions to fix bugs, to improve device

functionality. In this paper, we presented a Blockchain-based

firmware update mechanism to enhance LoRaWAN security

during the firmware update process. The orchestration of the

whole process is performed by the update service implemented

to serve as an extra layer of security during the firmware update.

We evaluated a proposed Blockchain-based mechanism

showing the impact of updating LoRaWAN class A device.

The results showed that the firmware update size or fragment

has great impact in update time for a certain spreading factor

used. For example, applying 5 KB of firmware using SF 7 can

takes about 3.55 minutes whereas, using the SF 12, it takes 31.1

minutes; this could be even more for larger firmware size. The

firmware update Blockchain smart contract operations

demonstrated the cost in involved as the metadata size

increases, which also leads to more gas required to store

metadata on the ledger. The firmware verification

measurements indicate that using HMAC-SHA256 with 128-

bit key will required more RAM when the firmware image gets

larger. In future, we intend to test the firmware update

mechanism on large number of devices; LoRa Alliance has

come up with the number of new specifications that makes

firmware update process easier. These specifications include

multicast, fragmentation, clock synchronisation and these can

be simple incorporated with our Blockchain based update

service to deliver the firmware update to large number of

devices.

REFERENCES

[1] K. R. Ozyilmaz and A. Yurdakul, “Designing a Blockchain-Based

IoT with Ethereum, Swarm, and LoRa: The Software Solution to

Create High Availability with Minimal Security Risks,” IEEE

Consum. Electron. Mag., vol. 8, no. 2, pp. 28–34, 2019.

[2] J. Jongboom and J. Stokking, “Enabling firmware updates over
LPWANs,” Embed. World Conf., 2018.

[3] A. Gupta, The IoT hacker’s handbook [electronic resource]: A

practical guide to hacking the internet of things / Aditya Gupta. 2019.
[4] OWASP, “OWASP Top 10 Internet of Things,” Salem Press Encycl.

Sci., pp. 5–7, 2018.

[5] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes,
“Exploring the security vulnerabilities of LoRa,” 2017 3rd IEEE Int.

Conf. Cybern. CYBCONF 2017 - Proc., 2017.
[6] S. (CSA) Khemissa, “Using Blockchain Technology to Secure the

Internet of Things,” p. 26, 2018.

[7] S. M. Danish, M. Lestas, W. Asif, H. K. Qureshi, and M. Rajarajan,
“A Lightweight Blockchain Based Two Factor Authentication

Mechanism for LoRaWAN Join Procedure,” 2019 IEEE Int. Conf.

Commun. Work. (ICC Work., pp. 1–6, 2019.
[8] J. Lin, Z. Shen, and C. Miao, “Using Blockchain Technology to

Build Trust in Sharing LoRaWAN IoT,” Proc. 2nd Int. Conf. Crowd

Sci. Eng. - ICCSE’17, no. February, pp. 38–43, 2017.
[9] A. Durand, P. Gremaud, and J. Pasquier, “Resilient, crowd-sourced

LPWAN infrastructure using blockchain,” CRYBLOCK 2018 - Proc.

1st Work. Cryptocurrencies Blockchains Distrib. Syst. Part MobiSys
2018, pp. 25–29, 2018.

[10] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,”

no. Draft 3, 2014.
[11] LoRa AllianceTM, “LoRaWAN Application Layer Clock

Synchronization Specification v1.0.0,” pp. 1–13, 2018.

[12] K. Abdelfadeel, T. Farrell, D. McDonald, and D. Pesch, “How to
make Firmware Updates over LoRaWAN Possible,” no. February,

2020.

[13] L. Examples, “OTA update,” pp. 1–7, 2020.
[14] B. Lee and J. H. Lee, “Blockchain-based secure firmware update for

embedded devices in an Internet of Things environment,” J.

Supercomput., vol. 73, no. 3, pp. 1152–1167, 2017.
[15] S. A. Nanopoulos, “Código Network : a Decentralized Firmware

Update Framework for IoT Devices,” 2018.

[16] A. Report, “Secure In-Field Firmware Updates for MSP MCUs,” no.

November, pp. 1–13, 2015.

[17] J. King, “A Distributed Security Scheme to Secure Data

Communication between Class-0 IoT Devices and the Internet,” p.
58, 2015.

