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Abstract— LoRaWAN is one of the LPWAN technologies that has 

become popular in both industries and research. LoRaWAN aims 

to provide long-range communication and empowers low-

powered devices to last for years in the field. LoRaWAN relies on 

the symmetric cryptography to provide end-to-end encryption. 

Even though LoRaWAN relies on symmetric cryptography, there 

are recent works that try to enhance security of LoRaWAN by 

incorporating technologies like Blockchain. Blockchain is a 

decentralized peer-to-peer network that provides tamperproof 

and immutability of data. This paper proposes a Blockchain-

based firmware update mechanism to enhance firmware update 

in LoRaWAN as well as managing the update process. This 

mechanism aims to provide updates by ensuring authenticity, and 

integrity of the firmware. The mechanism focuses more on devices 

that are too constrained in resources, hence for that purpose we 

evaluated the cost involved in some cryptographic operations 

taken to ensure security during firmware updates. We conclude 

that the approach is feasible for constrained devices in 

LoRaWAN network by evaluating the memory usage of the 

cryptographic operation used by the end device. 
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Resource-constrained devices, Internet of Things, LPWAN 

I. INTRODUCTION 

The Internet of Things (IoT) has been growing 

exponentially [1] in the past few years and more devices are 

still expected in the future. Several communication 

technologies such as Wi-Fi, Cellular, and Low-Power Wide 

Area Network (LPWAN) are used to establish a connection 

between the vast of connected devices. LoRa in conjunction 

with LoRaWAN are mostly used and popular LPWAN 

technology with the aim of providing long-range 

communication and low-power consumption [2]. LoRa refers 

to a physical layer utilizing a chirp spread spectrum technique 

to provide long-range connectivity whereas LoRaWAN is a 

protocol that builds on top of LoRa and creates the network 

layer for managing traffic.  

 

Most of the IoT devices were built with no security in mind 

hence; they are vulnerable to some attacks. Vulnerabilities 

enable hackers to gain access to the devices illegally, which 

can bring harm to the entities that rely on the IoT devices. For 

instance, one of the top hacks took place in 2015 called the jeep 

hack [3]. This hack was performed by two researchers who 

took advantage of many vulnerabilities including the firmware 

update vulnerability and reverse engineered the firmware to 

retrieve sensitive information such as, encryption algorithms, 

sensitive URLs, API and encryption keys. The researchers 

were able to take control of a jeep using the vehicle’s 

Controller Area Network (CAN) bus that enables 

communication between different elements on vehicle such as 

steering wheel, breaks, heaters, locks, headlights etc. The CAN 

messages were sent to take control of various elements of the 

vehicle to make it speed up, slow down and even veer off the 

road. The lack of security on firmware update made this attack 

possible therefore, reliable mechanisms are required to ensure 

security during the firmware updates. Open Web Application 

Security Project (OWASP) listed vulnerabilities that attackers 

use to compromise the IoT devices [4]. The attacks include 

insufficient authentication authorization, lack of transport 

encryption, privacy concerns, inadequate security 

configuration, insufficient physical security and insecure 

firmware updates. Attackers use these vulnerabilities to 

illegally gain access to devices and perform nefarious activities 

such as retrieving sensitive user information like passwords, 

encryptions keys etc.  

 

   LoRaWAN provides security of the LoRa end devices 

through symmetric-key cryptography. Advanced Encryption 

Standard (AES) is utilized as an encryption algorithm to 

provide end-to-end encryption between LoRa devices and the 

servers. Despite the fact that LoRaWAN guarantees security 

through symmetric   cryptography the replay attack can occur 

if the network does not appraise it [5]. Recently, some works 

have taken advantage of integrating LoRaWAN with other 

technologies as a means of adding extra layer of security. One 

of these technologies is Blockchain technology. Blockchain 

technology is a decentralized peer-to-peer network that is not 

managed by a third party [6]. Blockchain consists of many 

nodes that validates a group of transaction where each node 

saves a copy of a Blockchain ledger. This has an advantage 

since the data is distributed and is not controlled by one entity 

or the third party. One can deploy a smart contract, which 

cannot be updated, or manipulated by any entity; hence, 

Blockchain enables data to be immutable and tamper-proof. 

Asymmetric cryptography and hashing is a security behind the 

Blockchain.  

 

    A study by [7] integrated LoRaWAN with Blockchain to 

improve security in a join procedure since it is subject to replay 

attack. The proposed mechanism utilized Ethereum 

Blockchain where the gateway and network server are 

connected to Blockchain via an agent node through an interface. 



In [8], the authors propose a Blockchain based solution to build 

an open, trusted decentralized, tamper-proof system for 

LoRaWAN. In the proposed system, Blockchain was 

integrated on the network server, however the system was only 

proposed then in [9] came up with a proof of concept by 

implementing the forwarding network server and integrated 

Blockchain with it. The aim of these integrations is to 

strengthen the security of LoRaWAN and to mitigate the 

vulnerabilities in IoT. Most of these vulnerabilities are found, 

after the devices are deployed and operating in the field. This 

means that the device manufacturers are expected to release 

new firmware versions to fix bugs, to improve device 

functionality and all this has to be done securely. 

 

In this paper, we propose and implement the mechanism on 

how Blockchain can be utilized to provide security in firmware 

updates to LoRa end devices. We propose a mechanism that 

can be suitable for the devices that are constrained in resources. 

Blockchain acts as an extra layer of security to determine 

integrity and authenticity of the firmware on top of LoRaWAN. 

The proposed system is validated using the LoPy and 

expansion board 2.0 that is ESP32 chip based. The Ethereum 

test network called rinkeby is used as a public Blockchain 

network together with the InterPlanentary File System (IPFS) 

for storing the firmware image [10]. For the transmission of 

LoRa packets, we utilize the Things Network stack v3.8.3. The 

Preliminary results show that the approach is feasible for 

constrained devices in LoRaWAN network.  

II. RELATED WORK 

The LoRa Alliance [11] has come up with the new 

specification to make the firmware update more easily in 

LoRaWAN. These specifications include multicast, 

fragmentation, clock synchronisation. There is not much work 

based on providing firmware updates in LoRaWAN, therefore 

we also look on the few ones using LoRaWAN and how other 

constrained devices are being update on the Internet of Things. 

Recently, the authors of [12] implemented a simulation tool 

called FUOTASim to show how firmware update can be 

achieved in LoRaWAN. The work also shows how the large 

number of LoRa devices can be updated using new LoRa 

specifications. The security during firmware update was out of 

the scope for this work. In [13] the authors propose how the 

LoRa devices could be updated; however, the method uses the 

traditional network technology to convey firmware image to 

the end device.  This is not considered as a good solution for 

the devices operating on battery; hence, it may consume more 

power during the firmware updates and not suitable for the 

devices that are deployed in certain areas with no internet 

connection. 

  

There are also Blockchain-based firmware updates 

mechanisms that target constrained devices. The authors [14] 

proposed a scheme that utilizes a Blockchain technology to 

securely check the firmware version, validate the correctness 

of the firmware and download the latest firmware for the 

embedded devices. In the proposed scheme, every IoT device 

represented a node in the Blockchain, which means they are 

required to store the Blockchain ledger in their local storage. 

The challenge with this is that most of the IoT devices have 

limited resources such as energy, computation and storage 

capacity. This mechanism might be difficult to be implemented 

in the real-world IoT environment. 

The authors of [15] propose and implemented a 

decentralized firmware update framework called Código 

network, which was implemented on top of the Ethereum 

Blockchain, and the IPFS network. The target was to achieve a 

framework, which will allow no single point of failure, 

scalability, transparency of firmware updates, equivalent 

security code with code signing. The code signing, which was 

achieved through the use of digital signature and also through 

the use of Ethereum smart contract checked whether the 

firmware has been corrupted. This was achieved by comparing 

the hash stored in the smart contract with the hash of the 

firmware. The proposed solution was experimented with 

10MB of the firmware image. The firmware was distributed in 

three different storages including the central server, BitTorrent 

and IPFS. The proposed mechanism is completely not suitable 

on the constraint networks and for constrained device such as 

class 0, class 1 since; it consists of the firmware image with 

large size of 10MB. 

 

In this paper, we to provide a Blockchain based firmware 

update mechanism for LoRaWAN considering the security 

constrained devices. 

III. PROPOSED ARCHITECTURE 

In this section, we start by listing the requirements of the 

propose system and then explain the proposed architecture 

illustrated in Fig. 1. The architecture has two subsystems. 

LoRaWAN and independent Blockchain network.  

A. Proposed Architecture Requirements 

The goal of the proposed architecture is to.  

1)  Suitable for resource constrained devices: The 

integration of Blockchain and LoRaWAN must suit LoRa 

devices which fall in class-0 and class-1 (constrained 

devices).  

2)  No utilization of any traditional wireless technology: 

The proposed architecture must only rely on LoRa and 

LoRaWAN to deliver the firmware to the end device. This 

ensures the end device does not consume lot of energy 

during the firmware update process. 

3)  Authenticity and Integrity: This is an important part of 

the firmware updates. The authenticity and the integrity of 

the firmware must be achieved. 

4)  No single point of failure: The update mechanism must 

be able to get the requested firmware image even if the 

manufacturer’s node/repository is not available. 

5)  Multi-vendor/heterogeneous IoT devices: LoRaWAN 

consists of different devices from different manufacturers, 

therefore, the update mechanism must be design to support 

heterogeneous IoT device network with multiple 

manufacturers. 

B. LoRaWAN 

LoRaWAN consists of four components namely, LoRa end 

device, LoRa gateway, network server, application server and 

update service.  



 
 

Fig 1. System architecture. 

1)  LoRa end device:  An entity that needs firmware 

updates. These devices are very constrained with low 

processing; storage capabilities hence, it becomes difficult 

to incorporate advance cryptographic techniques. They are 

low-powered and most of the time they wake up, send data 

to the gateway then go back to sleep. In this proposed 

architecture, Blockchain is not integrated on the end 

devices because of the resources they have. 

2)  LoRa gateway: The gateway receives LoRa packet from 

the LoRa end devices and transmit packet to at least one or 

more network servers attached to it.  

3)  Network Server: The network server is responsible for 

handling du-duplication of packets from multiple gateways, 

handles devices join requests, queuing the downlink 

messages and send sends them to the gateway. The network 

session key (NkwSKey) is used for integrity validation of 

messages between the end device and the network server 

4)  Application Server: Uses application session key 

(AppSKey) to encrypt and decrypt the payloads. It has of 

multiple integrations such as HTTP, Message Queuing 

Telemetry Transport (MQTT), etc. MQTT integration is 

used to connect the application server and the update 

service. The interception of possible Blockchain network 

and LoRaWAN is based possible through this integration 

5)  Update Service:  Update service is connected with 

application server via MQTT protocol. The entire update 

process is controlled by the update service which does these 

number of tasks: 

• Subscribes and listens to registered devices MQTT 

topics from the application server. 

• Handles the device firmware requests. 

• Connects to the InterPlanentary File System (IPFS), 

Blockchain network and continuously listens for 

any new incoming firmware update event on the 

Blockchain. 

• Get the latest firmware from the IPFS and performs 

the fragmentation based on the SF or data rates 

used by the end device. 

• Performs cryptographic operations such as 

generating the session keys to be used by the end 

device during that particular session of firmware 

update, encrypt confidential data i.e. integrity hash, 

moreover it determines the authenticity and the 

integrity of the firmware image before, the image 

is sent over LoRaWAN. 

• Update the state of the end device to the 

Blockchain. 

C. Blockchain and IPFS 

The manufacturers share their device firmware image 

shared publicly. This enables the device owners to download 

the image and update their devices. In our proposed 

mechanism, the public Blockchain is used to publicly share the 

firmware information like metadata. The firmware image is 

public stored on the decentralized IPFS, which enable high 

availability of the firmware. Manufacturer of the devices needs 

to own a blockchain node that synchronizes with the network 

together with the IPFS node, which is connected to the IPFS 

network. In our mechanism, we used the infura service nodes 

for both IPFS and blockchain instead of running our local 

nodes. 

IV. FIRMWARE UPDATE INTERACTION 

This section mainly explains the interaction between the 

components involved during the firmware update process. We 

start by describing the assumptions of the proposed system and 

then explain the interaction, which is classified in four main 

phases: device registration, firmware upload, firmware 

initiation, and finally, the entire update process. 

A. Assumptions of the proposed architecture 

The proposed system has the number of following 

assumptions: 

1) The firmware update is applied on constrained devices 

with low processing capabilities to perform heavy 

cryptographic operations. 

 

2) The firmware is stored on the open repository and can 

be downloaded by anyone; therefore, there is no need 

to encrypt the firmware from our update service to the 

end device. However, the content is also shared via SSL 

between application server and update service.  



 

Fig 2. Interaction of system components. 
 

Moreover, encrypting each firmware fragment will result in 

maximizing the packet size. For instance, if AES-128 is used 

in secure modes like CFB/CRT mode the 128 bits (16 bytes) 

of extra payload for the initialization vector is required.  

 

3) Encryption and decryption keys are stored in a device 

secure module. 

B. Device Registration 

In order for the end device to receive the firmware updates, 

the registration to the update service is required. The update 

service needs the smart contract address of the manufacturer 

and the wallet address of the manufacturer and the model. This 

information is saved encrypted by the update service on the 

Blockchain network. A smart contract address will be used by 

the update service to locate an ABI of the manufacturer of the 

device and then use that ABI to interact with the smart contract 

on the Ethereum Blockchain. The update service generates the 

update key (UDTKey) of 128 bits which acts as a master key. 

UDTKey is used for encryption, decryption of session keys. 

C. Firmware Upload 

The new firmware image must be uploaded to the public 

repository. Decentralized storage IPFS is used to ensure high 

availability of the firmware image, so that the update service 

gets the firmware even if the manufacturer’s repository is not 

available. At this point, the manufacturer creates smart 

contracts and is deployed on the Ethereum network. The 

firmware image is sent along with the firmware metadata. 

Firmware metadata contains information such as the size, 

devices the firmware is targeting, location of the firmware 

image, the integrity hash of the firmware, the signature of the 

manufacturer etc. The purpose of the firmware metadata is to 

ensure that the device installs the right firmware from the right 

manufacturer. It is recommended to store metadata on 

Blockchain since Blockchain is immutable and provides 

tamper-proof.  The manufacturer signs the metadata with the 

private key and produces a signature that is sent along with the 

metadata. Ethereum Blockchain signature is based on the 

Elliptic Curve Digital Signature Algorithm (ECDSA) with 72 

hexadecimal characters (36 bytes) which is quite different from 

RSA signature. 

D. Firmware Initiation 

This section shows how firmware update is initiated. The 

firmware update can be started based on two events. The first 

is when the device joins a network, secondly is when the 

update service captures a new event from the Blockchain that 

is triggered by the manufacturer on uploading the new 

firmware. Figure 2 shows what happens on each initiation 

process. In this phase, we focus more on session key exchange. 

The device starts by sending the initiation message, which 

consists of the identifier, which is unique for this message and 

the nonce value. 

The nonce is a number that is used only once to avoid any 

replay attack on the session key exchange and for any 

confidential data. The update service then generates session 

keys and sends them as a downlink message. It is a best practise 

not to use the same encryption keys for a long period therefore, 

we do not intend to use UDTKey for encryption or decryption 

of any confidential data for the entire update session but 

instead the UDTKey is used to generate new set of keys for 

encryption and decryption of data. AES key and MAC key are 

of both 16 bytes each. We consider using symmetric based 

cryptography AES and MAC because, are suitable for 

constrained devices compare to digital signature that based on 

asymmetric cryptography this has been shown is several 

studies [16][17].  



 

 
Fig 3.Cont. Interaction of system components. 

 

Both MACKey and AESKey are shared encrypted using the 

UDTKey that was shared earlier with the end device. The 

AESKey is used to encrypt and decrypt integrity hash or tag 

rather any confidential message that will be shared by an 

update service to the end device. We intend to provide the 

integrity and authenticity on the end device through the MAC 

algorithm called Hash-based Message Authentication Code 

(HMAC) in SHA256 mode.   

 
ID IV Nonce DevNonce ServNonce AESKey MACKey 

1 4 4 4 16 16 

 

Fig 4. Session key exchange format. 
 

The device obtains payload structured from Figure 4 and 

decrypts the session keys with UDTKey and most importantly; 

it checks the nonce values for any replay attack. The device 

responds with the payload showed in Figure 5 which consist of 

the device, service nonce and the current firmware version. 

 
ID IV Nonce DevNonce ServNonce Version 

1 4 4 4     N 

 

Fig 5. Device version exchange. 
 

 Once the current version is received, an update service 

fetches a smart contract, wallet address and device model from 

the Blockchain. The smart contract address is used to locate the 

Application Binary Interface (ABI) of manufacturer on 

Ethereum network. The wallet address is used for verification 

of the manufacturer’s signature. Firmware version and model 

of the device is provided on the Blockchain to check for any 

new firmware update and if the update is available, the 

metadata is retrieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second way the firmware update can be started is 

through an event captured on the Blockchain network. This is 

illustrated in Figure 2 as the second condition on the sequence 

diagram. In this exchange the update service, get the metadata 

from the events and then exchange the message shown in 

Figure 4.  

E. The Entire Firmware Process 

Figure 3 illustrates the entire firmware update process. At 

this stage, the session keys are exchanged successfully and the 

firmware metadata is obtained successfully. The authenticity 

and integrity of the firmware have to be determined. The 

metadata contains information about where to get the actual 

firmware image. We have to decide or not we have been 

represented with the right metadata. Despite the fact that 

update service is connected via a secure channel with the 

Blockchain node, the authenticity of the metadata must be 

achieved. Firmware manufacturer has already signed the 

firmware with the private key; hence, the corresponding public 

key is then used to verify the authenticity of the firmware. 

However, because Ethereum Blockchain is not based on RSA 

signature but, is based on ECDSA therefore, the verification 

process is little different. Every entity on the Blockchain has 

three unique set of keys/addresses. The private key, public key 

and the wallet address. We perform signature verification by 

feeding a function with the message (metadata) together with 

the signature (manufacturer’s signature). The function will 

then generate a wallet address that signed the metadata in this 

case, is the manufacturer’s wallet address. The wallet address 

produced from the function is matched against the one 

registered by the device earlier on the Blockchain. If the 

addresses are the same then we trust the metadata and continue 

with the firmware updates.  

 



Metadata consist of the IPFS that is used to download the 

firmware image. Even though the content is served over a 

secure channel between the IPFS node and the update service, 

it is a necessity to achieve integrity. The update service re-

computes the SHA256 hash and compares it with the hash on 

the metadata. If two hashes are the same, that means we have 

successfully achieved the integrity and we continue with the 

firmware update. Since, the firmware updates are automated 

meaning, the update service continuously listen for any new 

incoming firmware updates for the devices registered to it. 

Therefore, it is mandatory to perform cryptographic operations 

on top of the application server before; the firmware is 

fragmented and sent to the device. This serves as an additional 

layer of security at the application level to provide encryption, 

integrity and authentication based on asymmetric cryptography. 

 

LoRa end device needs to verify the integrity and 

authenticity of the firmware. For that, we use MAC algorithm 

based on hashing which is HMAC-SHA256. Before the 

firmware image is sent over LoRaWAN the exchange of MAC 

tag of 16 bytes takes place to determine the integrity and 

authenticity of the firmware. Note, the MAC or tag produced 

by the HMAC is of 32 bytes however, instead of sending the 

entire MAC we send the truncated MAC of first 16 bytes. 

Usually this kind of integrity and authenticity is done before 

the bootloader takes over. The MAC tag was encrypted using 

the AESKey and signed with the MACKey, which was 

exchanged earlier. A device receives the MAC exchange 

message showed in Figure 6 then validate the authenticity and 

the integrity using an earlier shared MAC session key. 

 
ID TAG IV Nonce DevNonce ServNonce MAC 

1 8 4 4 4 16 

 
Fig 6. MAC exchange. 

 

 Once the MAC is successfully exchanged, we do the 

fragmentation, which is based on the spreading factor (SF) or 

data rate used. For instance, if SF12 is used each fragment must 

not be more than 51 bytes. Each fragment is saved on the 

storage or flash memory. In case of the lost fragments the flash 

memory is scanned to see, any lost fragments then send the list 

of fragments missing. After the device has received all the 

fragments including the ones of packets lost, it performs the 

integrity and authenticity check by recomputing the firmware 

image MAC tag and match against the one received from the 

update service in Figure 6. If MAC do not match, the update 

process disregard firmware and abort the process. Generally, 

the bootloader takes control of verifying the firmware before it 

is flashed on the device. However, for the scope of this work 

we do not focus on the security of the bootloader after the 

firmware has been successful verified by the application. 

V. RESULTS 

A. Implementation 

The experiments were performed on UBUNTU 19.04 with 

Intel Core i5-4300 CPU @ 2.6GHz. The proposed architecture 

utilizes public Ethereum Blockchain network, a public 

Blockchain is chosen because, of the nature of firmware 

updates which is meant to share the firmware image and it 

metadata publicly. The Ethereum Blockchain smart contract 

drives the firmware update and ensures the security during the  

firmware process. Smart contact is implemented with the 

solidity programming language and deployed on the Rinkeby  

test network. The infura service node is used to give the access 

to the Blockchain network. A web-based manufacturer 

interface is implemented to interact with the Blockchain 

network via the infura Blockchain node. Figure 7 shows the 

implemented interface that allows the manufacturer to sign 

firmware, upload the firmware image to the decentralized IPFS 

network and publish metadata to the Blockchain network.  

 

 
Fig 7.  Manufacturer interface. 
  

In handling LoRa packets, we run our own private 

LoRaWAN servers using the TTN stack v3.8.3. These servers 

connect to the RAK831 gateway that forwards LoRa packets 

to the LoPy device. The update service is implemented in 

python and interacts with the Blockchain network via web3 

interface. The firmware image needs a place to be stored and 

we use IPFS infura service node that is connected to the IPFS 

decentralized network. The firmware mechanism is tested on 

the LoPy LoRa end device from Pycom, which uses EU region 

with the channel random selected. 

TABLE I.  EVALUATION PAREMETERS. 

Parameters Values 

Rx1 Window Both downlink and uplink 

Region EU (channels duty cycle 

1%) 

Gateway 1 

Device Antenna Gain 2 dBm 

Gateway Antenna Gain 0 dBi 

Bandwidth LoRa.BW_125KHZ 

Spreading Factor  7 - 12 

 

B. Evaluation 

We evaluate the performance based on the device operating 

in class A mode. This mode requires an uplink message for a 

firmware fragment to be received that therefore, is considered 

to be not a good mode for firmware updates, however we 



examine the cost involved when device is operating on class A 

by applying the delta update. We also evaluate the performance 

of Ethereum Blockchain and execution cost of Blockchain 

update operations. Our smart contract consists of four main 

methods that are presented on Table II. 

TABLE II.  EXECUTION COST OF BLOCKCHAIN OPERATIONS. 

Methods Gas for 

execution 

Transaction fee 

Ether 

addMetadata(372B) 521,049 0.000521049 

addMetadata(744B) 537,533 0.000537533 

addMetadata(1.16KB) 588,670 0.00058867 

registerDevice() 50,718 0.00405744  

updateDevInfo() 28,968 0.00231744 

getMetadata() 0 0 

getDevInfo() 0 0 

getDevsInfoByModel() 0 0 

 

From Table I, we can observe that, as the metadata increases 

in size the gas needed to mine the metadata on the Ethereum 

network increases as well. For instance, when the metadata size 

increases from 300 bytes to 600 bytes the gas also increases 

from 521,049 to 537,533, which means extra 16,484 gas is 

required. This is even true for other transactions which 

including registering the device and updating the device 

information after the successful update. However, when the 

update service retrieves the data from the Blockchain there are 

no transaction fees. This is because there is no transaction 

being added on the Blockchain based on get operations. 

 

We also study the effect of the firmware sizes, which are 1KB, 

2KB, 3KB, 4KB and 5KB. Figure 8 depicts that the number of 

fragments tends to decrease from the small SF to high SF. This 

is because of the limitation on the maximum payload one is 

allowed to transmit on a given data rate or SF and the region 

the device is operating in. The maximum application payload 

for SF12, 11, 10 should not be more than 51 bytes. SF9 limits 

no more than 115 bytes and finally for SF8 and SF7 only 

fragments less than 222 bytes are allowed. However, 45,104 

and 204 were used to ensure that the payload falls under a SF 

or data rate. Figure 9(a) shows fragment size used per each SF 

and airtime of each fragments size while Figure 8 represents 

the total number of fragments needed to be sent depending of 

the SF and the firmware size.  It is observed that from Figure 

9(b) for the same fragment size the airtime tends to differ for 

each SF. For instance, using SF12 and SF11 on the fragment 

size of 45 bytes the airtime is higher on SF12. We conclude 

that at the highest SF the firmware fragments tend to increase, 

which leads the higher or increase in airtime. 

 

 
Fig 8.  Number of firmware fragments. 

      
 

Fig 9.  Airtime with corresponding fragment. 

 

 
Fig 10.  Time taken to update. 

 

Firmware size has a huge impact on the update time. The 

update time refers to the time where the first firmware 

fragment was sent to the end device to where the entire 

firmware is verified by the end device. It is observed that from 

Figure 10 the update time increases as firmware size increases. 

For instance, applying 5 KB of firmware using SF 7 it only 

takes 3.55 minutes (213 seconds) whereas, using the SF 12 it 

takes 31.1 minutes (1866 seconds). This increase of update 

time is due to the airtime of each fragment for a particular SF 

or is due to the duty cycle limitation since, the next firmware 

fragment has wait for the next opportunity to be sent. We can 

conclude that the larger the firmware image, the more time 

would take to update the LoRa end device. 

  
 

Fig 11. Memory usage on the end device and execution of cryptographic 
HMAC operation. 



 

Applying firmware update on the constrained device and 

performing the cryptographic operation could be very 

expensive in resources therefore, it is important to look at the 

cryptographic costs involved when securing the device during 

the update process. The LoRa end device had 56704 KB of 

RAM available before the firmware update. Figure 11(a) and 

Figure 11(b) show both memory consumption and time take 

for each cryptographic operation. 

 

The MAC verification time of the firmware image tends to 

increase as the image sizes increase which also consumes more 

memory for verifying the image. This because, the entire 

firmware is loaded from the flash memory/storage and read in 

small chunk sizes which are appended to form whole binary 

that serves as an input the HMAC-SHA256. Therefore, this 

leads the firmware size to be directly proportional to both time 

and memory.  Since end device consist of approximately 56704 

KB of RAM this means the mechanism can utilize 10.1% of 

RAM in verification of firmware image of 5KB.Now, 

considering constrained devices class-0 and class-1. 

Constrained devices belonging to these classes consists of 

RAM and flash of tens or hundreds of kilobytes. Therefore, if 

a constrained device consists of the RAM approximately to 

10KB the MAC verification could a take half of the memory 

when updating the 5BK image.  

VI. CONCLUSIONS AND FUTURE WORK 

It is inevitable that bugs and vulnerabilities are only going 

to be discovered after IoT devices have been deployed to the 

field. This means that the device manufacturers are expected to 

release new firmware versions to fix bugs, to improve device 

functionality.  In this paper, we presented a Blockchain-based 

firmware update mechanism to enhance LoRaWAN security 

during the firmware update process. The orchestration of the 

whole process is performed by the update service implemented 

to serve as an extra layer of security during the firmware update.  

 

We evaluated a proposed Blockchain-based mechanism 

showing the impact of updating LoRaWAN class A device. 

The results showed that the firmware update size or fragment 

has great impact in update time for a certain spreading factor 

used. For example, applying 5 KB of firmware using SF 7 can 

takes about 3.55 minutes whereas, using the SF 12, it takes 31.1 

minutes; this could be even more for larger firmware size. The 

firmware update Blockchain smart contract operations 

demonstrated the cost in involved as the metadata size 

increases, which also leads to more gas required to store 

metadata on the ledger. The firmware verification 

measurements indicate that using HMAC-SHA256 with 128-

bit key will required more RAM when the firmware image gets 

larger. In future, we intend to test the firmware update 

mechanism on large number of devices; LoRa Alliance has 

come up with the number of new specifications that makes 

firmware update process easier. These specifications include 

multicast, fragmentation, clock synchronisation and these can 

be simple incorporated with our Blockchain based update 

service to deliver the firmware update to large number of 

devices. 
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