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Abstract—Toeplitz decorrelation techniques, as applied to-
wards direction-of-arrival estimation of coherent narrowband
signals using a sensor array, significantly improve the accu-
racy of subspace methods without reducing the effective array
aperture. The novel contribution of this paper is a necessary
and sufficient condition that any jointly Toeplitz and Hermitian
matrix produced by these techniques must satisfy in order
to facilitate unbiased estimation via a subspace method. The
condition is derived for a uniform linear array and additive white
Gaussian noise model. The row-selection and diagonal-averaging
strategies for generating Toeplitz matrices are evaluated against
the condition, for the case where all sources are coherent. It is
proved that row selection accommodates unbiased estimation if
and only if the first row of the deficient covariance matrix is
selected, whereas diagonal averaging invariably leads to bias.

Index Terms—Multiple signal classification (MUSIC), direction
of arrival estimation, angle of arrival estimation, spectral estima-
tion, Toeplitz decorrelation, coherent sources, correlated sources.

I. INTRODUCTION

The problem of estimating the directions of arrival (DOAs)
of multiple narrowband source signals incident on an array of
sensors is widely encountered in practice. Different approaches
towards solving this problem have appeared in the literature
[1]–[3]. Amongst the proposed solutions, the subspace meth-
ods, which include the multiple signal classification (MUSIC)
algorithm [4] and estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) [5], have emerged as
a popular choice due to their super-resolution capability and
simplicity. However, a drawback of these methods is severe
performance degradation in the case of source coherence,
which serves as a model for environments with multi-path
propagation [6], [7]. The degradation occurs due to a reduction
in the dimensionality of the eigenvector subspace, of the array
covariance matrix, which corresponds to the source signals;
we refer to these matrices as deficient.

Several approaches towards mitigating source coherence in
the DOA estimation problem were proposed [7]–[10]. The
most popular of these are arguably the spatial smoothing
[7] and Toeplitz decorrelation techniques [8]. Whereas spatial
smoothing is able to effectively ‘decorrelate’ source signals,
this approach leads to a smaller effective array aperture,
which reduces the number of sources that may be success-
fully resolved. In contrast, the Toeplitz techniques incur no

penalty with respect to the effective array aperture, and are
computationally less expensive than spatial smoothing.

Toeplitz decorrelation involves the synthesis of a full-rank
covariance matrix with a Toeplitz structure from the entries of
the original, deficient array covariance matrix [8]. In the ideal
case, the Toeplitz matrix is constructed in a manner which
guarantees consistency between the eigenvector subspace of
the matrix (i.e. the subspace corresponding to the source
signals) and the true DOAs. The original array covariance
matrix is then replaced by the new Toeplitz matrix prior
to DOA estimation. Simulations have confirmed that this
approach may lead to a significant improvement in estimation
accuracy [11]. However, it was found that the accuracy of
the estimator is strongly dependent on the particular structure
of the Toeplitz matrix; numerical results suggest that certain
Toeplitz matrix structures even lead to biased estimation [12].

Toeplitz decorrelation techniques differ with respect to
the structure of the Toeplitz matrix that is generated. In
general, these techniques first construct a covariance vector
cT = [c0, c1, . . . , cM−1] from the elements of the deficient
array covariance matrix, where M is the number of sensors in
the array. A Toeplitz matrix R = [Ri,j ]

M
i,j=1 is subsequently

generated, such that Ri,j , cj−i for all i, j = 1, 2, . . . ,M ,
and where c−m , c∗m. The construction of the vector cT

often follows one of two strategies. These strategies involve
(i) assigning one of the rows of the deficient covariance matrix
to cT [8], [11], and (ii) averaging along the diagonals of the
deficient covariance matrix, and selecting these averages as
the elements of cT [12]. We refer to these strategies as the
row-selection and diagonal-averaging strategies, respectively.

Toeplitz techniques that correspond to each of the strategies
were proposed in the literature, and results from numerical
simulations were presented to substantiate the proposed struc-
ture of the corresponding Toeplitz matrices [8], [11], [12].
However, little analytical work has been carried out to evaluate
whether each of the strategies, in principle, can accommodate
unbiased and robust DOA estimation. In this paper, we take an
initial step towards bridging this gap by deriving a necessary
and sufficient condition that any jointly Toeplitz and Hermitian
matrix produced by a Toeplitz technique must satisfy in
order to facilitate unbiased DOA estimation using a subspace
method. The derivation is carried out for a uniform linear array



(ULA) and additive white Gaussian noise (AWGN) model.
Each of the strategies towards Toeplitz matrix synthesis is

evaluated against the derived condition, under the assumption
that all source signals are coherent. In this scenario, it is proved
that the row-selection strategy accommodates unbiased esti-
mation if and only if the first row of the deficient covariance
matrix is selected. Furthermore, it is proved that the diagonal-
averaging strategy invariably leads to biased DOA estimation.

The remainder of this paper is organized as follows. In
section II, we present the ULA and signal models used
throughout the paper. An overview of literature pertaining to
Toeplitz decorrelation techniques is presented in section III.
The necessary and sufficient condition for unbiased DOA es-
timation is derived in section IV, and the two matrix synthesis
strategies are compared against this condition in section V. The
paper is concluded in section VI.

II. UNIFORM LINEAR ARRAY AND SIGNAL MODELS

Consider an array of M identical omnidirectional sensors
with unity gain, separated by the same distance d along a
straight line. Suppose that the wavefront impinging on this
ULA consists of N < M narrowband source signals sn(t),
each from a distinct DOA θn. The array output signal x(t) ,
[x1(t), . . . , xM (t)]T at time t ∈ Z is modelled as [13]

x(t) =

N∑
n=1

a(γn)sn(t) + z(t) = A(γ)s(t) + z(t), (1)

where A(γ) , [a(γ1),a(γ2), . . . ,a(γN )] denotes the steering
matrix, and a(γn) , [1, e−jγn , . . . , e−j(M−1)γn ]T denotes the
steering vector. The electrical angles γ , {γ1, γ2, . . . , γN}
are given by γn = 2πd sin(θn)/λ, where λ is the wavelength.

The vectors s(t) , [s1(t), s2(t) . . . , sN (t)]T and z(t) ,
[z1(t), z2(t) . . . , zM (t)]T in (1) represent the source and noise
signals. This research considers coherent source signals [7],
which are assumed to be perfectly correlated. Let (Ω,B, P )
denote a probability space, where Ω denotes the sample space,
B is a σ-algebra on Ω, and P is a probability measure. Let
s̃(t) ≡ s̃(ω, t) denote a zero-mean, wide-sense stationary and
narrowband random signal on this probability space, where
ω ∈ Ω, such that E[s̃(t)s̃∗(t)] = 1. The source signals are
modelled as

sn(t) = bne
jϑn s̃(t), (2)

where bn > 0 and ϑn ∈ [−π, π) for all n. The noise signals
are modelled as zero-mean and mutually uncorrelated AWGN
processes, each with a variance of σ2

N . It is assumed that the
noise signals are not correlated with the signals sn(t).

The M×M array covariance matrix RXX , E[x(t)xH(t)]
is given by

RXX = A(γ)RSSA
H(γ) + σ2

NI, (3)

where RSS , E[s(t)sH(t)] denotes the N ×N source covari-
ance matrix, with elements rm,n = bmbn exp (j∆m,n), and
where ∆m,n , ϑm−ϑn. In this scenario, the dimensionality of
the eigenvector subspace of RXX corresponding to the source
signals is reduced to one. We follow the common practice of

assuming1 that ∆m,n = 0 for all m and n, which implies that
rm,n = bmbn (see, for example, [11], [14]).

III. LITERATURE OVERVIEW

Recent literature on Toeplitz decorrelation techniques focus
on generalizing the fundamental approach to two-dimensional
arrays [15] and to multiple-input multiple-output systems [16].
We consider the one-dimensional case in this paper as a
starting point towards a more general analysis.

Kung et al. [10] proposed a robust method for estimating the
DOAs of coherent sources using a long uniform sensor array.
The authors interpret the array measurements as the output
of a self-generating autoregressive moving-average process. A
state space representation of the process is computed from
a reduced-order Toeplitz approximation of a spatial covari-
ance matrix estimate, which is obtained via joint spatial and
temporal averaging. The DOAs are subsequently estimated by
finding the spatial frequencies corresponding to the maxima of
the spatial power spectrum. Numerical simulations presented
by the authors suggest that the proposed method produces
accurate DOA estimates when N � M ; however, the case
where N approaches M was not investigated.

Han and Zhang [8] proposed a row–selection technique for
constructing a Toeplitz matrix replacement for the deficient
array covariance matrix. The technique assigns any row2 of the
deficient array covariance matrix to the covariance vector cT .
DOA estimation is performed using ESPRIT [5]; it was shown
both analytically and numerically that the proposed technique
leads to unbiased DOA estimation using a ULA, irrespective
of the coherency of the source signals.

Hui et al. [11] proposed the cross-correlation vector Toeplitz
reconstruction (CVT) technique. This technique assigns the
first row of the deficient array covariance matrix to the
covariance vector cT . In the case of coherent sources, it was
shown analytically that CVT achieves an improvement in the
effective signal-to-noise power ratio pertaining to the source
and noise eigenvector subspaces of the reconstructed matrix.
Numerical experiments involving DOA estimation of coherent
sources using a ULA were performed; it was shown that DOA
estimation using the reconstructed Toeplitz matrix is superior,
in terms of the probability of successful estimation, root-mean-
square error and effective array aperture, as compared to DOA
estimation with spatial smoothing.

Jun et al. [12] proposed a Toeplitz decorrelation technique in
which the elements of the covariance vector cT correspond to
averages computed over the diagonals of the deficient array
covariance matrix. Three Toeplitz matrices were proposed,
corresponding to (i) direct averaging of the entries in each
diagonal, (ii) averaging of the magnitude of the entries, while
retaining the arguments of the individual entries, and (iii)
averaging of the arguments of the entries, while retaining
the magnitudes of the individual entries. Numerical results

1The more general case is to be considered in a future publication.
2It is worth noting that, if any row other than the first is used in this context,

the Toeplitz matrix is no longer Hermitian; yet, the source and noise signal
subspaces are preserved.



presented by the authors suggest that the direct averaging
approach leads to biased DOA estimation.

IV. A CONDITION FOR UNBIASED ESTIMATION

Let R̃XX denote an M ×M Toeplitz matrix obtained using
a Toeplitz decorrelation technique. We consider the case where
R̃XX is of full rank and Hermitian. It follows that R̃XX has
a spectral decomposition; let the eigenvalues be denoted by
λ1 ≥ λ2 ≥ . . . ≥ λM , and let the corresponding orthogonal
eigenvectors be denoted by µ1,µ2, . . . ,µM .

We consider the case where DOA estimation is performed
by applying a subspace method to the Toeplitz matrix R̃XX,
which replaces the deficient array covariance matrix RXX.
In practice, the number of source signals N is unknown a
priori, and has to be estimated from measurements. A common
method for estimating N selects the dimensionality of the
noise subspace as the estimated number K̂ of eigenvalues
of R̃XX that are of smallest and equal3 magnitude λM [17].
The estimated number N̂ of source signals is then selected as
M−K̂. This method is incorporated into the DOA estimation
scenario considered here. Since the present analysis considers
a symbolic expression for the Toeplitz matrix R̃XX, the true
number K of eigenvalues that are equal to λM is available.
Therefore, during DOA estimation, the signal subspace S
is selected as S = sp{µ1, . . . ,µM−K}, whereas the noise
subspace N is selected as N = sp{µM−K+1, . . . ,µM} (here,
sp{·} denotes the span of the vector arguments). Accordingly,
we declare the matrix R̃XX as accommodating unbiased DOA
estimation using any subspace method if it satisfies

sp{µ1, . . . ,µM−K} = sp{a(γ1), . . . ,a(γN )} (4)

and
a(γn)Hµm = 0, (5)

for all M −K < m ≤M and n = 1, 2, . . . , N .
A necessary and sufficient condition for R̃XX to accommo-

date unbiased DOA estimation with any subspace method is
subsequently derived. Consider the matrix Q , R̃XX − λMI.
This Hermitian matrix has eigenvalues λm − λM , where
m = 1, 2, . . . ,M , and the same eigenvectors as R̃XX. It
follows that Q has K eigenvalues equal to zero, and therefore
a rank of M −K. The Vandermonde decomposition [18] of
this matrix is given by Q = A(φ)DAH(φ), where A(φ)
denotes the M × (M −K) steering matrix with respect to a
set of distinct angles φ = {φ1, φ2, . . . , φM−K}, and D is a
real diagonal matrix with strictly positive diagonal entries. It
follows that R̃XX may always be decomposed as

R̃XX = A(φ)DAH(φ) + λMI. (6)

The decomposition of (6) is unique with respect to the values
of K and λM , as well as the angles φ and the entries of D.

It is subsequently proved that M −K = N and φ = γ if
R̃XX accommodates unbiased estimation. Since the column
rank of A(γ) is equal to N , (4) implies that M − K ≥

3In practice, only an estimate of the Toeplitz matrix R̃XX is available;
hence, the computed eigenvalues may at best be approximately equal.

N . However, the vectors µ1,µ2, . . . ,µM−K are orthogonal.
Hence, the column rank of [µ1,µ2, . . . ,µM−K ] is equal to
M −K. It follows directly from (4) that M −K = N .

Now consider the eigenvectors with corresponding eigen-
values equal to λM . These eigenvectors satisfy

Qµm = A(φ)DA(φ)Hµm = 0 (7)

for all m = N+1, N+2, . . . ,M . Since A(φ) is of full column
rank and D is of full rank, it follows that A(φ)Hµm = 0 and

a(φn)Hµm = 0 (8)

for all n = 1, 2, . . . , N . These eigenvectors, which span the
noise subspace, are orthogonal to the signal subspace spanned
by the eigenvectors µi, where i = 1, 2, . . . , N . Hence, from
(8), we have

sp{µ1, . . . ,µN} = sp{a(φ1), . . . ,a(φN )}. (9)

It subsequently follows from (4) that sp{a(φ1), . . . ,a(φN )} =
sp{a(γ1), . . . ,a(γN )}. This implies that the vector a(φm) ∈
sp{a(γ1), . . . ,a(γN )} for every m = 1, 2, . . . , N . However,
a(φm) /∈ sp{a(γ1), . . . ,a(γN )} if φm 6= γj for any j =
1, 2, . . . , N . It then follows that φm = γj must hold for
some value of j. Repeating this for all angles in φ leads to
the conclusion that φ = γ. We have therefore proved that
any Hermitian and Toeplitz matrix R̃XX that accommodates
unbiased estimation must have a decomposition

R̃XX = A(γ)DAH(γ) + λMI. (10)

We now prove that R̃XX, as defined at the start of this
section, necessarily accommodates unbiased DOA estimation
using a subspace technique if it has the particular decomposi-
tion of (10). Since R̃XX has K eigenvalues of minimum and
equal magnitude, (10) implies that M −K = N . Then using
the same arguments as were used to derive (7) to (9), but where
φ is substituted with γ, both (4) and (5) are shown to hold.
R̃XX therefore accommodates unbiased DOA estimation.

We have proved that any full-rank jointly Toeplitz and Her-
mitian matrix R̃XX accommodates unbiased DOA estimation,
as defined at the start of this section, if and only if R̃XX has the
decomposition of (10). Since the first row of a jointly Toeplitz
and Hermitian matrix determines the remaining entries of the
matrix, an equivalent condition may be derived from (10). The
equivalent condition requires that the first row r̃T of R̃XX must
be expressible as

r̃T =

N∑
n=1

dna(γn)H + λMuT1 , (11)

where D , diag(d1, d2, . . . , dN ), such that each dn > 0, and
u1 , [1, 0, 0, . . . , 0]T , with λM > 0.

V. EVALUATION OF MATRIX SYNTHESIS STRATEGIES

Two strategies for Toeplitz matrix synthesis from the litera-
ture are evaluated to determine whether they accommodate
unbiased DOA estimation using subspace methods. These
are the row-selection [8], [11] and diagonal-averaging [12]



strategies, as described in section I. The case where all source
signals are coherent is considered. Each strategy is evaluated
by deriving a general expression for the first row of the
Toeplitz matrix obtained using the strategy, and comparing
the expression against (11).

A. Row-selection strategy

Consider any Toeplitz decorrelation technique that assigns
the kth row of the deficient array covariance matrix to the first
row r̃T of the Toeplitz matrix R̃XX. It follows that

r̃T =

N∑
n=1

[ N∑
m=1

bme
−j(k−1)γm

]
bna(γn)H + σ2

NuTk , (12)

where uTk is a vector containing zeros, but with the exception
of the kth element, which is equal to unity. Now consider the
case where k = 1 – i.e., where the first row of the deficient
matrix is used. It follows that the bracketed term in (12)
reduces to c =

∑N
m=1 bm, which is a positive real number.

Hence, (12) matches (11) with dn = cbn and λM = σ2
N .

This result confirms that the strategy of selecting the first row
accommodates unbiased DOA estimation. However, in the case
where k > 1, the bracketed term of (12), which is a sum of
complex numbers with arbitrary arguments, cannot generally
be assumed as being equal to a positive real number. Hence,
(12) is inconsistent with (11). It is concluded that the use of
any row other than the first leads to biased DOA estimation4.

B. Diagonal-averaging strategy

Consider the strategy which involves direct averaging of
the diagonals in the upper triangular region of the deficient
array covariance matrix, and assigning these values to the first
row r̃T of the Toeplitz matrix R̃XX. The average of the kth

diagonal of the deficient matrix, where k = 0 denotes the main
diagonal, is given by

µk =

N∑
n=1

[ N∑
m=1

C(m,n)

]
bne

jkγn + σ2
Nδk,0, (13)

where k = 0, 1, . . . ,M − 1 and δk,0 denotes the Kronecker
delta function, and where

C(m,n) =
bm

M − k

[M−k∑
p=1

e−j(p−1)(γm−γn)
]
. (14)

Let r̃T = [µ0, µ1, . . . , µM−1]. It follows that

r̃T =

N∑
n=1

D(n)bna(γn)H + σ2
NuT1 , (15)

where D(n) =
∑N
m=1 C(m,n). Since it cannot generally

be assumed that D(n) is a real number, a comparison of
(15) with (11) leads to the conclusion that the diagonal-
averaging strategy considered here invariably leads to biased
DOA estimation.

4The noise term is also inconsistent – i.e., u1 6= uk if k > 2.

VI. CONCLUSION

In this paper, we presented a necessary and sufficient con-
dition for a Toeplitz decorrelation technique to accommodate
unbiased DOA estimation using a subspace method. Two
common strategies towards constructing the Toeplitz matrix
were evaluated against this condition. It is concluded that the
row-selection strategy accommodates unbiased estimation if
and only if the first row is selected, whereas the diagonal-
averaging approach invariably leads to biased estimation.
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