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Abstract—Speaker recognition is a technique that automati-
cally identifies a speaker from a recording of their voice. Speaker
recognition technologies are taking a new trend due to the
progress in artificial intelligence and machine learning and have
been widely used in many domains. Continuing research in the
field of speaker recognition has now spanned over 50 years. In
over half a century, a great deal of progress has been made to-
wards improving the accuracy of the system’s decisions, through
the use of more successful machine learning algorithms. This
paper presents the development of automatic speaker recognition
system based on optimised machine learning algorithms. The
algorithms are optimised for better and improved performance.
Four classifier models, namely, Support Vector Machines, K-
Nearest Neighbors, Random Forest, Logistic Regression, and
Artificial Neural Networks are trained and compared. The system
resulted with Artificial Neural Networks obtaining the state-of-
the-art accuracy of 96.03% outperforming KNN, SVM, RF and
LR classifiers.

Index Terms—Speaker recognition, support vector machine, k-
nearest neighbors, artificial neural networks, multilayer percerp-
tron, random forest, logistic regression

I. INTRODUCTION

Automatic speaker recognition is a technique used to auto-
matically recognise the identity of a speaker from a recording
of their voice. Speaker recognition is an important topic in
signal processing and has a variety of applications, especially
in security systems [1]. Voice controlled systems and devices
rely heavily on speaker recognition. Speaker recognition con-
sists of two fundamental tasks, namely speaker verification
and speaker identification. Speaker verification is the task of
determining whether an unknown voice is from a particular
enrolled speaker. The speaker in this case provides a voice
sample with a claim to be one of the enrolled speakers and the
system either rejects or accepts the claimed identity. Speaker
identification is the task of associating an unknown voice with
one from a set of enrolled speakers. The speaker provides
a voice sample and the system determines to which of the
known set of speakers the voice sample belongs. Speaker
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identification systems can be classified based on the system
range of operation, the classification can either be closed-set
or open-set [2]. In a closed-set identification, the speakers are
all enrolled into the speaker database and the speaker with
the closest match to the test signal is chosen to be the test
speaker. In the case of open-set identification, speakers need
not always be enrolled into the database, thus the system needs
to perform an additional task of rejection in case the speaker
is someone from outside the speaker database [2].

In addition, speaker recognition systems can be classified
by the constraints placed on the input text corresponding to
the speech used to train and test the system. The classification
can either be text-dependent or text-independent. In the text-
dependent case, the input sentence or phrase is fixed for
each speaker, and in the text-independent case, there is no
restriction on the sentence or phrase to be spoken [3]. Text-
dependent speaker recognition system is suited for services
such as telephone-based services and access control, where
the users are considered cooperative [4]. Text-independent
speaker recognition system is suited for application areas such
as forensics and surveillance where speakers can be considered
non-cooperative users, as they do not specifically wish to be
recognised.

Research in the field of speaker recognition has now been
in existence for over 50 years [5]. However, there is limited
research conducted in the context of African indigenous lan-
guages, South African languages in particular. South African
official languages are still classified as being highly under-
resourced [6]-[9].This paper presents the development of an
automatic speaker recognition system based on optimised
machine learning algorithms. The system incorporates the
classification of the Sepedi language speakers and can be
used to automatically authenticate speaker identities using
their voices to allow only the identified persons an access
right to information systems or to facilities that need to be
protected from the intrusion of unauthorised persons. We chose



the Sepedi language because it belongs to the 11 South African
official languages and largely spoken in the Limpopo province
of South Africa [10].

This paper is outlined as follows: Section II gives a brief dis-
cussion on machine learning algorithms. Section III details the
implementation of the speaker recognition system.Section IV
discusses the experimental results. The paper is concluded in
Section V.

II. MACHINE LEARNING ALGORITHMS

This section discusses the machine learning algorithms used
for training speaker recognition systems.

A. K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm belongs to a
family of instance-based and lazy learning algorithms [11].
The KNN classifier works by taking a data point and looking
at the k closest labeled data points. The data point is then
assigned the label of the majority of the k closest points. An
example of a KNN classification is depicted in Figure 1a. The
test sample (dot) should be classified either to Class A of
red squares or to Class B of blue triangles. If £ = 3 (inner
circle), the test sample is assigned to Class A because there
are 2 squares and only 1 triangle inside the inner circle. If
k = 7 (outer circle) the test sample is assigned to the Class B
(4 triangles vs. 3 squares inside the outer circle). Kacur et al.
[12] motivates the use of KNN classifier for the task of speaker
recognition. The authors report that the KNN classifier trained
with four nearest neighbours (k = 4) yields the best accuracy
results.

B. Random Forest

The Random Forest (RF) algorithm depicted in Fig. 1b, is
a supervised machine learning algorithm for regression and
classification tasks that work by building a large number of
decision trees at training stage and outputting the class that
is the mode of the classes (classification) or mean prediction
(regression) of the individual trees [13]. RF is a highly accurate
and robust method because of the number of decision trees
participating in the process. In most cases, RF does not suffer
from the overfitting problem because it takes the average
of all the predictions, which cancels out the biases. The
RF algorithm was used successfully for automatic speaker
recognition tasks and reported to have achieved state-of-the-
art performances [8].

C. Logistic Regression

Logistic Regression (LR) shown in Fig. lc is a highly
accurate and robust method that uses multinomial logistic re-
gression method to generalise logistic regression to multiclass
problems [14]. In most cases, LR does not suffer from the
problem of overfitting because it has few parameters, and have
a regulariser parameter to manage the overfitting. LR and its
sparse version of kernel logistic regression method has shown
to outperform the SVM and the Gaussian mixture models
baseline system for text-independent speaker identification
[15].

D. Support Vector Machines

The Support Vector Machines (SVM) is a supervised learn-
ing model with associated learning algorithms that analyse
data and recognise patterns, used for classification and regres-
sion analysis [16]. SVM is a popular discriminative classifier
which models the boundary between a speaker and a set
of impostors and has proven to be a powerful technique
for pattern classification [16], [17]. As shown in Figure 1d,
the SVM is a classifier which models the decision boundary
between two or more classes as a separating hyperplane.

E. Multilayer Perceptrons

A Multilayer Perceptron (MLP) is a feed-forward artificial
neural network model that maps sets of input data onto a set
of appropriate outputs. An MLP classifier consists of multiple
layers where each layer is fully connected to the next layer.
The nodes of the layers are neurons using non-linear activation
functions, except for the nodes of the input layer. There can be
one or more non-linear hidden layers between the input and
the output layer [18], as shown in Figure 2. MLPs can handle
extremely complex tasks, however they take a lot of time to
train and are computationally expensive [16].

The current state-of-the-art methods of applying neural
networks to speaker recognition, has been proven to be
successful [19]. Wang et al. [19] apply neural networks to
build a speaker recognition system using MFCCs features. The
authors realised that when the number of speakers increases,
the rate of recognition decreases. Hence, their solution was to
increase the samples per speaker as the number of speakers
increases.

III. METHODOLOGY

This section discusses the methods and procedures followed
in this study, the section covers the dataset, feature extraction
and normalisation, classifier model setup and evaluation.

A. Dataset

The data is obtained from the National Centre for Hu-
man Language Technology (NCHLT) [20], [21]. The Sepedi
NCLHT speech data is used, the data contains speech audio
files recorded by different speakers. We randomly sampled
100 speakers and 150 samples per speaker. Each sample is
a recorded sentence of about 3-5 words saved as a mono
waveform file. The data summarised in Table I is partitioned
into train and test partitions of 80% train data and 20% test
data set, that is 120 train samples and 30 test samples for each
speaker.

TABLE I
DATA STATISTICS
[ Unit [ Value |
No. of speakers 100
Instances per speakers 150
Total Duration (minutes) 821.45
Size (MB) 1638.40
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B. Feature Extraction

The human voice contains numerous discriminative acoustic
features of speech that can be used to identify speakers.
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Feature extraction is one of the most important aspect of
speaker recognition. This step generates feature vectors that
represent each speech signal. We extract acoustic features
of speech using pyAudioAnalysis — an open-source compre-
hensive package developed in Python [22]. pyAudioAnalysis
extracts a set of 34 short-term features discussed in [22]. The
features include Time-domain features (Zero Crossing Rate,
Energy, and Entropy of Energy), Frequency-domain features
(Spectral Centroid, Spectral Spread, Spectral Entropy, Spectral
Flux, Spectral Rolloff, Chroma Vector, and Chroma Deviation)
and Cepstral-domain features (MFCCs). Fig. 3 shows the
Time-domain (ZCR), Frequency-domain (Spectral Centroid)
and Cepstral-domain (MFCC) features extracted from a single
audio file of one speaker.

C. Feature Normalisation

Feature normalisation is an important aspect for a robust
speaker recognition system. Its goal is to eliminate speaker
and recording variability. We adopt the mean variance nor-
malisation method [23], [24] where we normalise features so
that they are centered around O with a standard deviation of
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Fig. 3. Time, Frequency and Cepstral features extracted from a single audio
file.

1. The normalised feature y; is given as,

i (1)
g

Yi =

where o represents the variance and u represent the mean for
each feature x;.

D. Classification Model Setup

Scikit-Learn [25] and Tensorflow [26] are used to train
the machine learning algorithms discussed in Section II. The
parameters for the machine learning algorithms are discussed
below, we used grid search to find the best hyperparameters.

1) K-Nearest Neighbors (KNN): The KNN classifier is
trained with different values of k£ which refers to the number
of nearest neighbors and the weight parameter which refers to
the weight function used in prediction. Possible values for the
weight parameter are:

o uniform: uniform weights. All points in each neighbor-

hood are weighted equally.

« distance: weight points by the inverse of their distance.
In this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.

2) Random Forest (RF): The RF classifier is trained
with the parameters max_depth and n_estimators. The
n_estimators parameter is the number of trees in the forest
and the maz_depth parameter is the maximum depth of the
tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than minimum number of
samples required to split an internal node.

3) Logistic Regression (LR): We train LR classifier using
Tensorflow. The classifier is compiled for 100 epochs with
stochastic gradient descent (SGD), adaptive learning rate
method for gradient descent called Adadelta [27] and Nadam
[28] which is essentially Adam [29]

4) Support Vector Machines (SVM): The SVM classifier is
trained with the penalty parameter C of the error term and the
kernel in use can be either Linear, Polynomial, Radial Basis
Function (rbf) or Sigmoid kernel. The kernels are defined by
the following equations:

Linear = (x,2') 2
Polynomial = (y(z,z') + r)? 3)
RBF = exp(—v|z — 2'||?) 4
Sigmoid = tanh (y(z,2') + 1) )

where v is a positive parameter, d is the degree of the kernel,
and r is the coefficient.

5) Multilayer perceptron (MLP): The MLP classifier is
trained with two hidden layers each consisting 256 neurons,
the activation function is set to rectified linear unit for each
layer and the output layer is activated with softmax function.
We use softmax because our data is categorical and softmax
takes as input a vector of real numbers, and normalises it
into a probability distribution consisting of probabilities. The
standard (unit) softmax function o : RX — R¥ is defined by
the formula: o5

o(z); = Z;ilezi (6)
where i = 1,...,K, 2 = (21,...,25) € RE, and z; is an
element of the input vector z. The classifier is compiled with
SGD, Adadelta and Nadam for 100 epochs.

E. Evaluation

The behaviour of each model is evaluated based on certain
criteria to assess its performance. The following evaluation
measurements are used to evaluate the performance of the
models.

1) Accuracy: The percentage of the samples which are
correctly classified from all the samples given. We report on
validation accuracy to avoid overfitting and testing accuracy
to avoid underfitting.

2) Precision: The ability of a classifier to return only
relevant instances, that is the proportion of the examples which
truly have class x among all those which were classified as
class x.

3) Recall: The ability of a classifier to identify all relevant
instances, that is the proportion of examples which were
classified as class x, among all examples which truly have
class x.

4) Fy score: A single metric that combines recall and
precision using the harmonic mean.



5) Root Mean squared error (RMSE): The RMSE is a
quadratic scoring rule which measures the average magnitude
of the error.

6) Categorical Cross Entropy: Measures the performance
of a classifier model whose output is a probability value
between 0 and 1.

IV. EXPERIMENTAL RESULTS

This section discusses the results of the classifier models.
We provide results for parameter optimisation, results for
overfitting and how the classifiers perform with their best
hypeparameter values.

A. Results on Parameter Optimisation

The KNN parameter optimisation results are shown in
Figure 4a. It is observed that the best accuracy is achieved
when the KNN classifier is trained with 14 nearest neighbors
and the weight parameter set to distance. This means that
closer neighbors of a query point have a greater influence than
neighbors which are further away. The KNN classifier does
not perform well when all points in each neighborhood are
weighted equally (setting the weight parameter to uniform).
It is also observed that the accuracy decreases as the number
of nearest neighbors (k) increase for both weight parameters,
meaning that when k is set to a larger value, the KNN classifier
misclassifies most of the data. From this results, grid search
selected £ = 14 as the best hyperparameter and set the weight
parameter to distance.

For RF, we optimise two parameters which are depth and
estimators (trees). When using a smaller (limiting) depth of
the tree, the accuracy is lower. This means we have reduced
the variance (good) of the decision tree but at the cost of
increasing the bias (bad). However, when the depth of the tree
increases, the accuracy also increases as shown in Figure 4b.
When increasing the number of decision trees from O to 40 in
Figure 4b the accuracy increases, hence, depth and number of
trees affect the performance of the RF yielding good results
when increased to a certain limit. From this results, grid
search selected 147 trees with the depth of 41 as the best
hyperparameters.

Figure 4c shows the results for the SVM’s Linear, RBF,
Polynomial and Sigmoid kernels trained with different values
of the parameter C. The results show that the best accuracy is
achieved when the RBF kernel is in use for lower values of
the parameter C. As the value of the parameter C increases,
the accuracy remains constant for the Linear kernel and the
accuracy for the RBF kernel slightly increases. The RBF
accuracy does not go below the Linear kernel’s accuracy after
C = 3. The accuracy is poor for the Polynomial and Sigmoid
kernels. We observe Sigmoid decreasing performance as C
increases. From this results, grid search selected the RBF
kernel and C' = 3 as the best hyperparameters.

The learning curves for LR and MLP are given in Fig. 4d
for accuracy and Fig. 5 for cross entropy loss function. From
Fig. 4d, we observe that SGD is slow to converge even after
100 epochs. Followed by Adadelta for LR and Nadam for

LR. MLP is quicker to converge on Adadelta and Nadam.
Although, Adadelta for MLP did not converge quicker than
Nadam we observe from the curve that Adadelta is better than
Nadam.

B. Results on Overfitting

To precisely measure the accuracy of the models, overfitting
is a crucial task that needs to be investigated when building
machine learning models. We use cross entropy loss function
to measure how the model react to new observations. If the
cross entropy loss increases during testing then the model is no
longer learning correctly, hence, there is a need to optimise
the model. We investigate overfitting in Fig. 5, we observe
the learning curves for most the optimisers did not increase
but kept decaying. Adadelta and Nadam started at a lower
cross entropy loss for MLP but Nadam seems likely to overfit.
Hence, we selected Adadelta for MLP and Nadam for LR as
optimisers.

To measure overfitting for RF, when a single decision tree
is used is very sensitive to data variation and can overfit easily
to noise in the data. When more trees are added the tendency
to overfit decreases.

To measure overfitting for SVM. The C parameter is used
by the SVM optimiser to avoid misclassifying each training
sample. The optimiser selects a smaller-margin separating
hyperplane for higher value of C. Conversely, a very smaller
value of C causes the optimiser to search for a larger-margin
separating hyperplane, which may results with the hyperplane
misclassifying more samples. Hence, we selected C' = 3 as
the best hyperparameter when RBF is the kernel.

To avoid overfitting for KNN, we need to select K high
enough to avoid overfitting, but small enough to avoid under-
fitting the distribution. The grid search selected k¥ = 14 as the
best hyperparameter.

C. Results on Performance of Optimised Parameters

Figure 6 shows the accuracy of the classifier models trained
with default parameters against hyperparameters. It is observed
that the classification accuracy is poor when the classifiers are
trained with default parameters and improves when the models
are trained with hyperparameters. KNN’s default parameters
give an accuracy of 78.80% whereas the hyperparameters im-
prove the accuracy by 2.13%. Random forest hyperparameters
improve the accuracy by 19.80%. The accuracy of Logistic
regression is not really affected by the hyperparameters as it
improves by only 0.27%. SVM and MLP accuracy’s increase
by 1.57% and 2.20% respectively.

The results obtained when the classifier are trained with
hyperparameters are shown in Table II. MLP outperforms all
the classifiers and KNN and RF have the lowest accuracy. A
difference of 0.30% is observed between LR and SVM clas-
sifiers. Table II also shows that both precision and recall are
similar to the classification accuracy results for RF, LR, SVM,
and MLP models. Hence, it is enough to use accuracy. On the
other hand, precision and recall of KNN has a difference of
1.97% which is high and infer that accuracy is not enough
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to measure the performance. This high difference is mostly as the final measure. Hence, KNN resulted with F} score of
caused by unbalanced labels. In this case we use F} score 79.98%.



TABLE II
PERFORMANCE OF THE CLASSIFIER MODELS.

Performance Classification Models
Measure KNN RF LR SVM MLP
Accuracy 80.63% | 87.40% | 93.67% | 93.97% | 96.03%
Precision 82.60% | 87.59% | 93.82% | 94.15% | 96.16%
Recall 80.63% | 87.40% | 93.67% | 93.97% | 96.03%
F1 Score 79.98% | 87.19% | 93.65% | 93.94% | 96.02%
RMSE 19.51 14.84 10.47 11.03 7.67

V. CONCLUSION AND FUTURE WORK

This paper reported on the development of an automatic
speaker recognition system based on optimised machine learn-
ing algorithms. The paper briefly described all the stages
(training and testing) which covered feature extraction and
normalisation, classification model training and evaluation.
The dataset of Sepedi speech data was obtained from the
NCHLT project. Features were extracted using pyAudioAnal-
ysis library and we used Scikit-Learn and Tensorflow to train
the classification models. The KNN, Random Forest, Logistic
Regression, SVM and MLP classifiers are first trained with
their default parameters and trained secondly with their hyper-
parameters. The results are compared and it is observed that
the performance is poor for default parameters and improves
when the hyperparameters are used. As an extension to this
study we shall investigate how spoken languages impact the
accuracy of automatic speaker recognition systems. We shall
also study the effects of acoustic features of speech towards
a text-independent automatic speakers recognition system fo-
cusing on under-resourced languages.
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