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Abstract 

An understanding of meteorological drought and land-cover interaction play a crucial role in 

vegetation vulnerability studies. A better understanding of drought and land-use land cover 

interaction also help in land use planning as well as reducing biodiversity loss. However, the 

is paucity of information on the impacts of meteorological drought on land-cover types. 

Understanding the drought and LULC interaction is more important especially on ‘social pixels 

or ‘village pixels’ which represent rural communities We analysed the drought and land use 

interaction using and Globcover data and VCI for the 2015-16 season. The 2015-2016 season 

was chosen because it was a major disaster which forced SADC to declare a regional disaster 

to appeal for funding. We also developed a novel land use cover ‘social pixel’ based on the 

global livestock density (cattle and goat density>900per 10sq km). We used the Kruskal-Wallis 

test to evaluate whether there is a significant difference of drought impact among the land cover 

classes. We also analysed the drought frequency based on the drought occurrence maps (1998-

2018) Our results reveal that the evergreen forests and the flooded vegetation were the most 

severely affected. (VCI 18.05 and 18.05 respectively) Despite, the village pixels having a 

higher mean VCI compared to the evergreen forest and flooded vegetation, the lowest VCI 

values were recorded in this land-cover, indicating the vulnerability of rural communities to 

droughts. With regards to drought recurrence (1998 to 2018), the crop and grassland land cover 

recorded the highest drought frequency whilst the forest had the least drought frequency.  

Drought impact, land-cover, land use, southern Africa, google earth engine. 

 

 

 

 

 



 

 

 

 

 

INTRODUCTION 

Drought impact assessment on land cover types is crucial for various agricultural and 

environmental applications (Baniya et al., 2019). Drought is complex phenomenon and is 

regarded as one of the serious natural hazards (Wilhite, 2000). Drought monitoring and 

assessment is also complicated the by fact that there is no universal definition. A number of 

definitions’ have been proposed with most definition regarding it as diminished precipitation, 

soil moisture, plant vigour, ecological and socio-economic status (Kogan et al., 2019). In this 

study, we regard drought as a period when rainfall is below the historical mean. The 

simultaneous analysis of drought impact is on multiple landcover types at regional scale is 

crucial for quantifying the environmental impacts of droughts especially in the context of 

climate change (Vicente-Serrano, 2007). This is more critical because vegetative drought 

impacts can influence regional landcover type (Tollerud et al., 2018)stability and 

transformation.  

 

Within the semi-arid regions rainfall and temperature negatives anomalies are the main drivers 

of drought (Nicholson, 1990). Global climate models suggest a decrease in rainfall in southern 

Africa (DAI). This projected decrease will intensify drought occurrence and degradation of 

land  (Vicente-Serrano, 2007) impacting crops and livestock (Ayanlade et al., 2018). A number 

of studies have also reported the impacts of drought on single landcover types (natural 

vegetation and crops) e.g. (Tollerud et al., 2018; Kuri et al., 2019; Gidey et al., 2018; Kogan, 

1995).Other studies (e.g. Mupangwa, W., Walker, S., Twomlow, S., 2011. Start, end and dry spells of the growing season in semi-arid southern 

Zimbabwe. J. Arid Environ. 75, 1097–1104., Kuri,  ) have highlighted the devastating impacts of drought on rural 

communities who normally depend on agriculture for survival (Ayanlade et al., 2018) Very 

few studies have focused on the analysis of drought impacts on landcover types which are 

dominated by rural communities (‘social pixels’). 

 



The analysis of drought and land use interactions especially focusing on village pixels is 

important considering that more than 57% of the southern African people live in rural areas 

(Dalal-clayton 1997). Most of these rural population survive on the ecosystem services with 

little adaptive capacity to weather impacts which makes them vulnerable to drought (Cooper 

et al. 2008). The monitoring and assessment of drought impact at village pixel is therefore 

crucial. Up to now no attempt has been made to understand drought in social pixels this is 

largely due to the absence of the land cover type which represents the social pixels / rural 

communities. There is therefore need to include the social pixels when analysing drought and 

land use and landcover interaction as it helps in land use planning and reducing biodiversity 

loss (DOI:10.1007/s10661-011-2514-8). The drought and landcover interactions are made 

possible thanks to the availability of drought indices. 

 

A number of studies have employed a suite of meteorological drought indices to analyse 

drought with the standardized precipitation evapotranspiration index (SPEI) (REF XX), the 

standardized precipitation index (SPI) [23] and the Palmer drought severity index (PDSI) 

[29,30]. SPI and SPEI can be computed at multiple time scales (1-48 months) which makes 

them suitable for assessing the vegetation response to drought. SPEI has a further advantage of 

incorporating the contributing of evapotranspiration on drought severity. One of the drawbacks 

of the PDSI is that it lacks the multiple time scale component which makes it less attractive in 

assessing vegetation response to drought. In addition, the traditional approaches of quantifying 

drought impact on vegetation are mainly based on crop yields and point data (Vicente-Serrano, 

2007). The problem of these approaches is that they are limited in space and times and are 

mostly suited for localised application. Furthermore, when using these methodologies, it’s 

difficult to differentiate vegetative drought impacts among landcover types (Vicente-Serrano, 

2007) 

 

The use of remote sensing provides a potential solution as it provides both vegetation and 

rainfall indicators relevant for drought monitoring (XXXXX). The main advantage of remote 

sensing is that it provides a wide coverage as well as huge historical archive of data (REF). 

This makes it ideal for regional assessments of drought impact on vegetation. (Kogan, 1995, 1998; 

McVicar and Jupp, 1998). The Normalised difference vegetation Index (NDVI) is the most commonly 

used remote sensing index for vegetation monitoring are. NDVI has been successfully used in 

a number of drought assessment studies and projects as a proxy of vegetation vigour and leaf 

https://doi.org/10.1007/s10661-011-2514-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108485/#pone.0202966.ref023
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108485/#pone.0202966.ref029
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108485/#pone.0202966.ref030


area index which is a proxy for productivity (Tucker, C. J.: 1979, Red and photographic infrared linear 

combinations for monitoring vegetation, Remote Sensing Environ. 8, 127–150.). NDVI is widely used to monitor 

vegetation status and is highly correlated to biomass. Tucker, C. J., Vanpraet, C. L., Boerwinkel, E., and Gaston, A.: 1983, 

Satellite remote sensing of total dry accumulation in the Senegalese sahel, Remote Sensing Environ. 13, 461–474.) and the spatio-temporal 

variation in NDVI are mainly influenced by variations in weather conditions (Eastman, J. R. and 

Fulk, M. A.: 1993, Long sequence time series evolution using standardized principal component analysis, Photogrammet. Eng. 

Remote Sensing 53, 1649–1658; Ichii, K., Kawabata, A., and Yamaguchi, Y.: 2002, Global correlation analysis for NDVI and 

climatic variables and NDVI trends: 1982–1990, Int. J. Remote Sensing 23, 3873–3878..) 

 

Nicholson (1990), further notes that the changes in the vegetation greenness (NDVI) over time 

may be attributed to the plant’s response to the variation in the climate. This makes NDVI 

useful for drought monitoring and impact assessment. (Tucker and Choudhury, 1987; Groten and Ocatre, 2002).  

However, due to the fact that NDVI is also influenced by relief, ecosystem characteristics, 

underlying geology and phenology (Di et al., 1994i From vicente 2007), NDVI on its own is not useful 

for comparing drought impact of vegetation (Vicente-Serrano, 2007). In this regard to analyse 

the impacts of drought, on vegetation NDVI values are stratified to remove the contribution of 

environmental conditions in the analysis (Vicente-Serrano, 2007). To address the limitation of 

NDVI Kogan (1990) – From Vicente 2007) developed the Vegetation Condition Index (VCI) which 

applies a geographic filter to remove the influence of ecosystem and topography on NDVI. 

(Vicente-Serrano, 2007). The resulting VIC has values ranging between 0 (minimum NDVI) 

and 100 (maximum NDVI) and is widely used for monitoring the impact of weather on plants 

across diverse vegetation landscape (Vicente-Serrano, 2007). 

Despite the availability of freely available remote sensing data , there is paucity of information 

on drought and land use landcover interactions at sufficient resolution to capture the smallest 

landcover units especial crops. In most cases the spatial resolution is used is coarse (eg kuri 

1km SPOT VGT-crop. e.g. (Vicente-Serrano, 2007) analysed drought impact on vegetation in 

the Iberian Peninsula between 1987 and 2000 using coarse AHVVR and SPEI; Nicholson, S. E., 

Davenport, M. L., and Malo, A. R.: 1990, A comparison of the vegetation response to rainfall in the Sahel and east Africa, using normalized difference vegetation 

index from NOAA-AVHRR, Climatic Change 17, 209–241.). The problem of the coarse resolution data in vegetative 

drought impact analysis is that it results in mixed landcover types and averaging results at 

biome level result in misleading results. In addition most of the regional studies are based on 

land use and landcover type (e.g, , focused on grassland………..). Furthermore, these studies 

use different methodologies which make it difficult to compare the get a regional picture. 



Furthermore, most of these studies analysed the drought and landcover interaction for the entire 

Southern Africa (e.g. XXXXX) which does not produce accurate information compared to 

summarising the analysis at ecoregion level as recommended by (Tollerud et al., 2018) 

High to medium data eg based on SENTINEL or LANDSAT is only used for small areas 

(e,gXXXx). This is mainly due the high computing power needed to process data for large 

areas as well as the lack of computer programming skills. Google Earth Engine (GGE) offers 

an opportunity to analyse data at regional resolution and at mdium resolution (e.g JF Pikel 

calculated global water occurrence at 30m resolution , XXXXXX, --------------) GGE  is-------

------Despite the usefulness of GGE, no study to the best of our knowledge has taken advantage 

to analyse drought impacts on land cover types using medium resolution data. 

This study capitalises on the freely available remote sensing datasets and the computing power 

of Google Earth Engine (GEE). The objective of this paper is to assess the spatial variations in 

vegetative drought impact as well as vegetation response to drought impact using the 

2015/2016 season. The 2015-2016 season was one of the most severe droughts in the history 

of southern Africa (Ref XX). The study also analyses drought frequency on the land cover 

types based on the NDVI data from between 1998-2018. We focused the analysis on 7 

landcover types (Figure 1a) and a novel land cover type “social pixel” or “village pixel” derived 

from the livestock density gridded data. In this study we tested if there is a significant difference 

in the median drought impact (mean VCI) among the land cover types. Specifically, the study 

focuses on the following questions: which land cover has the highest drought severity and 

frequency? How does the land cover types respond to drought impact?  

 

Method 

Study area 

The study area is located in the Southern Hemisphere and is bounded by the following 

coordinate 6oN to 35oS and longitude 10oE to 41oE. The total surface area of the study area is 

XXXXX and The most dominant land cover type in the study area is grassland which is mainly 

concentrated on the southern half of the region (Figure 1). Th forests land cover type is mainly 

located in the Northern parts of the region. XXXXXX which accounts for XX%. The 

vegetation development in the study area is mainly determined by precipitation availability. 

Most parts of the study area receive summer rainfall between October and April. The Cape 



province of South African receives winter rainfall typically between May and Sep (REF XXX) 

The highest rainfall values are recorded in the northern parts of the region mainly covering the 

forest areas. And the lowest rainfall values are mainly located in the southwestern parts of the 

study area mainly covering the grasslands  

 

 

Figure 1a) Location of the study area land-cover distribution 

The rainfall variability is mainly controlled by the El Niño Southern Oscillation (ENSO) which 

is triggered by variations in the sea surface temperatures in the equatorial Pacific ocean. 

(Unganai and Kogan, 1998). The El Niño (i.e. warm phase of the ENSO) result in below 

average precipitation over southern Africa while the La Niña (i.e. cold phase of ENSO) results 

in heavy rains which normally leads to flooding. Some of the strongest El Niño events in 

southern Africa are 1982/83 and 2015/16 rainfall seasons which resulted in severe droughts 

(Davis-Reddy & Vincent, 2017). 

 

Input data 

Normalised difference Vegetation Index (VCI) 

In this study we analysed the vegetative drought impacts using the 10 day and seasonal NDVI 

data based on the SPOT and Probav sensor. This data is produced every 10 days using the 

Maximum value composite (MVC) to reduce the impacts of cloud cover. The data is produced 

at a spatial resolution of 1km and is available from 1998 to present and is available from 

Copernicus website (https://land.copernicus.eu/global/products/ndvi). 

https://land.copernicus.eu/global/products/ndvi


 

NDVI provides information about vegetation greenness and is computed using the NIR and 

RED bands as  NDVI = (NIR - RED) / (NIR + RED), where NIR is the near-infrared reflectance 

and RED is the visible-red reflectance (Tucker, 1979; Tarpley et al., 1984) -from Kuri. The NDVI 

is commonly used in many environment related studies ranging from ecosystems dynamics, 

landcover change, drought monitoring and for operational applications such as crop monitoring 

(https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039). To 

minimize the effects of cloud contamination inherent in NDVI data, we applied a Savitzky–

Golay smoothing filter (5 window filter, 5th order polynomial) following (Cho, Ramoelo and 

Dziba, 2017). The resultant smoothed NDVI was used to calculate Vegetation Condition index 

(VCI). 

In this study we analysed vegetative drought impacts using 16 days Moderate Resolution 

Imaging Spectroradiometer (MODIS) Normalized difference Vegetation Index (NDVI) data.  

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the 

Terra (10:30 am overpass) and Aqua (1:30 pm overpass) satellites. ( https://earth.esa.int/web/guest/missions/3rd-party-

missions/current-missions/terraaqua-modis). NDVI provides information about vegetation greenness and is 

computed using the NIR and RED bands as  NDVI = (NIR - RED) / (NIR + RED), where NIR is the 

near-infrared reflectance and RED is the visible-red reflectance (Tucker, 1979; Tarpley et al., 

1984) -from Kuri. The NDVI is commonly used in many environment related studies ranging 

from ecosystems dynamics, landcover change, drought monitoring and for operational 

applications such as crop monitoring 

(https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039) 

 

The 16 days MODIS NDVI data is maintained by the NASA EOSDIS Land Processes 

Distributed Active Archive Center (LP DAAC) at the USGS Earth Resources Observation and 

Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov/data/data-citation-

and-policies/). The MODIS NDVI is calculated using TERRA and Aqua’s daily atmosphere 

corrected, bi-directional surface reflectance’s which are free of cloud shadow, aerosols and 

water pixels. The daily NDVI images are then subsequently aggregated at 16 days intervals to 

eliminate low quality observations (https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-

682554445.1570634039). 

 

https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039
https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/terraaqua-modis
https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/terraaqua-modis
https://lpdaac.usgs.gov/data/data-citation-and-policies/
https://lpdaac.usgs.gov/data/data-citation-and-policies/
https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039
https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039


Since both Terra (10:30 am overpass) and Aqua (1:30 pm overpass) are identical and captures 

the earth almost at the same time, data from these two sensors are used in the NDVI algorithm 

to minimise the impact of cloud contamination. https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-

682554445.1570634039). 

This MODIS NDVI dataset is available from 18 February 2000 at a spatial resolution of 250m 

and was accessed via Google Earth API (https://code.earthengine.google.com/). Advantages of 

the GGE API processing no need to download. A number of validation campaigns based on 

both airborne and field measurements have show a close correlation between the MODIS 

NDVI with the the land surface biophysical properties over most biomes (CAN GIVE 

EXAMPLES) https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039). 

 

Vegetation Condition Index (VCI) 

For the purposes of assessing the drought impact on the different landcover types, we computed 

the Vegetation condition Index (VCI) at 10 day (dekad) and seasonal intervals following 

(Kogan 1990). VCI = ((NDVIi − NDVImin,i)/ (NDVImax − NDVImin)) × 100% (eq1).  

Where NDVIi is the 16day or seasonal vegetation index, NDVImax, i NDVImin,i is the long-term 

maximum and minimum calculated for each pixel for each 10 day and season from the NDVI 

time series data. The resulting VCI ranges from 0 (extreme drought i.e. minimum drought) and 

100 (no drought i.e. maximum NDVI) (Kogan, 1995) with cut for drought represented with 

VCI values below 40 (e.g. Kogan, 1997; Dutta et al., 2015) The resultant VCI was then masked out 

to remove non drought pixels (i.e. VCI >40) . 

 

Standardised Precipitation Evapotranspiration Index (SPEI) 

We used SPEI to assess the vegetation’s response to drought for each land cover type. The 

main advantage of SPEI over SPI is that it can be calculated at different time scales (REF XX) 

and capture both the contribution of rainfall and temperature in drought impact (REF).The 

SPEI data was downloaded from https://digital.csic.es/handle/10261/153475 website. The 

SPEI data is provided at multiple time-scales (1-48 months) at a spatial resolution of 0.50 

(Vicente-Serrano et al., 2013). The SPEI algorithm uses precipitation together with the 

potential evapotranspiration based on the FAO Penman-Monteith method which is widely 

accepted in calculation of evapotranspiration which uses many inputs than the Thornthwaite 

algorithm which only use temperature (Sheffield et al., 2012). 

https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039
https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039
https://code.earthengine.google.com/
https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13&_ga=2.246197761.426756091.1573011879-682554445.1570634039


 

Land use Landcover data 

To analyse the influence of land cover type on drought we used, the Globcover 2009 which is 

available in Google Earth GGE. (Image ID ESA/GLOBCOVER_L4_200901_200912_V2_3). 

The Globcover 2009 was developed by European Space Agency (ESA) based on the 

ENVISAT's Medium Resolution Imaging Spectrometer (MERIS) Level 1B data. This data is 

provided at a spatial resolution of 300m resolution with 22 land cover classes defined with the 

United Nations (UN) Land Cover Classification System (LCCS (2010 and UCLouvain 

http://due.esrin.esa.int/page_globcover.php). We first masked out built up, water and irrigated crops from the 

land cover map.  

The basic pre-processing of the Globcover data (i.e. clipping global landcover data to the study 

area and masking out of the out built up, water and irrigated crops) was done in google earth 

engine platform. To simplify the analysis of drought impact on landcover classes, the original 

21 land cover classes (Table 1) was reclassified to 11 classes as shown in (Table 2) using the 

reclass function in GGE. These new classes were then used for assessing drought impact on 

vegetation. The resulting landcover data for was then exported to geotif for further possessing 

and analysis. 

 

Table 1: Original Globcover landcover classes 

Value Label 

11 Post-flooding or irrigated croplands (or aquatic) 

14 Rainfed croplands 

20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%) 

30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%)  

40 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m) 

50 Closed (>40%) broadleaved deciduous forest (>5m) 

60 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 

70 Closed (>40%) needleleaved evergreen forest (>5m) 

90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 

100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 

110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 

120 Mosaic grassland (50-70%) / forest or shrubland (20-50%)  

130 Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5m) 

140 Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses) 

150 Sparse (<15%) vegetation 

160 

Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or temporarily) - 

Fresh or brackish water 

170 Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or brackish water 



180 

Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil - 

Fresh, brackish or saline water 

190 Artificial surfaces and associated areas (Urban areas >50%) 

200 Bare areas 

210 Water bodies 

220 Permanent snow and ice 

230 No data (burnt areas, clouds,) 

 

 

 

Table 2: Reclassified Globcover landcover classes 

Original classes new class Name 

11 1 Irrigated cropland 

14, 20, 30 2 Crops 

40,70, 90 3 Evegreen forest 

50,60,100 4 Deciduous forest 

110,120,130 5 Shrubland 

140 6 Grassland 

150 7 Sparse vegetation 

160,170,180 8 Flooded vegetation 

190, 200 9 Bare and artifical areas 

210 10 Water bodies 

220, 230 11 Ice and no data 

 

Livestock density (consider using pop density) 

We used the livestock (cattle and goats) density gridded data to compute a novel ‘social pixels’ 

a unique land cover type representing rural communities or ‘village pixels which is also part of 

the communal rangelands. The livestock density data for goats and cattle is based on the 

African model and is provided on a spatial resolution of 10 km for year 2000 data which is 

adjusted to FAOSTAT values (Robinson TP, Wint GRW, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E, Cinardi G, D’Aietti 

L, Hay SI, and Gilbert M. (2014) Mapping the Global Distribution of Livestock. PLoS ONE 9(5): e96084. doi:10.1371/journal.pone.0096084). 

The goats and cattle density data were downloaded from the FAO geoportal; 

http://www.fao.org/geonetwork/srv/en/ 

Link to cattle density: 

http://www.fao.org/geonetwork/srv/en/resources.get?id=47949&fname=AFCattle1km_AD_2

010_GLW2_01_TIF.zip&access=private 

http://www.fao.org/geonetwork/srv/en/resources.get?id=47949&fname=AFCattle1km_AD_2010_GLW2_01_TIF.zip&access=private
http://www.fao.org/geonetwork/srv/en/resources.get?id=47949&fname=AFCattle1km_AD_2010_GLW2_01_TIF.zip&access=private


Link to goat density: 

http://www.fao.org/geonetwork/srv/en/resources.get?id=48049&fname=AFGoats1km_AD_2

010_v2_1_TIF.zip&access=private 

We defined the village pixels as areas with cattle and goat density > 400 per 10km. The 

resultant village pixel mask landcover (Figure 2) corresponds very well with the general rural 

population density map (Figure XX) in terms of the general patterns which makes it useful for 

understanding drought impacts on communities ‘social pixels’ i.e rural communities . as well 

as how it the vegetation within the village pixels respond to drought. The resultant village pixel 

land cover was then used in the drought impact analysis together with other landcover units 

from the Globcover map.  

 

Figure 2: Village pixels  based on cattle and goats density data 

 

Data Analysis 

Calculation of drought frequency 

We calculated drought frequency using seasonal (October - April) VCI data from 1998 to 2018. 

In order to match the resolution of the landcover data, we first resampled all the VCI dataset to 

match the globcover spatial resolution of 300m. To characterise the drought impact on 

landcover we only considered vegetation pixels under drought (i.e. VCI< 40). We masked out 

the built-up areas, irrigated crops, water bodies and bare soil from the analysis. The resultant 

VCI maps showing only drought conditions were then used to compute the number of times 

http://www.fao.org/geonetwork/srv/en/resources.get?id=48049&fname=AFGoats1km_AD_2010_v2_1_TIF.zip&access=private
http://www.fao.org/geonetwork/srv/en/resources.get?id=48049&fname=AFGoats1km_AD_2010_v2_1_TIF.zip&access=private


each landcover pixel was affected by drought conditions over the 20 year period (1998 to 2018). 

We also computed the percentage area covered by drought (1998-2016) 

 

Drought Impact analysis 

To assess drought impact across land cover types we used the dekadal (10day) VCI for 2015-

16 season. A total of 21 dekadal VCI images were used in the analysis. We chose the 2015-

2016 season because it was one of the driest since the 1980s, with severe consequences on 

vegetation (Archer et al., 2017). The analysis was restricted to drought pixels (VCI<40) non 

drought pixels were not considered in the analysis. We then extracted the median VCI for 

each landcover and village pixel to assess the drought impact for each land cover type 

 

Since, the median VCI for the landcover types did not follow the normal distribution and thus 

violates one of the assumptions of Analysis of variance (ANOVA), the Kruskal-Wallis test 

(Wallis, K. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583-621.) was 

used to test whether there is no significant difference (p<0.05) in drought impact among the 

vegetation classes following recommendation by (Vargha and Delaney, 1998). The Kruskal 

Wallis test extends from the Wilcoxon Rank-Sum test which to deals with 2 samples and is 

used in place of one-way ANOVA since the data was not normally distributed. 

(http://www.real-statistics.com/one-way-analysis-of-variance-anova/kruskal-wallis-test/ 

 

In addition, we also computed the seasonal NDVI's coefficient of variation (CoV) (1998-2019) 

to ascertain if there and any variation in drought impact due to plants activity (represented by 

NDVI) and temporal variability (represented by Cov) following (Vicente-Serrano, 2007) 

 

------------ 

 

Where X is the average NDVI and Xs is the standard deviation of the NDVI data  

 

Vegetation response to drought 

To determine the landcover type’s response to drought we sued the correlated the NDVI data 

for 2015-2016 season with monthly SPEI data at different time-scales (i.e. 1,3,6,9,12, 18 and 

24 months). To facilitate the correlation, we first resampled the SPEI to match the 1km 

resolution of the NDVI. From the resulting correlation maps from the different time scales we 

http://www.real-statistics.com/one-way-analysis-of-variance-anova/kruskal-wallis-test/


created a composite map and computed a map showing the SPEI time-scale at which maximum 

correlation between NDVI and SPEI is found (i.e. time lag of vegetation response to drought 

impact). 

 

 

 

 

 

Results 

Figure 3 show the long-term average NDVI (1998-2018) over the study area. Areas of low 

vegetation activity are mainly found in the southwestern part of the region covering the 

grassland, sparse vegetation and some parts of the shrubland. Dense vegetation activity (high 

NDVI) is mainly over the forest biomes. The NDVI profiles for the landcover units is shown 

in figure XXX 

 

 

Figure 3 show the long-term average NDVI (1998-2018) 

 

Temporal trends of drought impact  

Figure 4 show trends the mean seasonal VCI for all the southern landcover types (1998-2017). 

The main drop in VCI (drought) was recorded in 2015-2016 and 2016-2017. These periods 



coincided with the major droughts that affected the Southern African region. On particular 

interest is the 2015-16 drought which caused widespread crop failure across many major 

countries which forced many countries to declare drought disasters (Archer et al., 2017). These 

findings validate the utility of VCI for characterising drought impacts on vegetation. 

  

 

Figure 4: VCI trends based on seasonal mean VCI (1998-2018) 

 

Figure 6 provides more details of the VCI trends at dekadal interval focussing only on pixels 

affected by drought extreme drought (i.e. VCI<30). It can be seen that there is a general 

declining trend of VCI with  most landcover units recording lowest VCI is between 2015 and 

2018.  

Crop 

 

Evergreen forest 

 

Deciduos forest 



 

Shrubland  

 

Grasslands 

 

Sparse vegetation 

 

Flooded vegetation 

 

xxxxx 

 

Drought impact analysis  

The results of drought impact for the different landcover types are shown in figure 6 based on 

the dekadal mean VCI for the 2015-2016 season. The village pixel landcover type recorded the 



lowest VCI during the 2015-2016 drought season. This was followed by the flooded vegetation. 

It is reasonable to hypothesise that the village pixel landcover type is vulnerable to drought 

impact.  

 

 

 

Figure 6: Drought impact during the growing season (October 2015- April 2016). 

 

The box plots (Fig 7) provide a summary of the drought impacts (median VCI) based on the 

dekadal VCI images. The Kruskal-Wallis test show significant difference in drought impact a

mong the landcover types and vegetation pixels (p-value = 4.256e-11) confirming the fact tha

t drought impact of vegetation is not the same across the landcover types. The low VCI values 

across all the landcover also shows that fact that the 2015-2016 was the most severe drought a

s reported by (Archer et al., 2017). 

 

 

Figure 4: Box-plots showing mean drought impacts among landcover types and vegetation pixels. 

 



The mean VCI for the landcover types is presented in Table 3. The lowest VCI values are 

recorded over the evergreen forest (VCI =17.89) and the flooded vegetation (VCI=18.05). On 

the other end the highest VCI value of 26 was recorded over the sparse vegetation.  

 

 

 

Table 3: Mean VCI for 2015-16 season 

landcover mean VCI 

Crop 18.77 

Deciduous forest 19.36 

Evergreen forest 17.89 

Flooded vegetation 18.05 

Grassland 21.47 

Shrubland 19.8 

Sparse vegetation 26.04 

village pixels 18.31 

 

This finding is lowinteresting given that the evergreen forest has deep root system and is locat

ed in an area with high rainfall (REF XXX) recorded severe drought impact compared to and 

sparse vegetation, which is predominantly dry is located over the South western part of the stu

dy area which is arid.  

The quick response of the forest to drought (i.e. 3 months) Table XX explains why the low 

VCI compared to other classes 

Vegetation response to drought per landcover type 

Table 4 present a summary of the response of the land cover types to drought. Our findings 

show that most landcover types generally the respond to drought impacts at time scales ranging 

from 2 months to 8 months. Croplands and responds to drought at short time scales (2 months) 

whereas flooded vegetation responds at medium time scales (8 months). These results are 

consistent with the findings of (Vicente-Serrano, 2007) and explains why the evergreen forest 

is among the landcover classes with the lowest VCI values 

 

Table 4: Landcover response to drought (time-lag of drought impact on landcover) 

Landcover Time-lag of drought impact (month) 

Crop 2 

Evergreen forest 3 

Deciduous forest 4 



Shrubland 5 

Grassland 6 

Sparse vegetation 7 

Flooded vegetation 8 

 

 

 

Drought Frequency Map 

 

 

 

Discussion and conclusion 

In this study we analysed the drought impacts on vegetation using VCI widely used as a proxy 

for vegetation greenness (Kogan et al., 2019; Liu and Kogan, 1996; Unganai and Kogan, 1998). 

Due to the fact that NDVI is not comparable across different geographical areas (Vicente-

Serrano, 2007), we computed the VCI which enabled the quantification and comparison of 

drought impacts on different vegetation types using the Globcover land cover data. To analyse 

drought trend and frequency analysis, we used VCI data from 1998 to 2018. For assessing the 

drought impacts on the land cover units, we specifically select the 2015-2016 season which 

was one the major drought with severe impacts on crops natural vegetation and livestock 

(Archer et al., 2017). This forced many countries to declare disasters as early as in February 

and forced SADC to declare a regional disaster. 

 

We also developed a novel landcover “social pixels” based on livestock density. The inclusion 

of the “social pixel” is novel and important since it provides a new insight into drought impacts 

on rural communities. The cattle density map was selected because of the close association 

between rural communities with livestock especially cattle which is used as draught power to 

increase farm productivity and their life (Ellis-Jones and O’Neill, 2000; Pearson and Vall, 

1998). In addition, the social pixels, which is also part of the communal rangelands provides 

the rural communities with the ecosystem goods and service which support livelihoods 

(Cousins, 1999). This makes it important to understand how the drought affects the vegetation 

in the ‘social pixels’ which are dominated by the livestock rural and communities / villages. 

 



Our results show that drought impacts are not the same and vary with landcover. The sparse 

vegetation appears to be the least affected by drought impact during the 2015-2026. This can 

be explained by the fact that this landcover together with grassland can quickly responds to 

rainfall after termination of drought (show Spirits maps) 

 

On the other hand, the evergreen forest and the flooded vegetation recorded the lowest mean 

VCI (drought impact). For the flooded vegetation one possible explanation is that greater parts 

of the flooded vegetation lie in the arid part of the region (e.g. the Okavango delta) which 

means more drought impacts when the water which normally floods the vegetation is lost via 

evapotranspiration. For the forest this could be explained by fact that the forest quickly 

responds to drought impact (Table 4) (REF XX). Deciduous forests on the other hand are less 

impacted by drought (VCI=19.36) compared to evergreen forest (VCI=17.89). This can due to 

the fact that, unlike the evergreen forests, deciduous trees normally shed leaves as a copying 

strategy for minimise drought impacts (Chidumayo) 

Despite the fact that the ‘social pixel’ landcover class had a mean VCI of 18.31, much higher 

than the evergreen and forest vegetation, it is worrying to note that the the lowest dekadal VCI 

values were located land cover. This finding is worrying considering the important role of 

social pixels. The extremely low VCI values (extreme drought) in the ‘social pixels’ caused 

severe loss of cattle affecting (e.g. in Zimbabwe-----) forcing many countries to declare a major 

disaster. The loss of livestock to drought interrupts farming leading to poverty. This has been 

identified as one of the major challenges hindering economic progress in Sub- Saharan Africa 

by the Food and Agriculture Organisation (FAO)   

(http://www.fao.org/3/a0229e/a0229e04.htm) 

 

Conclusion 

The by analysing the drought frequency, drought impact on landcover as well as the response 

of the vegetation to the drought impact were able. to characterise both the spatio-temporal 

analysis of drought impact across the landcover classes. The results of this study provides can 

be used to support land use planning as well as helping to preserve biodiversity loss. 

 



 

 

 

4. Results 

4.1. SEASONALITY OF THE NDVI PATTERNS 

Figure 4 shows the evolution of the average VCI of the study area between 1987 and 2000. The main decrease 

was recorded in 1991–1992 and 1995–1996 coinciding with the main drought periods that affected this region 

(Vicente-Serrano, 2005). On the contrary, between 1987 and 1988 and 

 

 

 

Figure 5 shows the spatial and temporal average and standard deviation values of the monthly NDVI for the whole study area. On average, the 

highest NDVI values were recorded during the spring, with a marked rise occurring in the index between January and April, followed by a slower 

fall from here to the end of the year. This behaviour is determined by climatic seasonality: in winter, frequent frosts limit vegetation activity 

whereas in summer, the characteristic aridity reduces vegetation activity. Spring, due to available water and moderate air temperatures, is the season 

most favourable to vegetation activity and is when the highest NDVI values were recorded. The spatial variability in the NDVI (bars of 1 standard 

deviation values) was higher during the summer than in winter, because the irrigated lands and the active forests present marked differences in their 

vegetation activity compared to that of the dry-land agricultural areas and the steppes. By contrast, vegetation activity was very low during winter for 

all land-cover types and, therefore, a low spatial variability was recorded. Marked differences in the average monthly NDVI values as a function 

of land-cover type were recorded (Figure 6). In April, maximum vegetation activity was recorded primarily in the dry-farming areas (cereals). In areas 

                   

of shrubs, pasture and coniferous forests, seasonal differences were lower. In irrigated lands, the average NDVI values were higher than those 

recorded in other land-cover types as vegetation activity remained high during the summer months. The values of leaf area index (LAI) for these 

land cover types indicate important spatial and seasonal differences. The following values were obtained from MODIS images at a resolution of 

1 km2 (http://www.edcdaac.usgs.gov/modis/mod15a2.asp). The dry farming areas have a LAI between 1 and 2 in spring and values close to 0 after the 

harvest in summer. The coniferous forests have LAI values between 1.5 and 3 in spring and between 2 and 4 in summer. Finally, the shrub and 

pasture lands have LAI values between 0.5 and 1.5 in spring and between 0 and 0.5 in summer. 

 

SPATIAL DISTRIBUTION OF CORRELATIONS BETWEEN VCI AND SPI 

Figures 7–9 show the spatial distribution of correlations between the monthly series of VCI and the series of SPI3, SPI6 and SPI12. The black 

lines isolate areas with positive and significant correlations (R ‡ 0.53,p < 0.05). For SPI3, large areas to the north of the study area showed Drought impact 



 

 

The Kruskal Wallis tests show that there is a significant (P<0.05) difference in yield among wards with different 
dry dekad sequences--------------------------------------------------------- 

 

The result of the stud 

 

Drought fraction varies spatially as well as temporally, with VegDRI measuring more frequent drought in some 
ecoregions and land-cover types (Table 1). Averaged over time for 1989–2012 and by ecoregion and land-cover 
type, the overall VegDRI drought fraction for grassland, shrub/scrub, and nonirrigated cultivated crops was 
generally less than 20%, with only one exception [grassland in the Northwestern Great Plains (43)]. Cropland 
had a lower drought fraction (10%–13% for ecoregions with more than 2000 km2 of crops). Wet conditions 
occurred less frequently than dry conditions (excluding small areas, wet conditions were ≤15% in grasslands 
and croplands). Normal conditions were present during ~70% of the study period. Results for grassland in 
Edwards Plateau (30), scrub/shrub in Northwestern Glaciated Plains (42), and nonirrigated crops in Nebraska 
Sand Hills (44), Flint Hills (28), and especially Edwards Plateau (30) should be treated with caution, as these 
cases are represented by relatively small areas. 

 

DISCUSSION POINT 

-Importance of grasslands= highest cattle density mostly cattle esp on the southern part of 
the biome—talk about the grazing and degradation 

 

 

 

 

Discussion 

Land–atmosphere feedbacks enhance the importance of drought impacts on vegetation. Climate-forced 
changes in vegetation produce feedbacks to the atmospheric system because of modifications in biogeophysical 
properties. When vegetation is water stressed, albedo increases and latent energy flux decreases, which may 
decrease atmospheric instability, convection, and cloud development. Human-forced LULC changes further 
complicate these land–atmosphere interactions (Pielke 2001; Pielke et al. 2011; Mahmood et al. 2014). Studies 
have shown that human-forced change in LULC modified regional long-term temperature, precipitation, 
humidity, and in some cases, atmospheric circulation (Foley et al. 2005; Wang et al. 2009; DeAngelis et al. 2010; 
de Noblet-Ducoudré et al. 2012; Brovkin et al. 2013; Kumagai et al. 2013; Mahmood et al. 2014; Lawrence and 
Vandecar 2015). 
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The NCA3 regions provide a useful way to summarize climate effects within administrative 
boundaries 

Great Plains average drought values were similar to those of the major Great Plains 
ecoregions, except for the northwestern and southeastern ecoregions Comparisons of 
ecoregions within the Great Plains highlight the similarity between nearby ecoregions and 
spatial autocorrelation. Ecoregions that are in close geographical proximity tend to have 
correlated droughts, whereas more distant ecoregions become increasingly different (Figure 
8) 

. Drivers of differences in drought between LULC types 

Across the Great Plains, drought was detected by VegDRI more frequently in grassland and 

shrubland land-cover types than in nonirrigated cultivated cropland (Table 1). This result 

suggests that cropland could be less sensitive to drought than grassland (at least for the drought 

severity seen during the study period). However, attribution is difficult because there are a 

number of processes that could contribute to differences in VegDRI drought detection among 

the land-cover types. 

For one, crops are more intensively managed than grassland or shrubland, and managers could 

be taking actions that reduce the impact of drought on their crops, such as planting more 

drought-tolerant crops or cover crops during dry periods. Installation of tile drainage may have 

influenced the frequency of wet periods in VegDRI (particularly in the Northern Glaciated 

Plains). Although previously not common in the study area (Pavelis 1987), tile drainage has 

increased in the northern Great Plains in recent years (Cihacek et al. 2012). Management 

actions might also influence the drought signal measured by the satellite record. For example, 

fallow land has a different phenological pattern of NDVI than cropped land (Wardlow et al. 

2007). 

Another potential factor for drought differences among grassland, shrubland, and cropland is 

preferential site selection for cropland. Land-use decisions are made by managers based on 

many variables, including expected yields, so cropland is likely to be different from grassland 

in soil, climate, topography, drainage, and other factors. These factors could contribute to the 

lower drought frequency observed in croplands in the VegDRI time series, since locations that 

are less affected by drought are presumably more likely to be converted to cropland. 

It is also possible that these observed differences in VegDRI are attributable to the analysis 

procedure. Since NLCD land cover and ecoregion are inputs to VegDRI, it is conceivable they 

are affecting drought index values in a way that is detected by this analysis. Also, since VegDRI 

is a measurement of the anomaly compared to average conditions, it is possible that the 

difference between the study period (1989–2012) and the averaging period (1989–2008) could 

affect the drought index. 

5.1. Drivers of differences in drought between LULC types 

Across the Great Plains, drought was detected by VegDRI more frequently in grassland and 

shrubland land-cover types than in nonirrigated cultivated cropland (Table 1). This result 

suggests that cropland could be less sensitive to drought than grassland (at least for the 

drought severity seen during the study period). However, attribution is difficult because there 
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are a number of processes that could contribute to differences in VegDRI drought detection 

among the land-cover types. 

For one, crops are more intensively managed than grassland or shrubland, and managers 

could be taking actions that reduce the impact of drought on their crops, such as planting 

more drought-tolerant crops or cover crops during dry periods. Installation of tile drainage 

may have influenced the frequency of wet periods in VegDRI (particularly in the Northern 

Glaciated Plains). Although previously not common in the study area (Pavelis 1987), tile 

drainage has increased in the northern Great Plains in recent years (Cihacek et al. 2012). 

Management actions might also influence the drought signal measured by the satellite record. 

For example, fallow land has a different phenological pattern of NDVI than cropped land 

(Wardlow et al. 2007). 

Another potential factor for drought differences among grassland, shrubland, and cropland is 

preferential site selection for cropland. Land-use decisions are made by managers based on 

many variables, including expected yields, so cropland is likely to be different from grassland 

in soil, climate, topography, drainage, and other factors. These factors could contribute to the 

lower drought frequency observed in croplands in the VegDRI time series, since locations 

that are less affected by drought are presumably more likely to be converted to cropland. 

It is also possible that these observed differences in VegDRI are attributable to the analysis 

procedure. Since NLCD land cover and ecoregion are inputs to VegDRI, it is conceivable 

they are affecting drought index values in a way that is detected by this analysis. Also, since 

VegDRI is a measurement of the anomaly compared to average conditions, it is possible that 

the difference between the study period (1989–2012) and the averaging period (1989–2008) 

could affect the drought index. 
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