CSIR-KIER workshop 12-13 August 2019

Ultrasonic exfoliation of NiFe LDH/CB nanosheets/few layered sheets for enhanced oxygen evolution electrocatalysis

> Munonde Tshimangadzo tmunonde@csir.co.za

Dr H Zheng (CSIR) Prof PN Nomngongo (UJ)

Sir

Background: Oxygen evolution reaction

An important reaction for energy conversion and storage processes.

Ursua, A., Gandia, L.M., Sanchis, P. (2012). Proceedings of the IEEE, 100(2), 410-426.

LDH's are a class of synthetic layered materials with highly tunable, chemically versatile and flexible open structures.

Fig. 2 Layered double hydroxides structure

- [M^{II}_{1-x} M^{III}_x (OH)₂]^{x+} (Aⁿ⁻)_{x/n}.mH₂O consists of divalent (M^{II}) and substituted trivalent (M^{III}) cations that are balanced with intercalated Aⁿ⁻ anions and solvation H₂O molecules within their space regions.
- NiFe LDH need to be exfoliated to reach its full potential and has shown better OER activity than Ir and Ru based electrocatalysts.

Background: Sonication assisted exfoliation

Fig. 3 Sonication-assisted liquid exfoliation process.

our future through science

Sana, S., Rajanna, K. C., et al., (2012). Green and Sustainable Chemistry, 2(03), 97.

Experimental section

Sebastián, D., Baglio, V., Aricò, A.S., Serov, A., Atanassov, P. (2016). Applied Catalysis B: Environmental, 182, 297-305.

Results and Discussion: X-ray Diffraction (XRD)

The Interlayer spacing on (003) was 0.745 (a) and 0.750 nm (b)

Results and Discussion: SEM/EDX

Fig. 5 FE-SEM of NiFe LDH/CB (a), Exf NiFe LDH/CB (b); and their corresponding EDX spectra in (c) and (d), respectively.

 \blacktriangleright Ni/Fe = 2.15 (a) and 2.05 (b), but 2.62 from the synthesis

Results and Discussion: TEM (1)

Fig. 6 TEM (a); HR-TEM (b, c); SAED (d); Elemental Mappings from (i-v) of NiFe LDH/CB.

Results and Discussion: TEM (2)

Fig. 7 TEM (a); HR-TEM (b, c); SAED (d); Elemental Mappings from (i-v) of Exf NiFe LDH/CB.

Results and Discussion: X-ray photoelectron spectroscopy (XPS)

1s spectra (e), of NiFe LDH/CB and Exf NiFe LDH/CB.

Results and discussion: Electrocatalytic activity and stability

Fig. 9 OER polarization curves (a); Tafel plots (b); Nyquists plots (c); Chronopotentiometric curves (d), of Exf NiFe LDH/CB and NiFe LDH/CB

Results and discussion: Electrocatalytic activity comparison

Table 1 Comparison of the OER activity with other related materials.

Catalyst	Method	Electrolyte	Loading	Onset	η ^{10 mA}	Tafel	Ref
			(mg cm ⁻²)	overpotentia	cm-2	slope	
				I	(mV)	(mV	
				(mV)		dec ⁻¹)	
NiFe-LDH	Coprecipitation	0.1 M NaOH	0.2	-	350	47	Gong
nanosheet							et al.
NiFe LDH	Hydrothermal	1 M KOH	0.07	~ 250	325	40	Qi et
Nanosheet							al.
CQD/NiFe-LDH	Solvothermal	1 M KOH	0.2	210	235	30	Han et
nanoplates							al.
NiFe LDH/CB	Hydrothermal	1 M KOH	0.2	170	280	48	This
							work
Exf NiFe	Hydrothermal	1 M KOH	0.2	150	220	35	This
LDH/CB							work
nanosheets							Cir

M. Gong, Y. Li, et al., J. Am. Chem. Soc. 135 (2013) 8452-8455.

X. Qi, B. Blizanac, et al., Physical Chemistry Chemical Physics. 16 (2014) 25306-25313.

our future through science

Y. Han, P. Li, et al., Scientific reports. 8 (2018) 1359.

- The ultrasonic exfoliation process has exfoliated the NiFe LDH/CB stacked layers into single/few-layer nanosheets.
- XRD, FESEM, HRTEM and XPS was used to confirm and support the success of the exfoliation process adopted.
- The exfoliated NiFe LDH/CB has shown better catalytic activity for OER with an overpotential of 220 mV at a current density of 10 mA cm⁻², compared to the 280 mV of the bulk NiFe LDH/CB nanosheets.
- The higher durability was also achieved on Exf NiFe LDH/CB with nearly a constant potential during the 12 hours OER electrolysis at 10 mA cm⁻².
- The ultrasonic process provides an effective method to exfoliate layered materials in a green approach.

our future throug

Acknowledgements

National Research Foundation

Thank you

