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Abstract—Wireless Sensor Networks (WSN) provide an 
affordable infrastructure that allows numerous control and 
data collection processes to be conducted with high spatial and 
temporal resolution. The recent arrival of Low Power Wide 
Area Networks (LPWAN) has given rise to WSN solutions with 
long range capabilities and a high level of autonomy. However, 
this has come at a cost of having low data rates and poses quite 
a huge challenge on implementation of high bandwidth 
applications such as Firmware Updates Over the Air 
(FUOTA). Firmware updates are essential throughout the 
lifetime of a product for several reasons including post 
deployment bug fixes, introduction of new security features 
and implementation of performance optimizations. This paper 
proposes a generic and hypothetical approach to designing an 
efficient FUOTA mechanism for WSN/LPWAN. The paper 
also presents a review of past literature on similar works and 
how best existing approaches have addressed the challenges of 
remote sensor node reprogramming. 

Keywords—WSN, LPWAN, FUOTA, and Reprogramming 

I.� INTRODUCTION 
Wireless Sensor Networks (WSN) provide a promising 

infrastructure for numerous applications ranging from asset 
tracking, agricultural automation, environmental monitoring, 
telemedicine and military surveillance. With quite a simple 
architecture, WSN have allowed control and monitoring 
processes to be conducted remotely, in real-time, with 
minimal human intervention and at a relatively low cost. A 
typical WSN system consists of two main subsystems 
namely nodes and gateways. Nodes are devices equipped 
with sensing, processing and wireless communication 

capabilities, and together perform a collaborative 
measurement process. Gateways provide a means to collect 
data from nodes and relay it to storage centers, analytics 
engines and data visualization systems [1]. The rapid 
deployment and reduction in cost of broadband internet has 
made it affordable to connect, monitor and control WSN 
systems through the public network, leading to a 
technological revolution termed Internet of Things (IoT) [2], 
[3]. Fig 1 is an illustration of a typical IoT system. 

To support remote and real-time data collection with a 
high level of autonomy, most applications require nodes that 
are capable of long-range communication while consuming 
very little power such that they can operate for several years 
on battery power. Conventional WSN communication 
technologies such as Wi-Fi, Bluetooth, ZigBee and 
traditional cellular technologies have not been able to 
accommodate these requirements effectively [4], [5]. Low 
Power Wide Area Networks (LPWAN) have since emerged 
to complement the inadequacies. LPWAN support 
communication over long distances while consuming very 
little power. These benefits come at a cost of having very 
low data rates, which impose design restrictions when trying 
to implement high bandwidth applications such as Firmware 
Updates Over the Air (FUOTA). 

This paper presents a hypothetical approach to effective 
implementation of FUOTA for WSN/LPWAN. The paper 
also reviews past literature on similar works and evaluates 
how proposed methodologies have addressed the challenges 
of FOUTA. Research gaps and potential future directions are 
also identified. 

Fig 1. Typical WSN/IoT System Architecture 
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The remainder of this paper is organized as follows: 
Section 2 describes characteristics, requirements and 
challenges of LPWAN. Section 3 introduces FUOTA and 
describes the challenges and requirements for its effective 
implementation over WSN/LPWAN. Sections 4 and 5 
provides a review and a discussion of previous work on 
FUOTA over WSN/LPWAN, respectively. Sections 6 and 7 
discusses potential research gaps on designing effective 
FUOTA mechanisms for WSN/LPWAN and concludes the 
paper. 

II. LOW POWER WIDE AREA NETWORKS

A. Characteristics of LPWAN 
LPWAN are relatively affordable and can transmit data 

over kilometers of range with low power consumption. 
Among them, Sigfox, LoRa/LoRaWAN and NB-IoT have 
become leaders of the LPWAN technology space and are 
competing for large scale IoT deployment [6]. Sigfox was 
developed in 2010 by a French company called Sigfox which 
is also its network operator. At the physical layer, Sigfox 
uses Binary Phase Shift Keying (BPSK) modulation in an 
Ultra-Narrow Band (UNB) carrier. Sigfox uses unlicensed 
ISM bands such as 868MHz in Europe, 915MHz in North 
America and 433MHz in Asia. LoRa was developed in 2009 
by a French company called Cycleo and was later purchased 
by an American company called Semtech. LoRa uses a 
modulation technology called Chirp Spread Spectrum (CSS), 
that spreads a narrow-band signal over a wider channel 
bandwidth. Like Sigfox, LoRa uses similar unlicensed ISM 
bands. NB-IoT is a narrow-band LPWAN technology that 
has been standardized and specified in Release 13 of the 
3GPP in June 2016. NB-IoT uses Quadrature Phase-Shift 
Keying (QPSK) modulation and operates on licensed 
frequency bands like GSM and LTE[6], [7]. TABLE 1 
provides a summary of the main characteristics of the leading 
LPWAN technologies. 

B. Requirements and challenges of LPWAN 
Nonetheless, LPWAN come with some tradeoff 

challenges such as very low data rates and uplink-oriented 

communication. In addition, most of LPWAN operate in 
license free bands and must therefore adhere to duty cycle 
limitations while suffering the effects of radio interference 
[4]. This poses quite a huge challenge for applications with 
considerable bandwidth requirements such as FUOTA. 

III. FIRMWARE UPDATES OVER-THE-AIR (FUOTA)

A. Characteristics of FUOTA 
Conventionally, FUOTA was termed Over-The-Air 

Programming (OTA/OTAP), and generally referred to a 
process of updating device firmware over a wireless 
communication medium [8]. Firmware preloaded on WSN 
nodes may occasionally need to be updated for several 
reasons including post deployment bug fixes, security 
patches, introduction of new features and performance 
enhancements. In this regard, FUOTA has been considered 
most ideal especially when dealing with physically 
inaccessible, large scale WSN/LPWAN deployment 
scenarios where manual methods would be very costly and 
time consuming to realize. 

B. Challenges of conducting FUOTA for WSN/LPWAN 
Since WSN/LPWAN nodes are always designed to be 

simple and affordable so as to maintain their traditional small 
form factor; they are inherently resource constrained in terms 
of computational power, energy/battery life, communication 
bandwidth and memory. A study in [9] suggests that of all 
the constraints, energy is the most critical and its 
consumption can be categorized into three parts namely: 1) 
consumption by the sensor transducer, 2) consumption by 
microprocessor computation, and 3) consumption by the 
communication module. Authors of [5], [9] found that 
communication is more energy consuming than 
microprocessor computation as transmitting one bit 
wirelessly can easily consume as much energy as executing 
800 to 1000 instructions. Communication overheads 
introduced by FUOTA could have a very huge impact on the 
lifespan of devices. When planning a large scale 
WSN/LPWAN deployment, it is very critical to have an 
effective strategy for conducting FUOTA.

TABLE 1. Characteristics of LPWAN technologies [6], [7] 

Sigfox LoRa/LoRaWAN NB-IoT
Modulation BPSK CSS QPSK
Frequency Sub-GHz ISM:

EU868, US918, AS433  
Sub-GHz ISM: 
EU868, US918, AS433 

Licensed LTE frequency band 

Bandwidth UL: 100/600 Hz 
DL: 1.5 kHz 

125 kHz and 250 kHz 200 kHz 

Data rate UL: 100/600 bps 
DL: 600 bps 

0.3-5 kbps UL: 158.5 kbps 

Range 10 km (urban) 
40 km (rural) 

5 km (urban) 
20 km (rural) 

1 km (urban) 
10 km (rural) 

Maximum payload size (bytes) UL: 12 
DL: 8 

250 13

Error correction UL: CRC-16 
DL: CRC-8 

CRC-8/16 CRC

Bidirectional Limited/Half-duplex Yes/Half-duplex Yes/Half-duplex
Topology Star Star Star
Localization Yes (RSSI) Yes (TDOA) No (under specification) 
Security No (must be implemented in 

application layer) 
Yes (AES 128b) Yes (LTE encryption) 

Standardization Collaborating with ETSI to 
standardize the network 

LoRa-Alliance 3GPP
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C. Requirements of effective FOUTA for WSN/LPWAN 
To analyze FUOTA for WSN/LPWAN, we have broken 

down the system into the following subset of IoT devices and 
services. 

Nodes: These are devices to be updated through FUOTA. 

Gateways: These are devices which provide a means for 
nodes to communicate with servers and vice versa. 

Network server: Provides services that regulate how 
devices can access and share network resources. 

Application server: Provides services to route device 
traffic to appropriate applications and vice-versa. 

Update server: Provides the core services for 
implementing FUOTA over WSN/LPWAN. 

Services can be viewed as independent entities or as 
combined where necessary. 

The problem of developing an efficient FUOTA 
mechanism can be broken down into several processes and 
protocols, some of which can be addressed individually or in 
combination where necessary. 

Firmware differencing: This is a process for computing 
the difference between new and old firmware images to 
reduce the amount of data that needs to be transmitted to 
perform an update. 

Data encoding: This is a process for encoding the 
difference into a script that can easily be reconstructed by the 
intended recipient. 

Data fragmentation: This is a process for breaking 
down the update script into sizeable packets/fragments that 
can effectively be transmitted through the communication 
channel. 

Update session scheduling: This is a protocol that is 
meant to prepare appropriate devices to get ready for the 
update session. 

Packet dissemination: This is a protocol to effectively 
distribute update packets to the intended recipients. 

Error correction and recovery: This protocol is for 
recovering from packet losses and errors. 

Firmware reconstruction: This is a process for 
decoding the update script to generate the new firmware 
image.  

Update session termination: This is a protocol to 
effectively conclude the update session. 

Client reprogramming: This is a process to rewrite the 
old firmware image with the newly reconstructed one. 

Security: These are protocols for establishing trust and 
authenticating communicating entities of the FUOTA 
mechanism. The protocols must ensure integrity of the 
update script and the reconstructed firmware image, before 
reprogramming. 

Fig 2 shows how the devices, services, processes and 
protocols would typically interact during an active FUOTA 
process. 

To address the challenges of FOUTA, it is imperative to 
come up with a comprehensive approach to assess the effects 
of each process and protocol on the overall performance of 
the update mechanism. Below are 6 generic and hypothetical 
design approaches that we propose for effective 
implementation of efficient FUOTA for WSN/LPWAN: 

• All FUOTA protocols and processes must work
within the resource constraints of WSN/LPWAN.

• All FUOTA processes and protocols must be
executed effectively and efficiently to not hinder
sensor nodes from executing their core application.

• All FOUTA protocols must be secure enough to not
compromise sensor nodes and the network.

Fig 2. Typical FUOTA Flow Diagram
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• All FOUTA protocols and processes must consume
as little energy as possible to preserve the lifetime
and autonomy of sensor nodes.

• All FUOTA protocols must have the ability to
effectively recover from packet losses or errors.

• Lastly, integration of FUOTA should strive to be
seamless and not cause major changes to the
existing code base of the underlying system.

IV. REVIEW OF FUOTA MECHANISMS FOR WSN/LPWAN
Past literature on FUOTA mechanisms for 

WSN/LPWAN is reviewed and evaluated based on how best 
authors have addressed the challenges of FOUTA with 
respect to the processes and protocols previously suggested. 

Researchers at Berkeley, University of California [8], 
[10] developed a very basic OTA protocol for WSN called 
Crossbow Network Programming (XNP). XNP was 
developed as a single-hop protocol and was implemented and 
tested on TinyOS release version 1.1. However, the protocol 
was considered not to be scalable since it could only 
disseminate the program code to nodes within the vicinity of 
the host machine or gateway. XNP was also considered 
inefficient for distributing the complete program code instead 
of just the difference. In addition, the protocol did not 
address issues of security or effectiveness of the client 
reprogramming agent, all of which have an impact on the 
performance of the update process. 

Reijers and Langendoen [11] presented an efficient code 
distribution mechanism for WSN. Authors developed a 
UNIX diff-like algorithm to find the shortest edit script to 
convert an old firmware image to a new one. The algorithm 
was optimized with REPAIR and PATCH command 
operations to produce a shorter edit script. The script was 
then fragmented into 64-byte packets to be transmitted 
effectively through the communication channel. Authors 
developed an initialization phase to inform nodes of the 
beginning of the reprogramming cycle, so they make 
necessary preparations. During transmission, nodes would 
build the new code image in external EEPROM by 
sequentially processing the packets bottom up and creating 
necessary gaps for any missing information. To ensure 
proper reconstruction of the firmware image, authors 
developed a verification protocol that allows nodes to request 
for the missing binaries from their neighbors. Upon 
successful code reconstruction, nodes would be given the 
instruction to start running the update process by loading a 
small piece of code into RAM that gives the instruction to 
copy the image from EEPROM to flash and reboot on 
completion. On startup, the nodes would then run the new 
code. Authors implemented and tested their scheme on 
EYES nodes, featuring Texas Instruments MSP430F149 
microcontrollers with 2KB RAM and 60KB flash memory. 
The nodes were also equipped with RFM TR1001 
868.35MHz hybrid wireless transceivers with 115kbps 
maximum data rate, and 256KB external EEPROM. 
Experimental results showed a significant improvement as 
compared to simply transferring the complete binary code, 
and further showed that the application code only had to be 
disrupted a few times when transferring the new code. 
However, the proposed data recovery protocol imposed 
considerable communication overheads on sensor nodes by 

having them request for missing packets and sending 
acknowledgements. This approach is also applicable only in 
multi-hop network topologies. Furthermore, the protocol did 
not implement any security mechanism to negotiate trust to 
authenticate update files, or to even check the integrity of the 
reconstructed code file. This introduces a vulnerability for 
attackers to introduce rogue firmware that could break or 
cause the nodes to malfunction. 

Jeong, et al. [10] extended the network programming 
implementation of TinyOS release 1.1 by developing a 
mechanism that transmits incremental changes from an old 
firmware image to a new one. The difference was generated 
using an optimized block level comparison algorithm called 
Rsync. The difference was encoded into a script with 
DOWNLOAD and COPY commands, to show which 
sections would be added to the new image and which would 
be copied from the old image, respectively. The script was 
then fragmented, transmitted across the communication 
medium and stored in external flash by the nodes. The host 
program would then query the nodes to confirm receipt of all 
fragments, so they could request for retransmission of those 
that are missing. The host would then send a decode 
command when all nodes have received all fragments, after 
which they would start rebuilding the new firmware code in 
external flash. The algorithm was implemented and tested on 
TinyOS and was compared to fixed block comparison. 
Results showed a speed-up of 9.1 for changing a constant 
and that of 2.1 to 2.5 for changing a few lines in the source 
code. Nonetheless, the proposed solution had no initialization 
procedure to make the nodes aware of and help them prepare 
for the update session. In addition, the proposed error 
correction mechanism imposed considerable communication 
overheads on the nodes with retransmission requests and 
acknowledgements. Moreover, the solution did not address 
security concerns for ensuring the authenticity and integrity 
of the update script or the reconstructed firmware. 

Hu, et al. [12] developed an algorithm called RMTD, for 
reprogramming WSN with minimal transfer data. RMTD 
used byte level comparison to find common segments 
between old and new code images, and employed a dynamic 
programming to find the optimal combination of COPY and 
DOWNLOAD commands to reconstruct the new code 
image. The algorithm’s performance was evaluated by 
comparing its packet transmission overheads with those of 
the fine-tuned Rsync differencing algorithm [10] under the 
same experimental conditions. Results showed considerable 
reduction in data transfer for RMTD over Rsync of 93.25% 
and 59.82% when there are small changes in the source file 
and on overage, respectively. However, RMTD incurs 
additional communication and computational overheads for 
copying all common code segments including those that have 
maintained the same addresses in both firmware images. 

Dong, et al. [13] developed a holistic over the air 
reprogramming mechanism for WSN called Elon, based on 
the TinyOS operating system. Elon minimized transmission 
overheads for both the TinyOS kernel services and the 
reprogramming protocol by introducing the concept of 
replaceable components. This was achieved through 
modifying of the nesC compiler to create a boundary 
between replaceable components and the OS kernel 
components. This isolation allowed nodes to be rebooted 
through software means to avoid the high energy 
consumption and data loss that is usually associated with a 
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hardware reboot. Elon placed replaceable components on 
RAM to avoid flash writes thereby prolonging the 
reprogramming lifetime of the nodes. Authors implemented 
and tested Elon on a testbed of 10 TelosB nodes running 
TinyOS 2.1, and experimental results showed considerable 
reduction in code size of about 120-389 and 18-42 times 
compared to Deluge and Stream, respectively. Elon also 
significantly reduced the loading cost of rebooting core OS 
components such as CTP, Drip and FTSP by 53.8%, 50.4% 
and 56.83%, respectively. Furthermore, Elon extended the 
reprogramming lifetime of the TelosB nodes by a factor of 
2.3 compared to other approaches. Nonetheless, the 
mechanism was designed for and limited to Von-Neumann 
architecture based TinyOS sensor nodes and cannot be easily 
ported to other microcontroller platforms with different 
compiler and core architectures. Additionally, Elon is likely 
to incur communication overheads for not optimizing the 
payload size with firmware differencing between successive 
code images of replaceable components. 

Munawar, et al. [14] developed Dynamic TinyOS to 
support efficient remote reprogramming of TinyOS based 
sensor nodes. The solution introduced extensions to support 
dynamic adaptation of the OS and application features by 
allowing users to define components to be kept modular in 
the binary executable for them to be easily replaced during 
runtime. This was achieved through modifying the TinyOS 
compiler NesC. Authors also developed a runtime system for 
sensor nodes called Tiny Manager, to handle storage and 
integration of new components with the system binary 
image. In addition, authors also suggested optimizations for 
ELF objects to reduce communication and processing 
overheads. The solution was implemented on the TelosB 
platform running TinyOS release 2.1, and its performance 
was compared to Deluge and Zephyr for different software 
change scenarios. Zephyr showed better performance in 
update size for small changes to the application code, but 
was outperformed by Dynamic TinyOS for component level 
changes. In terms of memory footprint, runtime performance 
overhead and energy consumption, the proposed solution 
showed significant improvement over Deluge. However, 
adaptations introduced by Dynamic TinyOs to compile parts 
of an application in isolation limits the compiler’s 
optimization attempts to ensure coverage of the smallest 
possible memory footprint. Additionally, the solution does 
not offer a provision to update the runtime system, and will 
not be easily ported to other sensor networks with different 
microcontroller and compiler architectures since was 
specifically developed for TinyOS and the NesC compiler. 

Wen, et al. [15] developed an OTA protocol that employs 
Parallel Diffusion Mechanism (PDM) to distribute code 
segments in a multi-hop, self-organized WSN environment. 
In PDM, forwarding nodes would be selected based on the 
distance between adjacent candidate nodes, and their 
transmission powers would be adjusted dynamically upon 
convergence of the algorithm. The authors used TOSSIM 
simulation environment, which runs TinyOS, to implement, 
test and evaluate PDM in comparison with other protocols 
such as ripple and sender selection protocol, under similar 
conditions. With increasing distance between nodes, PDM 
was observed to have the fastest execution process 
completion time. In addition, PMD also had the best overall 
network energy performance. Nonetheless, the protocol 
performed poorly under much dense WSN deployments, as it 
incured considerable communication overheads to converge 

and select appropriate forwarding nodes and transmit 
powers. The solution also did not address other critical 
protocol related features such security and error detection 
and recovery, which have a great impact on the overall 
energy performance on an OTA mechanism. 

Pote, et al. [16] presented a performance evaluation of 
six symmetric key ciphers (Blowfish, RC6, RC2, AES 
(Rijndael), 3DES and DES) recommended for secure OTA 
programming of WSN. To assess the performance the 
algorithms, authors adopted an evaluation criterion that 
considered several factors such as: 1) the effect of changing 
file data types to text, audio and video; 2) the effect of 
varying packet sizes; 3) the effect of using different data 
encoding bases such as hexadecimal and base64; and 4) the 
effect of varying cryptographic key lengths. Experiments 
were conducted using a Laptop IV with a 2.4 GHz CPU. 
Results showed that there was no significant change for 
encoding data with hexadecimal or base64, or for using 
different file data types. In the case of varying the packet 
size, Blowfish was observed to perform better than other 
algorithms, followed by RC6 and AES. RC2 had the worst 
performance in execution time. Increasing the key length 
introduced a correspondingly noticeable increase in the 
power consumption and execution time. However, the 
authors work was limited only to performance evaluation of 
symmetric key ciphers than to investigate how they could be 
employed in OTA reprogramming. In addition, all 
experiments were conducted on a general-purpose computer 
with abundant compute resources than is possible in a typical 
WSN setup and may not necessarily yield the same results 
under constrained environments. Symmetric crypto systems 
are also not enough to address all the security requirements 
for OTA reprogramming of WSN. 

Kachman and Balaz [5], [17] suggest that effective OTA 
reprogramming requires considering several factors such as 
firmware similarity improvements, differencing algorithms, 
delta file dissemination and update agent complexity. The 
authors developed an algorithm called delta generator (DG), 
which used XOR operation to compute the difference 
between two firmware images and encoded it into a delta file 
with COPY and ADD operations. The algorithm was 
designed for OTA reprogramming of devices without 
external flash, and authors suggested that the proposed 
optimizations reduced space complexity and lead to better 
execution times. In addition, the authors developed a basic 
energy consumption model for reprogrammed memories, and 
an encoding scheme that splits a delta file into three parts 
namely, header, operation data, and integrity check data. The 
header consisted of two numbers specifying the number of 
COPY and ADD operations, respectively. The operation data 
encoded addresses and bytes for each operation, and the 
integrity check data encoded a CRC-16 code that would be 
checked to verify the integrity of the delta file before 
application. The algorithm was implemented on an 
ATmega32U4 microcontroller with 32KB of self-
programming flash memory and was tested with 7 firmware 
change cases and compared with the R3diff differencing 
algorithm, which is one of the best algorithms for generating 
deltas for firmware updates in external memory. Results 
showed an upgrade over R3diff with reduced delta file sizes 
and correspondingly reduced amount of page writes to flash 
memory. Nevertheless, the proposed solution and energy 
consumption model did not account for other processes and 
protocols such as delta fragmentation, update session 
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scheduling and termination, packet dissemination and error 
recovery, authentication and security; all of which have a 
significant contribution to the overall effectiveness and 
energy consumption of the OTA process. In addition, on the 
fly reprogramming limits the ability to check the integrity of 
the full firmware image before writing to program memory. 
The process may also result in device malfunction if it gets 
interrupted before completion and should therefore have a 
rollback option if possible. 

Jongboom and Stokking [4], [18] presented a solution for 
enabling FUOTA over LPWAN. To update multiple devices 
at the same time, authors proposed scheduling a multicast 
session to get all devices to listen at the same time, 
frequency, data rate and security session. To minimize 
network traffic and save energy, authors suggested 
employing a linear patch format, where the network sends 
incremental changes instead of the full firmware image. To 
deal with packet loss, authors recommend low-density parity 
check coding (LDPC) error-correction mechanism. Upon 
receiving a complete update file, devices would calculate a 
checksum of the data and send it to the network through their 
own private secure sessions. The server would then compare 
this checksum with the data that it sent and would indicate 
the correctness of the checksum to each device individually 
through private secure sessions. As part of the response, the 
server would send a message integrity code (MIC) to 
guarantee data integrity to the devices. Authors suggested 
additional network and application layer security measures 
for each end device is to be programmed with a public key of 
the owner who is authorized to update its firmware, a 
manufacturer’s universally unique identifier and a device 
type identifier. This was to allow creation of a secure 
firmware update manifest that contained a cryptographic 

hash of the update, a manufacturer and device type the 
update applies to, all signed with the manufacturer’s private 
key. Single curve ECDSA/SHA256 were suggested for 
computing the cryptographic hash, since they are sufficiently 
secure and can efficiently be implemented on constrained 
devices. Authors also suggest limiting the multicast session 
with a lifetime based on a fixed number of messages to avoid 
draining devices with endless error correction packets. When 
the limit is reached, devices would revert to their power 
efficient mode and discard all data. A reference 
implementation of the proposed solution was demonstrated 
by ARM and The Things Industries, on top of LoRaWAN, at 
the LoRa-Alliance Annual Members Meeting (AMM) in 
2017. They used custom boards created with Multi-Tech 
xDot radio modules and NXP FRDM-K22F MCUs and 
managed to update them with a 52KB full firmware image 
under 6 minutes. Nevertheless, the proposed solution would 
only be suitable for updating stationary devices, whose 
communication requirements can be determined with relative 
ease. The solution was only tested on a setup with dual MCU 
integration, which has more compute and memory resources 
than typical IoT nodes, and therefore may not be easily 
ported to most IoT device implementations.  The work was 
more focused on the update protocol and security 
mechanisms and made very little effort to address the 
effectiveness of the differencing algorithm and the update 
agent. 

V.� DISCUSSION 
TABLE 2 provides a summarized comparison of the 

reviewed literature. NULL implies there was limited, or no 
information provided for the process/protocol under 
consideration. 

TABLE 2. Summary of reviewed literature 

Ref. 
Firmware differencing; 

encoding; and 
fragmentation 

Update session 
scheduling; and 

termination 

Packet 
distribution 

protocol 

Error 
correction 

and recovery 

Firmware 
reconstruction; & 

client programming 
agent 

Security; and 
network topology 

[8], 
[10] 

NULL; NULL; NULL NULL NULL NULL NULL NULL; Single-hop 

[11] UNIX diff-like algorithm; 
COPY, INSERT, REPAIR 
and PATCH commands; 

64-byte fragments 

Yes; Yes NULL Re-Tx 
requests and 

Acks 

In external EEPROM; 
Piece of code loaded 

into RAM 

NULL; Multi-hop 

[10] Rsync algorithm; COPY 
and DOWNLOAD 
commands; NULL 

NULL; Yes NULL Queries, Re-
Txa requests 
and Acksb 

In external flash; 
NULL 

NULL; Single-hop 

[12] RMTD; COPY and 
DOWNLOAD commands; 

NULL 

NULL; NULL NULL NULL NULL; NULL NULL; NULL 

[13] NULL; NULL; NULL 
(Compiler modification) 

NULL; NULL NULL NULL Software reboot 
mechanism 

NULL; Multi-hop 

[14] NULL; NULL; NULL 
(Compiler modification) 

NULL; NULL NULL NULL Tiny Manager runtime 
system 

NULL; Multi-hop 

[15] NULL; NULL; NULL NULL; NULL Parallel Diffusion 
Mechanism 

NULL NULL; NULL NULL; Multi-hop 

[16] NULL; NULL; NULL NULL; NULL NULL NULL NULL; NULL Symmetric key ciphers; 
NULL 

[5] Delta Generator (DG); 
COPY and ADD 

commands; NULL 

NULL; NULL NULL NULL On the fly in program 
memory 

CRC-16 integrity 
check; NULL 

[4], 
[18] 

NULL; NULL; NULL Yes; Yes Multicast LDPC, 
checksum and 

MIC 

NULL; NULL Symmetric key cipher, 
public key cypher and 

hash algorithm; Single-
hop 

a. Retransmission, b. Acknowledgements
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Since communication is the most energy consuming 
attribute of WSN/LPWAN, authors made efforts to design 
FUOTA mechanisms with effectively minimized 
communication overheads. The first step was to introduce 
delta generation and transmit only incremental changes 
instead of the full firmware image. This was achieved 
through differencing algorithms and data encoding formats. 
Not much work was done in developing protocols for 
scheduling and terminating the update session. Most of the 
proposed packet distribution protocols assumed a multi-hop 
network topology and suggested use of intelligent routing 
techniques to send updates and/or missing packets through 
the network. Authors also suggested employing 
retransmission requests and acknowledgements for error 
correction and recovery, but this has a potential to degrade 
the performance of the network as it scales, since more 
collisions are likely to occur. Effective firmware 
reconstruction depends on the complexity of the adopted 
encoding scheme and authors have made several suggestions 
and recommendations for its implementation on both internal 
and external memory. 

On the fly reprogramming is quite risky and could lead to 
node malfunction if not implemented properly. As a result, it 
is advisable to always couple it with a rollback option from 
external memory if possible. Most of the suggested protocols 
made very little effort to address security and how to 
properly implement it within WSN/LPWAN constraints. All 
proposed FUOTA mechanisms assumed a fixed IoT network 
deployment, and therefore cannot be easily extended to 
applications with mobile nodes such as transport and 
logistics tracking. 

VI. FUTURE WORK

Delta generation, encoding and fragmentation processes 
can be further optimized to produce the shortest possible edit 
script to convert an old firmware image to a new one. All 
FUOTA related protocols such as update session 
scheduling/termination, packet distribution, error correction 
and recovery, can be further optimized to reduce data 
transmission requirements of sensor nodes, also bearing in 
mind the adopted network topology. It is essential for all the 
protocols to implement efficient security mechanisms to 
properly authenticate communicating entities and ensure data 
integrity and confidentiality. There is also a need to develop 
an effective FUOTA mechanism for mobile IoT nodes. 

VII. CONCLUSION

Designing an efficient FUOTA mechanism for 
WSN/LPWAN requires a strategy to ensure the limited 
resources are used wisely. We proposed breaking down the 
process into several subprocesses and protocols that can 
easily be analyzed and optimized. These include delta 
generation, update scheduling and termination, packet 
distribution, error correction and recovery, security, data 
reconstruction and client reprogramming. We reviewed some 
of the existing work and identified potential gaps and future 
works.  
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