
Firmware Updates Over The Air Mechanisms for
Low Power Wide Area Networks: A Review

Mompoloki Pule1
1Department of Electrical Engineering

Tshwane Univeristy of Technology
Pretoria, South Africa

calvin.pule@gmail.com

Adnan M. Abu-Mahfouz1, 2
2Council for Scientific and Industrial Research (CSIR)

Pretoria, South Africa
a.abumahfouz@ieee.org

Abstract—Wireless Sensor Networks (WSN) provide an
affordable infrastructure that allows numerous control and
data collection processes to be conducted with high spatial and
temporal resolution. The recent arrival of Low Power Wide
Area Networks (LPWAN) has given rise to WSN solutions with
long range capabilities and a high level of autonomy. However,
this has come at a cost of having low data rates and poses quite
a huge challenge on implementation of high bandwidth
applications such as Firmware Updates Over the Air
(FUOTA). Firmware updates are essential throughout the
lifetime of a product for several reasons including post
deployment bug fixes, introduction of new security features
and implementation of performance optimizations. This paper
proposes a generic and hypothetical approach to designing an
efficient FUOTA mechanism for WSN/LPWAN. The paper
also presents a review of past literature on similar works and
how best existing approaches have addressed the challenges of
remote sensor node reprogramming.

Keywords—WSN, LPWAN, FUOTA, and Reprogramming

I.� INTRODUCTION
Wireless Sensor Networks (WSN) provide a promising

infrastructure for numerous applications ranging from asset
tracking, agricultural automation, environmental monitoring,
telemedicine and military surveillance. With quite a simple
architecture, WSN have allowed control and monitoring
processes to be conducted remotely, in real-time, with
minimal human intervention and at a relatively low cost. A
typical WSN system consists of two main subsystems
namely nodes and gateways. Nodes are devices equipped
with sensing, processing and wireless communication

capabilities, and together perform a collaborative
measurement process. Gateways provide a means to collect
data from nodes and relay it to storage centers, analytics
engines and data visualization systems [1]. The rapid
deployment and reduction in cost of broadband internet has
made it affordable to connect, monitor and control WSN
systems through the public network, leading to a
technological revolution termed Internet of Things (IoT) [2],
[3]. Fig 1 is an illustration of a typical IoT system.

To support remote and real-time data collection with a
high level of autonomy, most applications require nodes that
are capable of long-range communication while consuming
very little power such that they can operate for several years
on battery power. Conventional WSN communication
technologies such as Wi-Fi, Bluetooth, ZigBee and
traditional cellular technologies have not been able to
accommodate these requirements effectively [4], [5]. Low
Power Wide Area Networks (LPWAN) have since emerged
to complement the inadequacies. LPWAN support
communication over long distances while consuming very
little power. These benefits come at a cost of having very
low data rates, which impose design restrictions when trying
to implement high bandwidth applications such as Firmware
Updates Over the Air (FUOTA).

This paper presents a hypothetical approach to effective
implementation of FUOTA for WSN/LPWAN. The paper
also reviews past literature on similar works and evaluates
how proposed methodologies have addressed the challenges
of FOUTA. Research gaps and potential future directions are
also identified.

Fig 1. Typical WSN/IoT System Architecture

���

The remainder of this paper is organized as follows:
Section 2 describes characteristics, requirements and
challenges of LPWAN. Section 3 introduces FUOTA and
describes the challenges and requirements for its effective
implementation over WSN/LPWAN. Sections 4 and 5
provides a review and a discussion of previous work on
FUOTA over WSN/LPWAN, respectively. Sections 6 and 7
discusses potential research gaps on designing effective
FUOTA mechanisms for WSN/LPWAN and concludes the
paper.

II. LOW POWER WIDE AREA NETWORKS

A. Characteristics of LPWAN
LPWAN are relatively affordable and can transmit data

over kilometers of range with low power consumption.
Among them, Sigfox, LoRa/LoRaWAN and NB-IoT have
become leaders of the LPWAN technology space and are
competing for large scale IoT deployment [6]. Sigfox was
developed in 2010 by a French company called Sigfox which
is also its network operator. At the physical layer, Sigfox
uses Binary Phase Shift Keying (BPSK) modulation in an
Ultra-Narrow Band (UNB) carrier. Sigfox uses unlicensed
ISM bands such as 868MHz in Europe, 915MHz in North
America and 433MHz in Asia. LoRa was developed in 2009
by a French company called Cycleo and was later purchased
by an American company called Semtech. LoRa uses a
modulation technology called Chirp Spread Spectrum (CSS),
that spreads a narrow-band signal over a wider channel
bandwidth. Like Sigfox, LoRa uses similar unlicensed ISM
bands. NB-IoT is a narrow-band LPWAN technology that
has been standardized and specified in Release 13 of the
3GPP in June 2016. NB-IoT uses Quadrature Phase-Shift
Keying (QPSK) modulation and operates on licensed
frequency bands like GSM and LTE[6], [7]. TABLE 1
provides a summary of the main characteristics of the leading
LPWAN technologies.

B. Requirements and challenges of LPWAN
Nonetheless, LPWAN come with some tradeoff

challenges such as very low data rates and uplink-oriented

communication. In addition, most of LPWAN operate in
license free bands and must therefore adhere to duty cycle
limitations while suffering the effects of radio interference
[4]. This poses quite a huge challenge for applications with
considerable bandwidth requirements such as FUOTA.

III. FIRMWARE UPDATES OVER-THE-AIR (FUOTA)

A. Characteristics of FUOTA
Conventionally, FUOTA was termed Over-The-Air

Programming (OTA/OTAP), and generally referred to a
process of updating device firmware over a wireless
communication medium [8]. Firmware preloaded on WSN
nodes may occasionally need to be updated for several
reasons including post deployment bug fixes, security
patches, introduction of new features and performance
enhancements. In this regard, FUOTA has been considered
most ideal especially when dealing with physically
inaccessible, large scale WSN/LPWAN deployment
scenarios where manual methods would be very costly and
time consuming to realize.

B. Challenges of conducting FUOTA for WSN/LPWAN
Since WSN/LPWAN nodes are always designed to be

simple and affordable so as to maintain their traditional small
form factor; they are inherently resource constrained in terms
of computational power, energy/battery life, communication
bandwidth and memory. A study in [9] suggests that of all
the constraints, energy is the most critical and its
consumption can be categorized into three parts namely: 1)
consumption by the sensor transducer, 2) consumption by
microprocessor computation, and 3) consumption by the
communication module. Authors of [5], [9] found that
communication is more energy consuming than
microprocessor computation as transmitting one bit
wirelessly can easily consume as much energy as executing
800 to 1000 instructions. Communication overheads
introduced by FUOTA could have a very huge impact on the
lifespan of devices. When planning a large scale
WSN/LPWAN deployment, it is very critical to have an
effective strategy for conducting FUOTA.

TABLE 1. Characteristics of LPWAN technologies [6], [7]

Sigfox LoRa/LoRaWAN NB-IoT
Modulation BPSK CSS QPSK
Frequency Sub-GHz ISM:

EU868, US918, AS433
Sub-GHz ISM:
EU868, US918, AS433

Licensed LTE frequency band

Bandwidth UL: 100/600 Hz
DL: 1.5 kHz

125 kHz and 250 kHz 200 kHz

Data rate UL: 100/600 bps
DL: 600 bps

0.3-5 kbps UL: 158.5 kbps

Range 10 km (urban)
40 km (rural)

5 km (urban)
20 km (rural)

1 km (urban)
10 km (rural)

Maximum payload size (bytes) UL: 12
DL: 8

250 13

Error correction UL: CRC-16
DL: CRC-8

CRC-8/16 CRC

Bidirectional Limited/Half-duplex Yes/Half-duplex Yes/Half-duplex
Topology Star Star Star
Localization Yes (RSSI) Yes (TDOA) No (under specification)
Security No (must be implemented in

application layer)
Yes (AES 128b) Yes (LTE encryption)

Standardization Collaborating with ETSI to
standardize the network

LoRa-Alliance 3GPP

���

C. Requirements of effective FOUTA for WSN/LPWAN
To analyze FUOTA for WSN/LPWAN, we have broken

down the system into the following subset of IoT devices and
services.

Nodes: These are devices to be updated through FUOTA.

Gateways: These are devices which provide a means for
nodes to communicate with servers and vice versa.

Network server: Provides services that regulate how
devices can access and share network resources.

Application server: Provides services to route device
traffic to appropriate applications and vice-versa.

Update server: Provides the core services for
implementing FUOTA over WSN/LPWAN.

Services can be viewed as independent entities or as
combined where necessary.

The problem of developing an efficient FUOTA
mechanism can be broken down into several processes and
protocols, some of which can be addressed individually or in
combination where necessary.

Firmware differencing: This is a process for computing
the difference between new and old firmware images to
reduce the amount of data that needs to be transmitted to
perform an update.

Data encoding: This is a process for encoding the
difference into a script that can easily be reconstructed by the
intended recipient.

Data fragmentation: This is a process for breaking
down the update script into sizeable packets/fragments that
can effectively be transmitted through the communication
channel.

Update session scheduling: This is a protocol that is
meant to prepare appropriate devices to get ready for the
update session.

Packet dissemination: This is a protocol to effectively
distribute update packets to the intended recipients.

Error correction and recovery: This protocol is for
recovering from packet losses and errors.

Firmware reconstruction: This is a process for
decoding the update script to generate the new firmware
image.

Update session termination: This is a protocol to
effectively conclude the update session.

Client reprogramming: This is a process to rewrite the
old firmware image with the newly reconstructed one.

Security: These are protocols for establishing trust and
authenticating communicating entities of the FUOTA
mechanism. The protocols must ensure integrity of the
update script and the reconstructed firmware image, before
reprogramming.

Fig 2 shows how the devices, services, processes and
protocols would typically interact during an active FUOTA
process.

To address the challenges of FOUTA, it is imperative to
come up with a comprehensive approach to assess the effects
of each process and protocol on the overall performance of
the update mechanism. Below are 6 generic and hypothetical
design approaches that we propose for effective
implementation of efficient FUOTA for WSN/LPWAN:

• All FUOTA protocols and processes must work
within the resource constraints of WSN/LPWAN.

• All FUOTA processes and protocols must be
executed effectively and efficiently to not hinder
sensor nodes from executing their core application.

• All FOUTA protocols must be secure enough to not
compromise sensor nodes and the network.

Fig 2. Typical FUOTA Flow Diagram

���

• All FOUTA protocols and processes must consume
as little energy as possible to preserve the lifetime
and autonomy of sensor nodes.

• All FUOTA protocols must have the ability to
effectively recover from packet losses or errors.

• Lastly, integration of FUOTA should strive to be
seamless and not cause major changes to the
existing code base of the underlying system.

IV. REVIEW OF FUOTA MECHANISMS FOR WSN/LPWAN
Past literature on FUOTA mechanisms for

WSN/LPWAN is reviewed and evaluated based on how best
authors have addressed the challenges of FOUTA with
respect to the processes and protocols previously suggested.

Researchers at Berkeley, University of California [8],
[10] developed a very basic OTA protocol for WSN called
Crossbow Network Programming (XNP). XNP was
developed as a single-hop protocol and was implemented and
tested on TinyOS release version 1.1. However, the protocol
was considered not to be scalable since it could only
disseminate the program code to nodes within the vicinity of
the host machine or gateway. XNP was also considered
inefficient for distributing the complete program code instead
of just the difference. In addition, the protocol did not
address issues of security or effectiveness of the client
reprogramming agent, all of which have an impact on the
performance of the update process.

Reijers and Langendoen [11] presented an efficient code
distribution mechanism for WSN. Authors developed a
UNIX diff-like algorithm to find the shortest edit script to
convert an old firmware image to a new one. The algorithm
was optimized with REPAIR and PATCH command
operations to produce a shorter edit script. The script was
then fragmented into 64-byte packets to be transmitted
effectively through the communication channel. Authors
developed an initialization phase to inform nodes of the
beginning of the reprogramming cycle, so they make
necessary preparations. During transmission, nodes would
build the new code image in external EEPROM by
sequentially processing the packets bottom up and creating
necessary gaps for any missing information. To ensure
proper reconstruction of the firmware image, authors
developed a verification protocol that allows nodes to request
for the missing binaries from their neighbors. Upon
successful code reconstruction, nodes would be given the
instruction to start running the update process by loading a
small piece of code into RAM that gives the instruction to
copy the image from EEPROM to flash and reboot on
completion. On startup, the nodes would then run the new
code. Authors implemented and tested their scheme on
EYES nodes, featuring Texas Instruments MSP430F149
microcontrollers with 2KB RAM and 60KB flash memory.
The nodes were also equipped with RFM TR1001
868.35MHz hybrid wireless transceivers with 115kbps
maximum data rate, and 256KB external EEPROM.
Experimental results showed a significant improvement as
compared to simply transferring the complete binary code,
and further showed that the application code only had to be
disrupted a few times when transferring the new code.
However, the proposed data recovery protocol imposed
considerable communication overheads on sensor nodes by

having them request for missing packets and sending
acknowledgements. This approach is also applicable only in
multi-hop network topologies. Furthermore, the protocol did
not implement any security mechanism to negotiate trust to
authenticate update files, or to even check the integrity of the
reconstructed code file. This introduces a vulnerability for
attackers to introduce rogue firmware that could break or
cause the nodes to malfunction.

Jeong, et al. [10] extended the network programming
implementation of TinyOS release 1.1 by developing a
mechanism that transmits incremental changes from an old
firmware image to a new one. The difference was generated
using an optimized block level comparison algorithm called
Rsync. The difference was encoded into a script with
DOWNLOAD and COPY commands, to show which
sections would be added to the new image and which would
be copied from the old image, respectively. The script was
then fragmented, transmitted across the communication
medium and stored in external flash by the nodes. The host
program would then query the nodes to confirm receipt of all
fragments, so they could request for retransmission of those
that are missing. The host would then send a decode
command when all nodes have received all fragments, after
which they would start rebuilding the new firmware code in
external flash. The algorithm was implemented and tested on
TinyOS and was compared to fixed block comparison.
Results showed a speed-up of 9.1 for changing a constant
and that of 2.1 to 2.5 for changing a few lines in the source
code. Nonetheless, the proposed solution had no initialization
procedure to make the nodes aware of and help them prepare
for the update session. In addition, the proposed error
correction mechanism imposed considerable communication
overheads on the nodes with retransmission requests and
acknowledgements. Moreover, the solution did not address
security concerns for ensuring the authenticity and integrity
of the update script or the reconstructed firmware.

Hu, et al. [12] developed an algorithm called RMTD, for
reprogramming WSN with minimal transfer data. RMTD
used byte level comparison to find common segments
between old and new code images, and employed a dynamic
programming to find the optimal combination of COPY and
DOWNLOAD commands to reconstruct the new code
image. The algorithm’s performance was evaluated by
comparing its packet transmission overheads with those of
the fine-tuned Rsync differencing algorithm [10] under the
same experimental conditions. Results showed considerable
reduction in data transfer for RMTD over Rsync of 93.25%
and 59.82% when there are small changes in the source file
and on overage, respectively. However, RMTD incurs
additional communication and computational overheads for
copying all common code segments including those that have
maintained the same addresses in both firmware images.

Dong, et al. [13] developed a holistic over the air
reprogramming mechanism for WSN called Elon, based on
the TinyOS operating system. Elon minimized transmission
overheads for both the TinyOS kernel services and the
reprogramming protocol by introducing the concept of
replaceable components. This was achieved through
modifying of the nesC compiler to create a boundary
between replaceable components and the OS kernel
components. This isolation allowed nodes to be rebooted
through software means to avoid the high energy
consumption and data loss that is usually associated with a

���

hardware reboot. Elon placed replaceable components on
RAM to avoid flash writes thereby prolonging the
reprogramming lifetime of the nodes. Authors implemented
and tested Elon on a testbed of 10 TelosB nodes running
TinyOS 2.1, and experimental results showed considerable
reduction in code size of about 120-389 and 18-42 times
compared to Deluge and Stream, respectively. Elon also
significantly reduced the loading cost of rebooting core OS
components such as CTP, Drip and FTSP by 53.8%, 50.4%
and 56.83%, respectively. Furthermore, Elon extended the
reprogramming lifetime of the TelosB nodes by a factor of
2.3 compared to other approaches. Nonetheless, the
mechanism was designed for and limited to Von-Neumann
architecture based TinyOS sensor nodes and cannot be easily
ported to other microcontroller platforms with different
compiler and core architectures. Additionally, Elon is likely
to incur communication overheads for not optimizing the
payload size with firmware differencing between successive
code images of replaceable components.

Munawar, et al. [14] developed Dynamic TinyOS to
support efficient remote reprogramming of TinyOS based
sensor nodes. The solution introduced extensions to support
dynamic adaptation of the OS and application features by
allowing users to define components to be kept modular in
the binary executable for them to be easily replaced during
runtime. This was achieved through modifying the TinyOS
compiler NesC. Authors also developed a runtime system for
sensor nodes called Tiny Manager, to handle storage and
integration of new components with the system binary
image. In addition, authors also suggested optimizations for
ELF objects to reduce communication and processing
overheads. The solution was implemented on the TelosB
platform running TinyOS release 2.1, and its performance
was compared to Deluge and Zephyr for different software
change scenarios. Zephyr showed better performance in
update size for small changes to the application code, but
was outperformed by Dynamic TinyOS for component level
changes. In terms of memory footprint, runtime performance
overhead and energy consumption, the proposed solution
showed significant improvement over Deluge. However,
adaptations introduced by Dynamic TinyOs to compile parts
of an application in isolation limits the compiler’s
optimization attempts to ensure coverage of the smallest
possible memory footprint. Additionally, the solution does
not offer a provision to update the runtime system, and will
not be easily ported to other sensor networks with different
microcontroller and compiler architectures since was
specifically developed for TinyOS and the NesC compiler.

Wen, et al. [15] developed an OTA protocol that employs
Parallel Diffusion Mechanism (PDM) to distribute code
segments in a multi-hop, self-organized WSN environment.
In PDM, forwarding nodes would be selected based on the
distance between adjacent candidate nodes, and their
transmission powers would be adjusted dynamically upon
convergence of the algorithm. The authors used TOSSIM
simulation environment, which runs TinyOS, to implement,
test and evaluate PDM in comparison with other protocols
such as ripple and sender selection protocol, under similar
conditions. With increasing distance between nodes, PDM
was observed to have the fastest execution process
completion time. In addition, PMD also had the best overall
network energy performance. Nonetheless, the protocol
performed poorly under much dense WSN deployments, as it
incured considerable communication overheads to converge

and select appropriate forwarding nodes and transmit
powers. The solution also did not address other critical
protocol related features such security and error detection
and recovery, which have a great impact on the overall
energy performance on an OTA mechanism.

Pote, et al. [16] presented a performance evaluation of
six symmetric key ciphers (Blowfish, RC6, RC2, AES
(Rijndael), 3DES and DES) recommended for secure OTA
programming of WSN. To assess the performance the
algorithms, authors adopted an evaluation criterion that
considered several factors such as: 1) the effect of changing
file data types to text, audio and video; 2) the effect of
varying packet sizes; 3) the effect of using different data
encoding bases such as hexadecimal and base64; and 4) the
effect of varying cryptographic key lengths. Experiments
were conducted using a Laptop IV with a 2.4 GHz CPU.
Results showed that there was no significant change for
encoding data with hexadecimal or base64, or for using
different file data types. In the case of varying the packet
size, Blowfish was observed to perform better than other
algorithms, followed by RC6 and AES. RC2 had the worst
performance in execution time. Increasing the key length
introduced a correspondingly noticeable increase in the
power consumption and execution time. However, the
authors work was limited only to performance evaluation of
symmetric key ciphers than to investigate how they could be
employed in OTA reprogramming. In addition, all
experiments were conducted on a general-purpose computer
with abundant compute resources than is possible in a typical
WSN setup and may not necessarily yield the same results
under constrained environments. Symmetric crypto systems
are also not enough to address all the security requirements
for OTA reprogramming of WSN.

Kachman and Balaz [5], [17] suggest that effective OTA
reprogramming requires considering several factors such as
firmware similarity improvements, differencing algorithms,
delta file dissemination and update agent complexity. The
authors developed an algorithm called delta generator (DG),
which used XOR operation to compute the difference
between two firmware images and encoded it into a delta file
with COPY and ADD operations. The algorithm was
designed for OTA reprogramming of devices without
external flash, and authors suggested that the proposed
optimizations reduced space complexity and lead to better
execution times. In addition, the authors developed a basic
energy consumption model for reprogrammed memories, and
an encoding scheme that splits a delta file into three parts
namely, header, operation data, and integrity check data. The
header consisted of two numbers specifying the number of
COPY and ADD operations, respectively. The operation data
encoded addresses and bytes for each operation, and the
integrity check data encoded a CRC-16 code that would be
checked to verify the integrity of the delta file before
application. The algorithm was implemented on an
ATmega32U4 microcontroller with 32KB of self-
programming flash memory and was tested with 7 firmware
change cases and compared with the R3diff differencing
algorithm, which is one of the best algorithms for generating
deltas for firmware updates in external memory. Results
showed an upgrade over R3diff with reduced delta file sizes
and correspondingly reduced amount of page writes to flash
memory. Nevertheless, the proposed solution and energy
consumption model did not account for other processes and
protocols such as delta fragmentation, update session

���

scheduling and termination, packet dissemination and error
recovery, authentication and security; all of which have a
significant contribution to the overall effectiveness and
energy consumption of the OTA process. In addition, on the
fly reprogramming limits the ability to check the integrity of
the full firmware image before writing to program memory.
The process may also result in device malfunction if it gets
interrupted before completion and should therefore have a
rollback option if possible.

Jongboom and Stokking [4], [18] presented a solution for
enabling FUOTA over LPWAN. To update multiple devices
at the same time, authors proposed scheduling a multicast
session to get all devices to listen at the same time,
frequency, data rate and security session. To minimize
network traffic and save energy, authors suggested
employing a linear patch format, where the network sends
incremental changes instead of the full firmware image. To
deal with packet loss, authors recommend low-density parity
check coding (LDPC) error-correction mechanism. Upon
receiving a complete update file, devices would calculate a
checksum of the data and send it to the network through their
own private secure sessions. The server would then compare
this checksum with the data that it sent and would indicate
the correctness of the checksum to each device individually
through private secure sessions. As part of the response, the
server would send a message integrity code (MIC) to
guarantee data integrity to the devices. Authors suggested
additional network and application layer security measures
for each end device is to be programmed with a public key of
the owner who is authorized to update its firmware, a
manufacturer’s universally unique identifier and a device
type identifier. This was to allow creation of a secure
firmware update manifest that contained a cryptographic

hash of the update, a manufacturer and device type the
update applies to, all signed with the manufacturer’s private
key. Single curve ECDSA/SHA256 were suggested for
computing the cryptographic hash, since they are sufficiently
secure and can efficiently be implemented on constrained
devices. Authors also suggest limiting the multicast session
with a lifetime based on a fixed number of messages to avoid
draining devices with endless error correction packets. When
the limit is reached, devices would revert to their power
efficient mode and discard all data. A reference
implementation of the proposed solution was demonstrated
by ARM and The Things Industries, on top of LoRaWAN, at
the LoRa-Alliance Annual Members Meeting (AMM) in
2017. They used custom boards created with Multi-Tech
xDot radio modules and NXP FRDM-K22F MCUs and
managed to update them with a 52KB full firmware image
under 6 minutes. Nevertheless, the proposed solution would
only be suitable for updating stationary devices, whose
communication requirements can be determined with relative
ease. The solution was only tested on a setup with dual MCU
integration, which has more compute and memory resources
than typical IoT nodes, and therefore may not be easily
ported to most IoT device implementations. The work was
more focused on the update protocol and security
mechanisms and made very little effort to address the
effectiveness of the differencing algorithm and the update
agent.

V.� DISCUSSION
TABLE 2 provides a summarized comparison of the

reviewed literature. NULL implies there was limited, or no
information provided for the process/protocol under
consideration.

TABLE 2. Summary of reviewed literature

Ref.
Firmware differencing;

encoding; and
fragmentation

Update session
scheduling; and

termination

Packet
distribution

protocol

Error
correction

and recovery

Firmware
reconstruction; &

client programming
agent

Security; and
network topology

[8],
[10]

NULL; NULL; NULL NULL NULL NULL NULL NULL; Single-hop

[11] UNIX diff-like algorithm;
COPY, INSERT, REPAIR
and PATCH commands;

64-byte fragments

Yes; Yes NULL Re-Tx
requests and

Acks

In external EEPROM;
Piece of code loaded

into RAM

NULL; Multi-hop

[10] Rsync algorithm; COPY
and DOWNLOAD
commands; NULL

NULL; Yes NULL Queries, Re-
Txa requests
and Acksb

In external flash;
NULL

NULL; Single-hop

[12] RMTD; COPY and
DOWNLOAD commands;

NULL

NULL; NULL NULL NULL NULL; NULL NULL; NULL

[13] NULL; NULL; NULL
(Compiler modification)

NULL; NULL NULL NULL Software reboot
mechanism

NULL; Multi-hop

[14] NULL; NULL; NULL
(Compiler modification)

NULL; NULL NULL NULL Tiny Manager runtime
system

NULL; Multi-hop

[15] NULL; NULL; NULL NULL; NULL Parallel Diffusion
Mechanism

NULL NULL; NULL NULL; Multi-hop

[16] NULL; NULL; NULL NULL; NULL NULL NULL NULL; NULL Symmetric key ciphers;
NULL

[5] Delta Generator (DG);
COPY and ADD

commands; NULL

NULL; NULL NULL NULL On the fly in program
memory

CRC-16 integrity
check; NULL

[4],
[18]

NULL; NULL; NULL Yes; Yes Multicast LDPC,
checksum and

MIC

NULL; NULL Symmetric key cipher,
public key cypher and

hash algorithm; Single-
hop

a. Retransmission, b. Acknowledgements

���

Since communication is the most energy consuming
attribute of WSN/LPWAN, authors made efforts to design
FUOTA mechanisms with effectively minimized
communication overheads. The first step was to introduce
delta generation and transmit only incremental changes
instead of the full firmware image. This was achieved
through differencing algorithms and data encoding formats.
Not much work was done in developing protocols for
scheduling and terminating the update session. Most of the
proposed packet distribution protocols assumed a multi-hop
network topology and suggested use of intelligent routing
techniques to send updates and/or missing packets through
the network. Authors also suggested employing
retransmission requests and acknowledgements for error
correction and recovery, but this has a potential to degrade
the performance of the network as it scales, since more
collisions are likely to occur. Effective firmware
reconstruction depends on the complexity of the adopted
encoding scheme and authors have made several suggestions
and recommendations for its implementation on both internal
and external memory.

On the fly reprogramming is quite risky and could lead to
node malfunction if not implemented properly. As a result, it
is advisable to always couple it with a rollback option from
external memory if possible. Most of the suggested protocols
made very little effort to address security and how to
properly implement it within WSN/LPWAN constraints. All
proposed FUOTA mechanisms assumed a fixed IoT network
deployment, and therefore cannot be easily extended to
applications with mobile nodes such as transport and
logistics tracking.

VI. FUTURE WORK

Delta generation, encoding and fragmentation processes
can be further optimized to produce the shortest possible edit
script to convert an old firmware image to a new one. All
FUOTA related protocols such as update session
scheduling/termination, packet distribution, error correction
and recovery, can be further optimized to reduce data
transmission requirements of sensor nodes, also bearing in
mind the adopted network topology. It is essential for all the
protocols to implement efficient security mechanisms to
properly authenticate communicating entities and ensure data
integrity and confidentiality. There is also a need to develop
an effective FUOTA mechanism for mobile IoT nodes.

VII. CONCLUSION

Designing an efficient FUOTA mechanism for
WSN/LPWAN requires a strategy to ensure the limited
resources are used wisely. We proposed breaking down the
process into several subprocesses and protocols that can
easily be analyzed and optimized. These include delta
generation, update scheduling and termination, packet
distribution, error correction and recovery, security, data
reconstruction and client reprogramming. We reviewed some
of the existing work and identified potential gaps and future
works.

REFERENCES
[1] M. Pule, A. Yahya, and J. Chuma, “Wireless sensor networks: A

survey on monitoring water quality,” J. Appl. Res. Technol., vol. 15,
no. 6, pp. 562–570, Dec. 2017.

[2] D. Evans, “The Internet of Things - How the Next Evolution of the
Internet Is Changing Everything,” Cisco Internet Business Solutions
Group (IBSG), 2011.

[3] Lopez Research LLC, “An Introduction to the Internet of Things
(IoT),” 2013.

[4] J. Jongboom and J. Stokking, “Enabling firmware updates over
LPWANs,” in Embedded World Conference, 2018.

[5] O. Kachman and M. Balaz, “Effective Over-the-Air Reprogramming
for Low-Power Devices in Cyber-Physical Systems,” in 7th Doctoral
Conference on Computing, Electrical and Industrial Systems
(DoCEIS), 2016, pp. 284–292.

[6] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A Comparative Study
of LPWAN Technologies for Large-Scale IoT Deployment,” ICT
Express, vol. 5, no. 1, pp. 1–7, 2018.

[7] Q. M. Qadir, T. A. Rashid, N. K. Al-Salihi, B. Ismael, A. A. Kist, and
Z. Zhang, “Low Power Wide Area Networks: A Survey of Enabling
Technologies, Applications and Interoperability Needs,” IEEE
Access, vol. 6, pp. 77454–77473, 2018.

[8] A. S. A. Quadri and B. O. Sidek, “An Introduction to Over-the-Air
Programming in Wireless Sensor Networks,” Int. J. Comput. Sci.
Netw. Solut., vol. 2, pp. 33–49, 2014.

[9] J. Sen, “A Survey on Wireless Sensor Network Security,” Int. J.
Commun. Networks Inf. Secur., vol. 1, no. 2, pp. 55–78, 2009.

[10] J. Jeong and D. Culler, “Incremental Network Programming for
Wireless Sensors,” Int. J. Commun. Netw. Syst. Sci., vol. 5, pp. 433–
452, 2009.

[11] N. Reijers and K. Langendoen, “Efficient Code Distribution in
Wireless Sensor Networks,” in Proceedings of the 2nd ACM
International Conference on Wireless Sensor Networks and
Applications, 2003, pp. 60–67.

[12] J. Hu, C. J. Xue, Y. He, and E. H. M. Sha, “Reprogramming with
Minimal Transferred Data on Wireless Sensor Network,” in IEEE 6th
International Conference on Mobile Adhoc and Sensor Systems, 2009,
pp. 160–167.

[13] W. Dong, Y. Liu, X. Wu, L. Gu, C. Chen, and † Zhejiang, “Elon:
Enabling Efficient and Long-Term Reprogramming for Wireless
Sensor Networks,” in ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, 2010, pp. 49–
60.

[14] W. Munawar, M. H. Alizai, O. Landsiedel, and K. Wehrle, “Dynamic
TinyOS: Modular and Transparent Incremental Code-Updates for
Sensor Networks,” in IEEE International Conference on
Communications, 2010, pp. 1–6.

[15] T. Wen, Z. Li, and Q. Li, “An Efficient Code Distribution Protocol
for OTAP in WSNs,” in 5th International Conference on Wireless
Communications, Networking and Mobile Computing, 2009, pp. 1–4.

[16] C. R. Pote, P. U. Tembhare, and M. G. Lade, “Secure Wireless Sensor
Network Updates Using OTAP And Performance of Symmetric
Encryption Algorithms on Power Consumption,” Int. J. Eng. Res.
Appl., pp. 75–81, 2014.

[17] O. Kachman and M. Balaz, “Optimized Differencing Algorithm for
Firmware Updates of Low-Power Devices,” in 19th International
Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), 2016, pp. 1–4.

[18] J. Jongboom, “Firmware updates over Low-Powered Wide Area
Networks | Mbed,” 2018. [Online]. Available:
https://os.mbed.com/blog/entry/firmware-updates-over-lpwan-
lora/?_ga=2.105836355.1504264362.1562850494-
164173221.1562850494. [Accessed: 13-Jul-2019].

���

