70<sup>th</sup> Annual Meeting of the International Society of Electrochemistry, 4-9 August 2019,

Durban-ICC, Durban, South Africa

 $LiMn_2O_4/LiMn_{1.5}Ni_{0.5}O_4$  composite to boost the electrochemical cyclic stability of  $LiMn_2O_4$ 

Mesfin Kebede, PhD



#### 8 August 2019

# Outline of my talk

- Introduction & applications of LIB
- LiMn<sub>2</sub>O<sub>4</sub> (LMO), LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O<sub>4</sub>(LMNO) cathodes and their challenges
- LMO nanorods
- Microwave irradiated LMNO, LMNOmic
- LMO/LMNO composite cathode
- Conclusion



### **Components of a Battery Cell**



• The difference in chemical potential between the anode  $(\mu_A)$  and the cathode  $(\mu_C)$  is the working voltage (open circuit voltage),  $V_{OC}$ :

$$V_{oc} = \frac{\mu_A - \mu_c}{e}$$



# **CSIR Energy Materials**

#### **Electrochemical Energy Technologies (EET)**

- Lithium & Sodium ion batteries
- Electrochemical capacitors

**Targets** 

- Electric vehicles
- Stationary / utility





our future through science

#### LMO structure, challenges & strategies



Research Challenges for LiMn<sub>2</sub>O<sub>4</sub> spinel

- ✓ Jahn-Teller distortion in the 3V region, which is due to the generation of new phases during cycling
- Disproportion reaction in the 4 V.

 $2Mn^{3+}(S) \rightarrow Mn^{4+}(S) + Mn^{2+}(solution)$ 



- ✓ Structural stabilisation, enhanced electrochemistry
- Microwave irradiation

- ✓ *Control manganese valence state*
- $\checkmark$  Structural stabilization



# LMNO structure, challenges & strategies



Research Challenges for LMNO spinel✓ Capacity fading at high C-rate.

#### Strategy

✓ Co-doping (i.e. Co, Cr, Fe, etc.)



## (i) - LMO nanorods



our future through science

# **Cyclic performance**







# (ii)- High-Voltage LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4-δ</sub> Spinel Material Synthesized by Microwave-Assisted Thermo-Polymerization



 Oxygen-deficient pristine (LMNO) and microwave-treated (LMNOmic) cathode materials have been synthesized with modified thermopolymerization synthesis technique.
Lattice parameters of LMNO and LMNOmic are 8.167 and 8.182 Å, respectively.

*Journal of The Electrochemical Society*, **164** (13) A3259-A3265 (2017)



#### **XPS** result



| Sample  | Atomic<br>concentration<br>Li:Mn:Ni:O | % at.<br>ratio<br>Mn <sup>3+</sup> | % at.<br>ratio<br>Mn <sup>4+</sup> | Mn<br>valanc<br>e |
|---------|---------------------------------------|------------------------------------|------------------------------------|-------------------|
| LMNO    | 1:1.17: <b>0.29</b> :2.85             | 46                                 | 54                                 | 3.54              |
| LMNOmic | 1:1.17: <mark>0.23</mark> :2.90       | 47                                 | 53                                 | 3.53              |



• •

# Particle size of pristine & microwavetreated samples



This study confirms **microwave treatment reduces the particle size** of the powders which is in consistence with previously reported results<sup>1,2</sup>.

 The particle size of microwavetreated samples is reduced to nanoscale (90 – 210 nm) as compared to the micron-sized pristine LMNO (200 nm–1.5 µm).

SEM images of (a) LMNO and (b) LMNOmic; TEM and HR-TEM images of (c, d) LMNO and (e, f) LMNOmic.

- 1. ACS applied materials & interfaces., 5, 15 (2013).
- 2. RSC Advances, 5, 41 (2015).





# Electrochemical Properties: Cyclic Voltammetry and 1<sup>st</sup> Cycle Charge-Discharge:





The initial discharge capacities are **122** and **133 mA h g**<sup>-1</sup> for the LMNO and LMNOmic, respectively. This result indicates that the microwave irradiation increased the oxygen-defect degree of the LMNO sample, thus improving the capacity.

(a) cyclic voltammogramms of the LMNO and LMNOmic; (b) The first cycle voltage profiles of pristine LMNO and microwave-treated LMNO, between 3.5 and 4.9 V at 0.1 C rate.



#### **Galvanostatic Charge-Discharge:**

|                     | 140 -         | <u>Ω</u>                        | 100                 |       |                     |                   |         |          | _ •     |
|---------------------|---------------|---------------------------------|---------------------|-------|---------------------|-------------------|---------|----------|---------|
|                     | 120 -         |                                 |                     |       |                     |                   |         |          | •       |
| mAh g <sup>-1</sup> | 100 -<br>80 - | • LMNO • LMNOmic                | - 00<br>Iciency (9  | Sampl | 1 <sup>st</sup>     | 100 <sup>th</sup> | Current | Capacity | Referen |
| Capacity / 1        | 60 -<br>40 -  | (a)                             | - 40<br>Ilombic eff | e     | capacit             | capacity          | (C=14.7 | (%)      | ces     |
| Ŭ                   | 20 -          |                                 |                     |       | V                   |                   | mA/g)   |          |         |
|                     | 0 -           | ) 20 40 60 80 1<br>Cyclo nymbor | - 0<br>00           | LMNO  | 121.2               | 118.24            | 0.1     | 97       | This    |
|                     | 160           |                                 | 1                   |       | (25 <sup>th</sup> ) |                   |         |          | work    |
| _                   | 140<br>120    |                                 |                     | LMNO  | 133.3               | 126.3             | 0.1     | 95       | This    |
| he.                 | 100           | IC<br>Solution LMNO             | •                   | mic   | (17 <sup>th</sup> ) |                   |         |          | work    |
| ity/mA              | 80-<br>60-    | • LMNOmic                       |                     | LMNO  | 121.4               | 84.1              | 0.1     | 69.3     | Ref. 26 |
|                     | 40            | (b)                             |                     | LMNO  | 133                 | 129               | 1.0     | 97       | Ref. 27 |
| Ŭ                   | 20 -<br>0 -   | <b>335</b><br>0 20 40 60 80 1   | 00                  |       |                     |                   |         |          |         |
|                     |               | Cycle number                    |                     |       |                     |                   |         |          |         |

- Different C-rates, at 0.1 C the LMNO and LMNOmic materials delivered initial capacity of 123 and 134 mAh g-1, respectively.
- At 2 C, LMNO and LMNOmic materials delivered initial capacity of 25 and 52 mA h g<sup>-1</sup>.
- The LMNOmic showed superior capacity compared to the LMNO at all C-rates. Our result is comparable to reported LMNO samples.26,27



# (iii)-XRD of LMO, LMNO, and LMO/LMNO



14

| Materials<br>Name | Lattice<br>parameter (Å) | Crystalline<br>size (nm) |
|-------------------|--------------------------|--------------------------|
| LMO               | 8.234                    | 70.9                     |
| LMNO              | 8.174                    | 84.4                     |
| LMO/LMNO          | 8.233                    | 71.0                     |

۲

our future through science

Fig. (a) XRD pattern, and (b) peak shift at (440) plane for LMO, LMNO, and LMO/LMNO.

# SEM, TEM and HR-TEM images





# Mapping and EDS







# **Electrochemical performance**



Fig. (a) 1<sup>st</sup> cycle of voltage vs. capacity, (b) cycling performance graphs for LMO, LMNO, and LMO/LMNO.



#### **Rate capability**



The rate capability result

- For 0, 1, 0,2, and 0,5C LMNO shows high capacity.
- From 1C and 2C rates the combined LMO/LMNO shows high capacity and stable.

Fig. Shows rate performance of LMO, LMNO, LMO/LMNO



### CONCLUSIONS

LMO-2 nanorods successfully synthesized

- □ LMO-2 nanorods have retained about 95% of 105 mA h g<sup>-1</sup> whereas LMO-1 nanoparticles retained 88% of 97 mA h g<sup>-1</sup>.
- High-voltage, oxygen-deficient LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O<sub>4-δ</sub> cathode materials were synthesized with microwave-assisted thermo-polymerisation synthesis method.
- The results confirmed that microwave radiation is inherently able to nanostructure the spinel for improved physic-chemical properties and electrochemical performance.
- □ For example, microwave **irradiation slightly decreased Ni-content** in the structure with enhanced capacity, without compromising on the high voltage.
- LMO/LMNO composite material showing a **better electrochemical performance** as compared to both LMO and LMNO.



#### Acknowledgments

- CSIR, Electrochemical Energy Tech Group
- NRF







#### Thank you for your attention



our future through science