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Abstract—In this paper an automatic method to implicitly
model intonation for statistical parametric speech synthesis
(SPSS) is presented. The approach is ideally suited to single
speaker speech databases as used in text-to-speech (TTS), due
to the models being speaker-specific. Fundamental frequency
curves are automatically stylized based on the speaker-specific
acoustics in the recorded database, requiring no models rooted
in linguistic theory, and therefore being well suited to intonation
modelling in under-resourced languages. The stylized curves are
then coded into abstract pitch labels, which are used as features
in the training of the statistical parametric acoustic models. A
conditional random field (CRF) model is trained in order to
predict the abstract pitch labels from the text for synthesis. The
CRF model can be used to predict the abstract pitch labels on
the syllable, word and phrase tiers. Objective and subjective
results on synthetic voices built from English and isiXhosa speech
databases are shown.

Index Terms—speech synthesis, text-to-speech, prosody, into-
nation, automatic stylization

I. INTRODUCTION

The goal of a text-to-speech (TTS) system is to synthesize
natural sounding synthetic speech, with appropriate emotion,
emphasis and prosody for the synthesized text. These speech
qualities are broadly measured, subjectively and objectively,
in terms of their naturalness and intelligibility in order to
ascertain the performance of the TTS system.

Prosody contributes to the naturalness and intelligibility
of speech by emphasizing groupings of semantic content
through a combination of rhythm, stress and intonation on
a suprasegmental level.

Intonation is defined in [1] as “the use of suprasegmental
phonetic features to convey ‘postlexical’ or sentence-level
pragmatic meanings in a linguistically structured way”. The
intonation function augments an utterance by adding emotion
and attitude and structuring a sentence into phrases. Intonation
is often used as a synonym for prosody, and therefore includes
phrasing and prominence [2], but as used in this work it is
concerned with the use of pitch for communication, or the
speech melody. Intonation is both a physiological and cogni-
tive function, it is physiological due to physical limitations

(minimum and maximum frequency of the individual’s vocal
cords) and cognitive to add meaning.

The main acoustic realization of intonation is pitch, which
from a signal point of view is measured (or calculated) as
the fundamental frequency (f0) curve of the speech signal.
Although pitch and f0 are sometimes used interchangeably,
there is a difference: pitch is the frequency of the sound that
is perceived, while f0 can be defined as the frequency of the
vocal cords producing the perceived sound [2]. The f0 curve
can be considered to be a combination of a macroprosodic
component due to the conscious choice of the speaker to add
meaning, and a microprosodic component due to the segmental
units in the utterance being spoken [3].

The synthesized f0 or intonation curve needs to be gener-
ated in some or other fashion with only the target utterance
text available to the TTS system. Therefore, intonation models
are generally derived from large corpora of text that have
been labelled with discrete intonation symbols which can then
be mapped to an f0 curve (in some languages, for example
Yorùbá [4], tones are marked explicitly on the orthography,
thereby negating the need of deriving the discrete intonation
symbols from the text). The labelling of the discrete intonation
symbols and modelling a mapping thereof to an f0 curve
requires expert linguistic knowledge, which is rarely available
for under-resourced languages.

The aim of this work is to improve the naturalness of the
synthesized intonation by automatically stylizing the broader
macroprosodic f0 component, coding the stylized curves into
discrete symbols, and modelling the coded symbols from a
single speaker TTS corpus. The coded symbols are then used
implicitly in the modelling of the intonation in statistical
parametric speech synthesis (SPSS). No manually annotated
labels are required in this proposed method, making it suitable
to improve the naturalness of TTS systems for under-resourced
languages. Another advantage of the proposed method is that
the intonation model is specific to the speaker, and not a
broader language specific model as is the general case.

The organization of the paper is as follows: Section II details
previous work done on intonation modelling, whilst Section III



describes the proposed method. In Section IV the experiments
and results of the proposed method are given, and lastly a
discussion and conclusion is presented in Section V.

II. BACKGROUND AND RELATED WORK

The goal of this work is to find an appropriate model for
intonation that will fit into the SPSS framework for under-
resourced languages. Such a model should have the following
characteristics:

1) Language independent,
2) Automatic stylization, and
3) Abstract symbolic pitch codes.
The automatic stylization falls partly into the language

independent category and is partly due to the single speaker
databases (generally) used for building synthetic TTS voices.
An f0 stylization that is specific to the speaker should be able
to better synthesize intonation for that specific speaker.

The need for the abstract symbolic pitch codes is to be able
to model the acoustics of the speaker in the SPSS framework
with discrete features for intonation.

There are many models, theories and explanations of intona-
tion, from a linguistic and acoustic point of view. Some models
do not even have any grounding in linguistic theory or bio-
logical plausibility [2] and are purely pragmatic engineering
solutions. In the next sections we give a general classification
of the different categories of intonation models as well as some
examples of models that have been popular in TTS systems.

A. Classifications

Intonation models can be broadly classified into the follow-
ing categories [5], [2]:

1) Phonological vs. Phonetic,
2) Tones vs. Shapes, and
3) Single-layered vs. Superpositional.
1) Phonological vs. Phonetic: A phonological intonation

model is descriptive and discrete, using an inventory of ab-
stract phonological categories representing linguistic functions
[6].

Phonetic intonation models are motivated from acoustic (f0)
data.

The models attempt to describe f0 movements and often
link these back in some or other way to the linguistic level.
According to [7], phonetic intonation is universal or language
independent, while language specific meaning is given by
intonational phonology.

2) Tones vs. Shapes: Intonation is modeled as either tone or
pitch levels, or pitch shapes and dynamics. This corresponds
to the “description” classification in [5].

3) Single-layered vs. Superpositional: In single-layered in-
tonation models intonation events are modeled as a linear
sequence while in superpositional models the events may be
superposed on top of for example the phrase level intonation.
In other words, in superpositional models intonation events can
be modelled as a “modulation” of the phrase level or higher
intonation. This corresponds to the “arangement” classification
in [5].

B. Models
An example of a phonological intonation model is ToBI

(Tones and Break Indices) [8], which has its roots in
autosegmental-metrical phonology [9]. ToBI specifies an in-
ventory of tones: one set is used to mark accented syllables,
while another set is used to mark phrase boundaries. Each
tone marks a different type of accent or boundary. ToBI is an
example of a phonological, tone, single-layered model.

ToBI was developed for Standard American English, but
there is a German version called GToBI [10]. AuToBI [11],
which is a tool for the automatic analysis of ToBI tone
labels for Standard American English, was developed due to
the annotator reliability of ToBI labels being unsatisfactory.
AuToBI is not suitable for under-resourced languages because
it is language specific and adapting it would require linguistic
resources which might not be available.

The Tilt [12] model, which is a phonetic, shapes, single-
layered model, describes pitch accents and boundary tones
via rising and falling quadratic functions that are derived from
acoustic data. Straight-line interpolations are used for stretches
of speech between intonational events. The Tilt model is
language independent, but not well suited to SPSS because
there is no intermediate symbolic pitch level which can be
used as a feature for intonation to the acoustic models. Tilt is
better suited to the modelling of the f0 curve directly.

Another example of a phonetic model is the Fujisaki model
[13], which is classified as a shapes and superpositional
intonation model. It aims to create an accurate parametric
description of the f0 curve. The model is superpositional in
that it has separate components for phrase and accent, where
accent is modulated onto the phrase intonation. The Fujisaki
model has the same problems as the Tilt model in fitting into
the SPSS framework.

The MOMEL (Modelling melody) and INTSINT
(International Transcription System for Intonation) [14]
model can be viewed as a hybrid phonetic/phonological
model. MOMEL stylizes the f0 curve with a series of
quadratic splines, which after some processing, can then be
assigned to discrete symbolic tone labels with the INTSINT
algorithm.

MOMEL/INTSINT has been used previously [6] in the
automatic modelling of intonation in TTS in a unit selec-
tion framework, but there is no clear anchor between the
phonetically derived INTSINT abstract pitch labels and a
phonological utterance tier. This introduces timing issues into
the synthesized intonation, resulting in poor prediction of the
abstract pitch labels.

The PENTA (Parallel Encoding and Target Approximation)
[15] model assigns an f0 target to each syllable in an utterance
based on given tone labels. The f0 curve is generated by
connecting targets with an interpolation function which can be
realized in different forms. The PENTA model is a phonetic,
shapes and single-layered model in the classification as given
in Section II-A. The PENTA model has the same shortcomings
in an SPSS framework as the Fujisaki and Tilt models due to
it being a shapes type model.



III. PROPOSED METHOD

The method proposed in this work is broadly based
on SLAM (Automatic Stylization and Labelling of Speech
Melody) [16]. While SLAM was developed for the automatic
labelling of intonation for research into speech prosody in
communication, this work builds on it in order to model
intonation in an SPSS framework. In [17] a similar approach
as this work was followed in that a simplified set of class
labels of SLAM was used to model intonation in an SPSS
framework, although the work in this paper was developed
independently from [17] and does not build on it. The main
differences between this work and the work of [17] is in the
prediction of class labels as explained in III-D.

The following sections give the details of the proposed
method.

A. Preprocessing

First the f0 curve of each recorded utterance in the speech
database is extracted using the SWIPE [18] pitch estimator,
with a period of 10 ms. The extracted values are then con-
verted to the logarithmic domain. Next, the mean (µ) and
standard deviation (σ) of all the valid f0 values (where f0
is defined over voiced regions) in the whole speech database
are calculated, in order to calculate the statistical z-score (f0z ).
The reason for working in the logarithmic domain is that the
f0 distribution approaches the normal curve in the logarithmic
domain [19], while it tends to be skewed in the linear domain.

In [16] the f0 values are expressed as semi-tones (f0st ) with
respect to the overall mean f0 of the speaker, with the reason
being that SLAM was developed for multi-speaker speech
prosody research.

Finally the extracted f0 curves are smoothed with the
MOMEL [14] algorithm, which fits quadratic splines over the
f0 curve. This smoothing does two things: it minimizes the
microprosodic effects (which can include a sudden raising
or lowering of f0 at a voiced/unvoiced boundary), and it
simplifies the stylization due to the interpolation of unvoiced
regions. Unvoiced regions in f0 are interpolated with MOMEL
with quadratic splines.

B. Stylization

In SLAM an f0 curve of arbitrary duration can be stylized.
The stylization algorithm assigns abstract symbolic pitch val-
ues (discussed in Section III-C) to three points in the smoothed
curve, namely the initial f0 point, the final f0 point, and the
main saliency of the f0 curve. These points are depicted in
Figure 1. In the proposed method the stylization is simplified
(discussed in Section III-D).

Two different simplified stylizations were examined:

• Style A: The initial f0 point, and the dynamics, or
direction of movement to the final f0 point (this scheme
is also depicted in Figure 1).

• Style B: Only the dynamics between the initial and final
f0 points are used in the stylization.

f0

t

final

initial

main saliency

direction

Fig. 1. SLAM vs. proposed f0 stylization.

C. Coding

In SLAM the abstract symbolic class label assigned to a
stylized f0 curve consists of a concatenation of three sub-
labels which are assigned to the initial, final, and the main
saliency points of the f0 curve.

First, the semi-tone frequency axis is quantized into five
intervals as given in Table I. Next, the f0 points are converted
to the semi-tone scale, f0st (as mentioned in Section III-A).
Finally the f0st points are assigned a class label according to
the interval the point falls in from Table I.

If the main saliency point is less than two semi-tones from
either the initial or final points then it is omitted from the
class label and the class label consists of only the two sub-
label components of the initial and final point.

TABLE I
QUANTIZED FREQUENCY INTERVALS AND SUB-LABELS FOR SLAM AND

THE PROPOSED METHOD.

Label SLAM
Range in semi-tones

Proposed
Range in σ

H f0st> 6
h 2 6 f0st< 6 f0z> 1
m −2 6 f0st< 2 −1 6 f0z< 1
l −6 6 f0st< −2 f0z< −1
L f0st< −6

The time axis is also divided into three equal intervals from
the start to the end of the f0 curve. If the main saliency is
present (as per above) then it is assigned a positional label
(on the time axis): 1 if in first third of the f0 curve, 2 if in
middle of the f0 curve, and 3 if in last third of the f0 curve.

As per illustration, assume the initial, final and main
saliency points of Figure 1 have semi-tone values of -3, 3
and 7 respectively, and also that the main saliency is in the
middle of the curve. This would then be coded as l, h and H
as per Table I. The main saliency is more than two semi-tones
away from either the initial and final point and therefore does
make part of the label, and it’s time position is coded as 2 due
to being in the middle of the curve. The complete class label
would then be coded as lhH2.

In the coding scheme of the proposed method the frequency
axis is quantized into three intervals in terms of the standard
deviation of the speaker, also given in Table I. Next, the f0
points are normalized to the z-score, f0z (as mentioned in
Section III-A). Now, only the first and last f0z points are



assigned a sub-label according to the interval the point falls in
from Table I. Finally, the class label assigned to the stylization
for the different styles are given in Table II.

Style A reduces the final point code to the dynamics
between the code points, up (u), same (s), or down (d), while
Style B just codes the dynamics.

For the stylization in Figure 1 with the same values as used
in the SLAM example, the SLAM stylized coded class, lhH2,
would become lu in Style A of the proposed method and u
in Style B of the proposed method.

TABLE II
MAPPING FROM QUANTIZED FREQUENCY INTERVAL SUB-LABELS FOR

INITIAL AND FINAL POINTS TO STYLE A AND STYLE B CLASS LABELS OF
PROPOSED METHOD.

Initial and final
point codes Style A Style B

hh hs s
hm hd d
hl hd d
mh mu u
mm ms s
ml md d
lh lu u
lm lu u
ll ls s

There are 400 possible class labels in SLAM, while Style
A of the proposed method has 7 and Style B has 3.

D. Modelling

The goal of the model is to assign a class label from Table II
to a speech unit based on the synthesis target text.

In general, any machine learning technique can be used and
many approaches have been proposed, such as decision trees
[6] and HMMs [20] or rule based systems [21]. The speech
unit has normally been a syllable, since words may be too
long and the intonation may change faster than the stylization
can cater for, and phonemes are too short.

Conditional random fields (CRF) were chosen as the ma-
chine learning technique to model the classes on syllable
units within the context of a prosodic phrase, as CRFs are
a sequence modeling framework that are well suited for mod-
eling sequential data that is encountered in natural language
processing (NLP) problems [22].

Initial results on predicting the intonation class labels on
the syllables were poor due to not having enough context
of the syllable word and phrase intonation structure. [17]
also reported relatively poor results on syllable units, using
bidirectional Long Short Term Memory Neural Networks
(LSTM) [23] to model the class labels on the syllable contexts.

Subsequently a cascading modelling approach was at-
tempted and proved to predict the class labels with better
accuracy (results given in Section IV). In the cascading
modelling approach there are three CRF models for predicting
the intonation class labels. An intonation class label is first
predicted on a phrase tier with all the phrase context. Next, a
class label is predicted on a word tier, this time including the
phrase tier context and the predicted class label of the phrase

together with the word tier context. Finally a syllable class
label is predicted, using all the context and predicted class
labels of the phrase and word tiers.

The features used as context for the different utterance tiers
are given in Table III and are similar to that of [24].

TABLE III
UTTERANCE TIER SPECIFIC FEATURES USED FOR CRF MODEL TRAINING

FOR PREDICTION OF SYLLABLE INTONATION CLASS LABELS.

Utterance
tier Feature description

Utterance # phrases in utterance
# words in utterance

Phrase

Intonation class of phrase
# syllables in phrase
# words in phrase
Phrase position in utterance

Word

Guessed part-of-speech (GPOS)
Is the word followed by punctuation
A single quote in this or previous word?
# syllables in word
Word position in phrase
Word position in utterance
Phrase break tag after word
Type of punctuation after word
Intonation class of word

Syllable

Syllable nucleus position
Segments after syllable nucleus
Syllable position in word
Syllable position in phrase
Syllable identity

IV. EXPERIMENTS AND RESULTS

Two single speaker corpora, with recordings as well as
text annotations, were used in order to compare SLAM to
the proposed method styles A and B. One American English
male speaker, named rms, with a duration of 01:06:07.02
(hours:minutes:seconds) and 1131 utterances (from the CMU
ARCTIC [25] database). The other corpus was an isiXhosa
female speaker, named zoleka, a duration of 01:25:52.36 and
600 utterances.

A. Automatic Stylization, Coding and Modelling

The training phase is a sequential procedure which can be
explained as follows:

• Forced Alignment: The text and audio data was put
through a forced-alignment process. This process uses
the Hidden Markov Model Toolkit (HTK) [26] to produce
phonetically aligned utterances.

• Frontend Processing: The aligned utterances were pro-
cessed with the NLP frontend of Speect [27] in order to
create the utterance structures and assign GPOS1 labels.

• Prosodic Phrasing: A phrasing and phrase break model,
used to break the utterance into prosodic phrases, is
trained on the text and audio data (described in [29]).

• Feature Extraction: Features (as given in Table III) are
extracted from the utterances to train the intonation class
prediction models.

1In this work a guessed part-of-speech (GPOS) tagger was used for POS
tagging, similar to [28]



• Automatic Stylization and Coding: The phrase-, word-
and syllable tier elements are stylized and coded as
explained in Sections III-B and III-C.

The three tier specific CRF models (phrase, word and
syllable) are then trained on the extracted features for the
stylized and coded intonation class labels. The prediction
results of the three different stylization methods on a held
out test set are given in Table IV. The held out test set was a
randomly selected subset of 10% of each corpus which were
not used in any acoustic modelling (that being duration, pitch
or spectra).

TABLE IV
F1 SCORES OF THE PREDICTED CLASS LABELS OF THE THREE DIFFERENT

STYLIZATION METHODS.

Method Phrase Word Syllable
F1 F1 F1

SLAM 0.044 0.126 0.153
Style A 0.279 0.473 0.653
Style B 0.544 0.798 0.788

In [17] a prediction accuracy of 25.2% was reported on a
SLAM simplification similar to Style A, on a single speaker
United States English Female corpus with a size of 641 000
syllables (± 24 hours of speech at an average syllable duration
of 140 milliseconds [30])

B. TTS Voice

Three TTS voices were built for each of the data sets.
One baseline voice, one voice including the Style A and one
including the Style B intonation class labels.

From Table IV it can be seen that the prediction of SLAM
class labels are poor. This might be ascribed to the fact that the
stylization technique found 39 intonation classes and for most
of the classes there are very few examples in the data. For
this reason no TTS voices were built using SLAM intonation
class labels.

The voices were built using the technique described in [31],
except that the phrase-, word- and syllable tier intonation class
labels are now included in the linguistic features of [24].

1) Objective Evaluation: Table V gives the root mean
squared error (RMSE) f0 values for the different stylization
methods on held out test sets.

TABLE V
RMSE OF f0 (HZ) ON A HELD OUT TEST SET FOR THE DIFFERENT

STYLIZATION METHODS.

Method rms zoleka
Baseline 10.13 36.98
Style A 10.43 43.79
Style B 10.75 42.36

2) Subjective Evaluation: Two subjective evaluations were
done on the English (rms) data, and one on the isiXhosa
(zoleka) data. The first evaluation for English compared the
baseline voice to the Style B method. Twelve respondents
were asked to choose a preference between ten sets of two
synthesized samples.

The results were significant (p < 0.05) with a 59% prefer-
ence for the Style B method. Then Style A was compare to
B, again twelve respondents and ten sets of two synthesized
samples. The results were not significant (p < 0.05) with a
57% preference for the Style B method.

For isiXhosa the test was the same but there were only
three respondents, for baseline vs. Style B there was a 56%
preference for Style B, whilst for Style A vs. Style B there
was a 61% preference for Style B. No significance testing was
done due to the low number of respondents.

V. DISCUSSION AND CONCLUSION

In this paper a new automatic stylization, coding and mod-
elling technique for modelling intonation implicitly in SPSS
TTS was proposed.

The proposed technique shows a marked improvement on
modelling and predicting symbolic intonation class labels from
text, when compared to a similar technique in [17], where the
corpus used was an order of size larger than the one used
in this work. It is believed that this improvement stems from
the use of three phonological utterance tiers (phrase, word,
syllable) in the prediction of the syllable level intonation class
labels, whereas [17] used just the syllable tier.

The technique was evaluated on an English and isiXhosa
single speaker TTS corpus and initial results prove promising.
Even though the objective scores in Table V do not show an
improvement, there is a definite improvement in the “focus”
of the intonation on a phrase level.

The intonation class labels are also prominent in the f0
decision trees used in the SPSS modelling. The technique is
particularly well suited to under-resourced languages in TTS
due to the automatic methods described requiring no special
intonation annotations.

Future work include an in depth analysis of the modelling
on tone languages such as isiXhosa, stylization and modelling
improvements, and an attempt at deducing the f0 curve from
the intonation class labels.
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