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Development of an automated
non-axisymmetric endwall contour
design system for the rotor of a 1-stage
research turbine - Part 1 System Design

Jonathan Bergh', Glen Snedden? and Daya Reddy’

Abstract

Secondary flows are a well-known source of loss in turbomachinery flows, contributing up to 30% of the total
aerodynamic blade row loss. With the increase in pressure on aero-engine manufacturers to produce lighter, more
powerful and increasingly more efficient engines, the mitigation of the losses associated with secondary flow has
become significantly more important than in the past. This is because the production of secondary flow is closely related
to the amount of loading and hence work output of a blade row, which then allows part counts and overall engine weight
to be reduced. Similarly, higher efficiency engines demand larger engine pressure ratios which in turn lead to reduced
blade passage heights in which secondary flows then dominate. This article discusses the design and application of
an automated turbine non-axisymmetric endwall contour optimization procedure for the rotor of a low speed, 1-stage
research turbine, which was used as part of a research program to determine the most effective objective functions for
reducing turbine secondary flows. In order to produce as effective as possible designs, the optimization procedure was
coupled to a CFD routine with as high a degree of fidelity as possible and an efficient global optimization scheme based
on the so-called EGO algorithm. In order to compliment the requirements of the EGO approach, as well as offset some
of the computational requirements of the CFD, the DACE metamodel was used as an underlying surrogate model.
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Introduction

Secondary flows occur where ever a fluid of non-uniform
vorticity is turned. In gas turbines, this occurs when the
inlet boundary layer of the working fluid passes through the
curved passages of the compressor and turbine blade rows
where, because of the relative velocity difference between
the flow at the pressure and suction sides of adjacent blades,
the inlet vorticity vector (£21) is reorientated to include a
component in the streamwise direction ({2s2) at the blade row
exit (Fig. 1).

More physically, secondary flows can be understood to
originate as a result of the pressure gradients which form
within the blade rows of a turbine (or compressor) due to the
reaction forces set up by the blades to turn the flow. These

Figure 1. Generation of streamwise vorticity (2s2) due to the
turning of the inlet vorticity vector (€21) (Reproduced from
Ingram")

pressure gradients, which then are subsequently imposed on
the low momentum fluid of the endwall boundary layer,
cause this low momentum fluid to be forced across the
blade passages in the direction of the adjacent blades where
they are then seen to impinge upon the suction surface
of the adjacent blade. Upon doing this, this fluid is then
seen to separate from the endwall and travel up the blade
suction surface, which then results (as a consequence of
mass conservation), in a return flow further away from the
endwall, giving rise to a streamwise vortex which is then
convected downstream of the blade row. An overall view of
the secondary flow structures is shown in Fig. 2.

Because of the well defined relationship between flow
turning and the cross passage pressure gradients, there is
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therefore a natural link between the degree of aerodynamic
loading of a blade row and the magnitude of the secondary
flow it generates. Trends in turbomachinery design towards
reducing engine weight (and therefore part counts), while at
the same time requiring maintained or even greater power
outputs, have resulted in modern day engines with fewer

TCERECAM, University of Cape Town, South Africa
2 Aeronautical Systems, CSIR, South Africa

Corresponding author:
Jonathan Bergh, CERECAM, University of Cape Town, Cape Town,
South Africa

Email: jonathan.bergh@uct.ac.za



Journal Title XX(X)

Figure 2. The principal components of turbine secondary flow
(Reproduced from Snedden?)

blades and higher individual blade loadings and therefore
increase flow turning in individual blade rows. Combined
with an increased pressure on engine manufacturers to
produce more efficient and environmentally friendly engines
(and therefore more efficiency), these trends have resulted in
a situation where the mitigation of endwall or secondary loss
associated with the secondary flows, is considerably more
important than was previously the case.

Non-axisymmetric endwall contouring

Non-axisymmetric endwall contouring is a well-known but
somewhat controversial technique which was developed
originally for the reduction of the losses associated with
turbine disc leakage flows® by reducing the pressure
variations at the exit of each blade row, although following
the discovery of reductions in the secondary flow during that
investigation, it has been developed almost exclusively as a
method for the mitigation of secondary loss (see*?).

In essence, non-axisymmetric endwall contouring works
by allowing the shape of the endwalls of the turbine hub
or shroud to depart from that of a cylinder, and instead,
take on non-axisymmetric or three-dimensional curvature.
As a result of this and therefore the curvature of the
streamlines in the vicinity of the contoured endwalls, non-
axisymmetric endwalls can be used to manipulate the local
endwall pressure field and consequently reduce the static
pressure gradients which were described above as being the
principal driving force of the secondary flows.

Prediction of secondary loss and loss ‘proxies’

Many authors have described the inability of existing
computational fluid dynamics (CFD) codes to predict the
secondary loss (i.e. the losses associated with the secondary
flows) with sufficient accuracy for it to be used directly in the
design of non-axisymmetric endwall contours*°. As a result
of this, the use of so-called proxies for the secondary loss
have become commonplace in non-axisymmetric endwall
design and optimization routines, although a few authors '
have claimed successful use of the coefficient of total
pressure loss within the literature. As a result, to date
there exists a wide variety of measures which have been
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developed for identification and minimization of secondary
flows in non-axisymmetric endwall contours. Further, the
independent nature of many of the efforts related to endwall
design research, has resulted in considerable debate relating
to the efficacy of many of these quantities.

Table | gives an indication of the variation in quantities
which have been used to date in the design of non-
axisymmetric endwalls.

Endwall design procedure

As indicated by Gregory-Smith?!, due to the complexity
of their flows, modern gas turbines require the use of
fully viscous, 3-dimensional CFD computations for their
aerodynamic design, which can - depending on the density
of meshes used for the calculations - be extremely
computationally expensive. Further, in order to compare
the relative effectiveness of each objective function for the
design of endwall contours in this investigation, it was
necessary to produce as globally optimal designs as possible.
Previous researchers, such as Macpherson'? & McIntosh '
used the Genetic Algorithm of Holland*” to search for the
most optimal solution, although their computational meshes
were relatively small (~ 300 x 10® cells) and they had
access to a large scale cluster computing service. Others, who
were less concerned with locating the global optimum, have
used various gradient-based algorithms, such as Nagel’ &
Praisner '’ who both used sequential quadratic programming
(SQP) to search for improved designs.

In order to produce mesh independent results for the
objective function quantities and blade geometries used in
this investigation, as well as maximize the fidelity of the
predicted results, it was found that much larger meshes (~
2.4 x 105 cells) were required, which made the use of direct
global optimization techniques such as those used mentioned
above, computationally intractable

Surrogate modelling and EGO algorithm

In order to minimize the computational costs associated
with the objective function evaluations for the current
investigation, a design system based on the surrogate-based
EGO (Efficient Global Optimization) scheme of Jones?’
(which itself is based on the so-called DACE (Design and
Analysis of Computer Experiments) metamodel of Sacks>*)
was developed.

Although originally developed as a geostatistical tech-
nique for predicting the distribution of mineral deposits
by Krige?, the DACE model has become significantly
more widely used basis for surrogate based optimization
(SBO) routines, in which some of the original computational
expense is alleviated by performing a portion of the required
objective function evaluations on so-called ‘surrogate’ mod-
els, whose computational costs are less than those of the orig-
inal function. Further, some of the reasons for the increased
popularity of the DACE model within the engineering com-
munity is because of it’s inherent ability to model the highly
complex and non-linear functions often found in engineering
problems without any a priori knowledge of the objective
function hypersurface being approximated, as well as its
ability to make predictions about the accuracy of its own
predictions of the original objective function it models*.
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Table 1. Summary of design metrics used to date in the design of non-axisymmetric endwall contours

Researcher Test geometry Parametrisation  Design metric (quantity)
Rose® Turbine Sinusoidal static pressure
Harvey et al* Cascade, 2D Fourier static pressure, yaw angle
Brennan et al® Turbine Fourier SKFEHg

Harvey et al® Turbine Fourier SKEHR
Praisner et al '° Cascade, 2D Free Cpo+ yaw angle
Germain etal'’ Turbine Sinusoidal SKEc + Cpo+ yaw angle
Schuepbach et al ' Turbine Sinusoidal SKEc, yaw angle
Macpherson etal®  Cascade, 2D Fourier Cske+ yaw angle
Poehler et al™* Turbine Sinusoidal SKEHp
Vazques et al ® Cascade, 3D Unknown SKEHg
Mclntosh et al"® Cascade, 2D Fourier Cike, [ u*dA, yaw angle
Hilfer et al '’ Cascade, 2D Fourier Clske + ™+ yaw angle
Bergh et al '® Turbine Fourier Cske+ yaw angle
Miyoshi et al '° Turbine Free € (enstrophy)
Poehler et al® Turbine Free stage efficiency

As shown in Eqn. 1, in contrast to the many other
regression models, in which the majority of effort is
placed on the selection of the underlying trend model and
comparatively little emphasis is placed on any error (or
deviation) terms, in the DACE model, the objective function
is modelled as a stationary Gaussian process comprising of
a relatively simple trend model (a constant process mean)
and a series of stochastic but correlated deviations from this
mean:-

y(@) = i+ @) (1)
~—~ ——
process mean  deviation

where y is the predicted objective function value, [ is the
process mean, € is the deviation term and z? is the current
prediction point.

Since, as indicated previously, in the DACE model the
majority of effort is concerned with the modelling of
the process deviation, the form of the so-called Spatial
Correlation Functions (SCF) used to model this term are
given special attention. Among the most common SCF”s
are the so-called exponential correlation functions, in which
the correlation between the deviation terms at two different
input locations may be given by Eqn. 2:-

Corr [e (fl) ,€ (fj)] = exp [—d (a_fi,fj)] 2)

where d(,77) is a weighted difference between the i'" &
4" input vectors.

Further, in the DACE model, the weighted difference may
be given Eqn. 3:-

Ph

k
a(#, &) =Y on |ah — o} 3)
h=1
where k is the problem dimensionality (i.e. the length each
input vector), 6, is the weighting applied to the ht" vector
component difference, %, 2}, are the h'" component of the
it" and j*" input vectors and py, is a smoothness parameter,
which for this investigation, was set to 1.9.

As indicated previously, the EGO algorithm is a search
methodology originally developed by Jones>* for use with
the DACE metamodel and as suggested by its name,
was intended for the global optimization of systems

Prepared using sagej.cls

Table 2. EGO optimization schedule

Iteration value ‘g’ value Use

1-150 EL 1 Balanced global/local search
150-300 WhB, 0 Local search

> 300 W By 0 Local search (if required)

incorporating expensive objective functions. Principally,
the major advantage of this approach, is its ability to
exploit the DACE model’s capability to make predictions
about the accuracy of its own predictions. Briefly, rather
than advancing by attempting to optimize the DACE
model objective function predictions directly, the EGO
algorithm proceeds by selecting candidate input vectors
which maximize the so-called Expected Improvement (EI)
of the underlying DACE model, which takes into account
regions of already known favourable objective function
values as well as regions in the model with a high
degree of uncertainty. Following the construction of this
surface, appropriate Infill Search Criteria (15C') are used to
determine which areas of the EI hypersurface are most likely
to yield an improvement in the current best known (true)
objective function value, after which the true but expensive
objective function is evaluated. By using this approach,
the efficiency of the optimization routine is significantly
improved, since expensive objective function evaluations are
limited to those regions of the parameter space where an
improvement in the current best objective function value is
most likely.

A combination of ISC' were used as part of the EGO
algorithm for this investigation similar to the so-called
Cool criterion of Sasena?®, although for the present case,
a combination of only two infill criteria were used:- the
EI; I1SC function, in which the searching of the surrogate
objective function surface is reasonably balanced between
areas of already known low objective function values (and
therefore high expected improvement) and areas of the model
with reasonably high uncertainty, and the so-called W B;
criteria, which was developed by Watson & Barnes®’ as
a means for determining threshold-bounded extremes, and
therefore (in the current context), an extremely local search
in regions with already known favourable objective function
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Table 3. Driven curve parameters

Curve number Amplitude (c.) Period (n.,,) Phase shift terms (v;)
2 (c2 +c3) (n2 +n3) S i+ e ¥
2 2 R 2 3
3. (c3 + ca) (n3 +na) Zi:l i + Zi:l ¥s
2 2 5 2
4, (ca ‘; cs) (n4 ‘5 ns) Zi:l i ; Ei:l Wi

values. The final EGO optimization schedule used in this
investigation is given in Table 2. Finally, for a full treatment
of the EGO and the Cool algorithms, the reader is directed to
the previous works of Jones and Sasena respectively 2328,

Endwall parametrisation

In this investigation, the rotor hub endwall was parameterised
using a variation of the so-called ‘Fourier series’ approach
of Harvey”, in which the endwall curvature is defined by
a series of curves defined by Eqn. 4 in the circumferential
direction and using interpolating non-uniform rational b-
splines in the axial direction.

k
or(0) = ag + ; (an sin (%ﬁ) + by, cos (%ﬁ))

)

This approach was used as, even with a relatively small
number of harmonics (k = 3) included in the definition of
each circumferential endwall curve, a considerably large
range of endwall geometries could be produced. In addition,
as a result of the periodic nature of the expression, this
parametrisation helped to preserve the overall area of the
flow passage and so limited the effects of so-called throat
errors in the final designs produced in that investigation.

One issue encountered by almost all researchers who
used the parametrisation of Eqn. 4, was that the endwall
curvature it produced was foo complex. As a result, in most
investigations, the number of harmonics included in the
definition of the endwall curvature, was limited to 1.

Since in this investigation, the main objective was to test
the efficacy of each flow metric in terms of its fundamental
ability to isolate and then target the secondary flows, the
above parametrisation was simplified to one equivalent to the
inclusion of only the first harmonic of Eqn. 4 and is given in
Eqn. 5 below. A further advantage of this parametrisation,
was that this formulation reduced the epistatis of the endwall
parameters, allowing the endwall amplitude, periodicity &
phase angles to be controlled directly rather than as a result of
a combination of the coefficients a,, & b,, for each harmonic.
This in turn then also allowed for the simpler imposition of
the variable constraints required for each optimization run.

kk#£1

0
ri(0) = Ro + ¢ sin <% + <¢1 + > %‘)) ®)

=2

The parametrisation of Eqn. 5 was applied to the endwall
surface as a set of x4 ‘driving’ curves in the circumferential
direction (Fig. 3, curves 2/3/4/5). In addition, a set of x9
NURBS curves were used to specify the curvature of the
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construction curves

aa:ialg,loo%
azialg g7 5%
amial7’75%
azialg g2 5%

azial5’50%

axialy 37 5%
amial3’25%
azialy 15 5%

amiall)o%

(a) Overview

44.8mm

-~
2.5mm2.5mm

25mm

(b) Dimensions

(c) Perspective

Figure 3. Curve network used to generate the rotor
non-axisymmetric endwall surface. The circumferential
curvature defined by the driving (2, 3, 4 & 5) & driven (2a, 3a &
4a) curves. The axial curvature was defined by the NURBS
curves (axiali—g) fitted through control points at 12.5%
intervals along each circumferential curve. The limiting annular
curves (1 & 6) and construction curves are also shown



Bergh et al

Table 4. Variable constraints used with the turbine endwall parametrisation

Variable Constraint
Endwall amplitude Ck 0<cr <3.5mm
Endwall amplitude change Ackr+1 0 < Ackk1 < 2mm
Curve periodicity Nk 0.5<n, <1
Periodicity Angr+1 0 < Ang gy <0.25
Phase angle (curve 1) 1 —180° < 91 < 180°
Phase angle change (curve 2/3/4) wi —45° < ; < 45°

endwall in the geometry in the axial direction. NURBS curves
were selected because of their more local responsiveness to
perturbations in their control points and this was considered
beneficial for this case. In addition however, in order to
ensure a smooth transition between each of the ‘driving’
curves, an additional x3 ‘driven’ curves (Fig. 3, curves
2a/3a/4a) were used with the coefficients of these curves
calculated as per Table 3. Thereafter, a series of x3 annular
curves were used at the entrance and exit of the contoured
region to constrain the endwall to the datum endwall radius
ahead and aft of the blade passage.

Finally, as shown in Fig. 3a, the endwall design space was
limited to the forward portion of the blade passage. This
was done for two reasons:- firstly, since this investigation
considered a rotor in an actual rotating albeit model turbine,
it was required that the contouring be limited to a region
which did not extend far up or downstream of the rotating
blade row, and secondly, a series of investigations into
various endwall designs at Durham University, showed that,
of all the designs produced, the most successful of these
was the so-called Durham P2 design', whose contouring
was limited to a reasonably compact portion of the endwall
close to the leading edge of the blade and therefore a similar
approach was taken during the design of the present endwall
parametrisation scheme.

Constraints Despite the positive nature of the pressure
gradients in a turbine blade row and because of the three-
dimensional nature of endwall contouring, thus far one of
the main issues encountered has been the introduction of
excessive local diffusion into the flow, which can lead to
flow separations and high total pressure losses, nullifying
any benefits introduced as a result of the endwall contouring.
In order to minimize this, in addition to the use of various
boundary constraints on the design vector parameters,
the change between the endwall parameters of successive
‘driving’ curves were also limited. For instance, in addition
to limiting the maximum and minimum amplitudes of each
driving curve, the change in amplitude between each curve
was also limited. A full summary of the variable constraints
used for all designs are summarized in Table 4.

Database design

The initial DACE model databases were constructed by
constructing a Latin Hypercube Sampling (LHS) design
on the unit hypercube using the MATLAB [hsdesign.m
function which was then further optimized using the maximin
optimization criteria. Because the maximin criteria is a
relatively difficult criteria to optimize, the total number of
iterations for the LHS optimizations were set at 500 x
Nparameters- 1he size of the databases were selected using
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Table 5. Optimizer settings for the MLE and ISC subproblems

Setting Value
Population size (popsize) 48
Scaling factor (F’) 0.8
Cross-over rate (C'r) 0.8
Varp; 1o (MLE) 10?2 /10712
Varyi o (ISC) as per Table 4
Min / Max iterations (it.in/masz) (MLE) -/ 3500
Min / Max iterations (it,,in /maa) (ISC) 1000/ 5000

the Ngamples = Mparameters X 10 rule-of-thumb resulting in
a total of 120 initial designs for each optimization quantity.
Finite volume (F'V') meshes for each database design were
then constructed and numerical solutions produced for each
geometry. For each mesh, a minimum element skewness of
0.3 was tolerated while each simulation was converged until
the each of the residuals was decreased to a minimum of
than 1 x 107> and in most cases, below 1 x 10~6. Mesh
skewness and residuals were calculated using the definitions
presented in”’ &Y respectively.

Any geometry for which a 'V mesh of appropriate quality
or for which a satisfactorily converged steady-state solution
could not be computed was removed from their respective
model databases. Although this removal of these designs
from the database meant that the remaining databases were
not strictly complete LH S designs anymore, because only
a few designs were actually removed (~ 10) from the
databases, this was considered acceptable.

Fitting

While a number of methods exist for the fitting of DACE
models, the so-called Maximum Likelihood Estimation
(M LFE) method in which the so-called likelihood function
(L) or concentrated likelihood function (L.) is maximized,
was chosen for this work. Briefly, in contrast to the
generating random variables from a known distribution, the
M LE approach seeks to determine the hyperparameters g of
an assumed statistical model such that the likelihood of the
observed variables having been drawn from that distribution,
is maximized. Since in the DACE method, the deviations of
the model from the mean are modelled as random stochastic
deviations from the process mean, this approach has been
found to be a robust choice for the estimation of the requisite
model hyperparameters®'. While it is possible in some
circumstances for closed form solutions for the optimum
model parameters to be found, in most cases, the optimal
model parameters must be determined using some numerical
optimization technique. In addition, in practice, in order to
avoid issues related to the large ‘flat’ zero gradient portions
and ridges often found on the likelihood surface (which then
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may present difficulties to the chosen optimization approach)
as well as because this does not change the location of the
maximum likelihood estimate, in most cases, the logarithm
of the concentrated likelihood function (In(L.)) is used as
the target objective function during the M L E procedure.
Following Jones >, In(L,) can be expressed by Eqn. 6:-

nln (02) +In (|R|)

(. (9)) = -2 (©)

where o2 is the variance of the DACE model deviations,
n is the number of data points in the sample, and R is a
matrix of correlations between the known data points (i.e. the
correlation matrix), where (R; ;) = Corr [e (Z') ,e (27)].

In this investigation, the M LE problem was posed as
a minimization problem, and therefore finally, the model
parameter estimation problem was given by:-

—n (£. (7)) (7)

min :
GeRF
subject to:-
0, >0
where:-
h=1,2,..k

Two population-based, evolutionary algorithms were
trialled for the solution of the M LE subproblem:- the
well-known Genetic Algorithm (G A) of Holland?* and the
relatively new Differential Evolution (DFE) algorithm of
Storn and Price**. Testing on three sets of CFD generated
aerodynamic data showed that with the exception of one
dataset, the DFE algorithm was found to converge to not
only better (i.e. higher) optima but also faster and more
consistently to these maximum points. It should be noted
that, although, as was expected, as a result of the generally
higher M LE estimates produced by the DFE routine, the
Root Mean Square errors for the D E-fitted DACE models
were lower, in general, smaller Maximum Error values were
produced by the G A-fitted DACE models. The final settings
for both the M LE and I.SC' subproblems are summarized in
Table 5.

A number of well-known issues exist with the use of the
M LE approach for model fitting. In this investigation, the
two main issues encountered were:- the first associated with
the maximization of the In(L.) function and the second
related to the numerical issues associated with the ill-
conditioning of the correlation matrix (R) which is used to
store the correlation data between various data points in the
DACE model database.

Remedies to MLE optimization problem Depending on the
arrangement of the datapoints used in the construction of
the initial DACE model database, it is possible that the
In(L.) function may be found to be either monotonically
increasing or decreasing with increasing or decreasing
magnitudes of the model hyperparameters, and therefore
contain no internal optimizers. In these cases, the M LE
fitting routine will either select as small or as large as
possible a value of the hyperparameters. In the case were
the In(L.) function is found to increase with decreasing
values of the hyperparameters (and therefore very small
values for 0 are selected), numerical issues related to the
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poor conditioning of the correlation matrix R are usually
encountered, while very large values for the components of
] usually result in the degradation of the predicted DACE
model hypersurface to that of a constant trend punctuated at
the location of each data point by a local excursion to the
known data point value, leading to very poor generalisation
of the model between each known data point.

In order to deal with this situation, in addition to
variable constraints on the maximum and minimum 6
parameters, simple inequality constraints were used to limit
the maximum value of the In(L.) function. In addition,
a further inequality constraint was used to prevent the
condition number (k) of the correlation matrix R getting too
small.

e (0) 1 In(L.) > —1 x 10%° ®)

e(8) 1 In(L) <1 x 100 )
e3(f) : k(R) <1 x10% (10)

by : 60 < 102 (11)

by : 6> 10712 (12)

where R is the regularized correlation matrix(see

\Almaz

following section), m(fi) = o , R € R™™ and Ao

and A, are the largest and smallest eigenvalues of R
respectively.

Remedies to ill-conditioning of correlation matrix R The
ill-conditioning of the DACE model correlation matrix R
is a serious issue related to the use of the DACE model as
well as EGO algorithm because the numerical inversion of
the matrix is required at a number of junctures throughout
the model fitting and prediction procedures.

As indicated previously, the distances between the data
points are computed using a weighted distance and where
the weightings applied to each dimension correspond to
the components of the 7] hyperparameter vector (optimized
during the M LE fitting procedure above). Following Kok **,
an alternative form for this weighted distance is given in Eqn.
13, where by, is a range parameter equal to 1/6;, and all other
quantities are as defined previously.

Since, as discussed above, the condition number (k) of
a matrix is given by the ratio of maximum : minimum
eigenvalues of R, from Eqn. 13, it is clear that as 6, — 0,
by, — oo and the corresponding weighted distances between
the data points becomes infinitely small. Under these
conditions, R tends towards the unit matrix, all of whose
eigenvalues are equivalent to 0, apart from one, which is
equal to the number of data points in the database. In this
case, the condition of R will decrease since x(R) — oc.

Physically, the decrease in the weighted distances between
each data point with the decreasing ) hyperparameters may
be viewed as the data points used in the correlation matrix
becoming increasingly close together until the columns
of R become linearly dependent and offer no correlation
information to the underlying DACE model.

B Ph
‘rh h

(13)
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A second scenario, although unrelated to the above, but
which also has the same effect, is that which is potentially
approached at the end of an EGO optimization run, and that
is the repeated sampling of the modelled objective function
in an increasingly small region of the parameter space. This
also results in a decrease in the linear independence of the
columns of R and therefore its condition number.

In order to reduce the effects of these two scenarios, the
method of Lophaven®* was used, in which a regularized
correlation matrix R is defined by adding a small positive
number (v) (the so-called nugget) to the diagonal of R.
Following Lophaven?*, the addition of the nugget to the
unmodified correlation matrix is guaranteed to improve the
conditioning of R because since S\j = A; + v, the condition
of K(R) < r(R) since <7‘)‘|"””+V) < (Ll""”').

always [Almin+v always Almin

For this investigation, the nugget was set to:-

v=(10+m)epn, (14)

where m was the number of initial data points in the DACE
model database and €,, was the so-called machine accuracy
equivalent to ~ 2.2204e~ 16,

Model fitting validation Using the techniques above,
separate DACE models were generated for each of the
target quantities which were to be used as the basis of
the objective functions for each endwall. After fitting, the
quality of each fit was assessed using the so-called Leave-
One-Out (LOQO) cross-validation technique, in which the
optimum g hyperparameters are estimated, and thereafter a
single database sample is removed from the database, and the
various DACE model parameters (i.e. R) are re-calculated,
and then the value of the removed sample is estimated
using the original ] hyperparameters and the reduced model
coefficients. This estimated value is then compared with the
original known value of the removed sample.

For each database, the LOQO cross-validations were
performed for each of the database entries, whereafter the
validity of each database was assessed by computing the
following metrics:- Root Mean Square error (RM SFE), Max
error, and Max Std Residual (R 4). The consolidated results
for each initial database are shown in Table 6 and while
the root mean square and max errors should be low, in
addition, since the DACE model should be 99.7% sure of
its predictions, the maximum standard residual for each
database should be lie within 3-standard deviations of the
mean. While this was acheived for most of the metrics,
the maximum residual for the 7, database did not meet
this criteria, however, despite this shortcoming, this database
was deemed acceptable since the criteria was only slightly
breached.

Stopping criteria

The use of the population-based D E algorithm for the fitting
of the DACE model hyperparameters, combined with the
computational expense associated with the calculation of the
concentrated In(L,.) function for the M L E sub-optimization
problem, meant that - as the number of FGO algorithm
iterations increased - the overall computational expense
associated with the use of the DACE model increased. This
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Figure 4. Comparison of time requirements for DACE model
parameter tuning with database size

is because at the end of each EGO iteration, the results of
the previous objective function evaluation are added to the
DACE model database, which in turn results in an increase
in the overall size of the correlation matrix, which must be
numerically inverted during each In(L..) function evaluation.

Since, in many cases, the increase in the temporal
requirements associated with the fitting of the DACE
model may approach or even exceed those of the CFD
model calculations, in many cases, a stopping criteria
based on the maximum number of FGO iterations which
can be reasonably performed is used instead of running
the algorithm to some sort of predetermined convergence
criteria.

For this investigation, the CFD calculations were
performed using a 64-core, multithreaded compute server.
The walltime requirements for the M LE fitting vs. CFD
computations for the total number of EGO iterations, as
well as the total DACE model database and total predicted
optimization time for a single endwall design, are shown in
Fig. 4. Based on the overall total optimization times shown
in Fig. 4, a total number of 300 EGO iterations was selected
for each design optimization. This corresponded to a model
fitting time requirement equivalent to nearly 13/4 times (~
123 min) that of the actual CFD computations (~ 70 min),
and a predicted total optimization time requirement of ~ 24
days per design.

Test case

The test case used in this investigation was the CSIR low
speed, 11/2 stage research turbine. At the hub, the blading
of the rotor and 2"? stage nozzle for this turbine closely
resembles that of the Rolls-Royce RB211 high pressure
turbine, although modifications to the aerofoil and twist of
the blades were made to accommodate the specific details of
the current environment. In this investigation, the turbine was
used in its 1—stage configuration, with the downstream (i.e.
S52) nozzle removed. This was to allow for quasi-‘mixed-
out’ measurements some distance downstream of the rotor
in addition to at the rotor exit, to be made.

A summary of the design and working characteristics of
the turbine are shown in Table 7, where the large turning
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Table 6. Comparison of LOO cross-validated RMSE, Max Error & Max R.:q values for each objective function for the initial DACE

model database

Obijective function

Npoints,final

Leave-One-Out cross-validation

Mean RMSE Max Error Max Rstq
Nee-based 93 20.52 0.55% (0.11)  1.38% (0.28) 2.43
Cspe-based 93 10.61 5.39% (0.57) 16.04% (1.70) 2.37
Chpo,rei-based 92 1492 1.36% (0.20) 4.10% (0.61) 2.74
Baeo-based 93 5.02  4.08% (0.20) 13.13% (0.65) 2.82
SKFEH-based 93 28.58 7.81% (2.23) 22.37% (6.39) 2.68
Nae-based 93 441 536%(0.23) 15.22% (0.67) 3.06
Cske,1 + Baev,0.7-based 93 14.09 5.04% (0.71) 15.93% (2.24) 2.53
Choret.1 + Baev.0.7-based 92 18.40 1.25% (0.23)  2.50% (0.46) 2.60
Table 7. Summary of turbine specifications in place of the upstream blade row was identically similar
INLET to the mixing plane approach, except that changes in the
Design axial velocity 2138 m/s downstream pressure field are not propagated back upstream
Design wheel speed 2300 where they may affect the flow in the NGV blade row.
However, since the potential effects of the downstream blade
NGv (i.e. the rotor) on the upstream blade row where seen to be
No. of blades 30 negligible, this simplification was deemed to be acceptable.
Inlet angle Hub 0°
Tip 0° Geometry generation and meshing The turbine endwall
Outlet angle Hub 68'26: geometry for each CFD calculation was generated using the
Tip 61.20 Gambit software application, which although is primarily
ROTOR intended as a meshing application, was used only for the
No. of blades 20 generation of the endwall geometry in this investigation.
Inlet angle Hub 42.75° This was done by importing the circumferential driving and
Tip -23.98° driven curve definitions into the application as formatted
Outlet angle Hub -68.00° point data and generating the following network curves
Tip 71.15° discussed previously, and then generating the 3-dimensional
Stage power 3.87kW endwall surface. The endwall surface was then imported into
Stage pressure ratio 1.0393 the ICEMCFD meshing software suite, where the remaining
Exit Reynolds number 127,500 turbine geometry was generated.
Flow coefficient (¢nup) 0.52 In order to ensure as much uniformity as possible between
Loading coefficient (¢nub) 2.94 different designs, a single prototype CFD mesh definition
Degree of reaction (An.us) 0.38 was created using the annular turbine case, and the endwall

angle (~ 111°) for the rotor is clear, in turn making this case
a good candidate for studies involving secondary flows.

Numerical modelling

The numerical model used in this investigation was limited
to the portion of the turbine downstream of the NGV blade
row. This was done in order to reduce the computational
expense related to evaluation of the true objective function
during each EGO iteration. Accordingly, the flow into the
rotor domain was modelled using 1-dimensional profiles for
the flow and turbulence quantities and were extracted from
a previous simulation of the full turbine in which the well-
known mixing plane approach was used to link the stationary
and rotating domains. In this approach, the transported
quantities are assumed to be ‘mixed out’, meaning that
the upstream variables are circumferentially averaged in the
radial direction (for an axial machine), and then applied
as a l-dimensional profile to the inlet of the downstream
domain. Other quantities, such as the fluid pressure, which is
specified at the outlet of the turbine, are averaged at the inlet
boundary to the downstream domain, and propagated into
the upstream domain. Therefore, the use of radial profiles
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portions of this mesh then mapped onto the perturbed
geometry of each candidate endwall, and the perturbed
mesh definition then exported to the CFD solver. The
veracity of this approach was confirmed by using the same
mesh definition discussed above to predict the flow for
an existing non-axisymmetric endwall design, for which
existing experimental results were also available. Finally, a
mesh independence study using both the datum (annular) as
well as the existing contoured endwall design was carried out
and the mesh independence of the prototype mesh confirmed
by examining the mass-averaged metrics defined previously
for both cases. A summary of the final prototype mesh
specifications is given in Table 8.

In order to maximize the fidelity of the CFD calculations,
the prototype mesh was created to be as dense as possible
without rendering the overall optimization procedure
computationally intractable. This included the full resolution
of the flow boundary layers on both the endwall as well as
blade surfaces and the flow in the tip gap, which is often
modelled using periodic boundaries to reduce computational
expense.

Computational Fluid Dynamics The flow solutions for each
EGO iteration were computed using the Ansys Fluent CFD
solver, which was selected as a result of its ability to use
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Table 8. Summary of final optimization mesh specifications

Parameter Value
Total cell count ~ 24M

Radial 108

Circumferential 38
Boundary layer cells

Blade 20

Endwall 20

Tip gap 25
Near wall Re Number (™) (endwall)

Avg 0.497

Min 0.004

Max 0.564

to the so-called coupled-solver, in which the discretized
pressure correction and momentum equations are solved in
a coupled fashion rather than sequentially, often leading to
faster convergence.

Because the endwall design routine was designed to run
without user intervention, the under-relaxation factors for
each equation were set to reasonably conservative values
which were selected by trial and error to provide as stable
convergence as possible but without affecting the overall
solution time too adversely.

The turbulent effects of the flow were modelled using
the k — w SST turbulence closure of Menter>>, which is 2-
equation, eddy-viscosity model. During the development of
the model, a number of alternative turbulence closures were
trialled, included the 7-equation, second order Reynolds
Stress Model (RSM), in which the anisotropy of the
turbulent eddies are considered, as well as a transition
sensitized version of the & —w SST model using the
~-transition revision of Menter®®. Despite the additional
fidelity of both the RSM and ~-transition models, no
significant improvements in terms of either the flow (velocity
or angle) or optimization quantities (coefficient of loss
/ secondary kinetic energy) were noted. In addition, in
comparison to a number of similar 2-equation models, of
those models which were found to adequately predict the
flow, the £k —w SST was found to be more sensitive to
changes in the endwall geometries, and therefore considered
a better candidate for use as part of an optimization routine.

Objective functions

Eight different objective functions were trialled during this
investigation:- including 6 ‘simple’ (which comprised of
only a single metric) and 2 ‘compound’ (which comprised of
a combination of two different base metrics). In all cases, the
problem at hand was formulated as a minimization problem,
while for the ‘compound’ functions, the multi-objective
nature of the problems were converted to equivalent single
objective optimizations by constructing a weighted pseudo-
objective function. Further, for the ‘compound’ objective
functions, the weightings for each metric was selected from
the similar examples in the literature.

For the efficiency (i.e. 7, Eqn. 15)-based objective
function, the rotor efficiency was defined as the well-known
rotor total-total efficiency, while for the secondary kinetic
energy (i.e. Cgge, Eqn. 16)- and design efficacy (i.e.
Nde, Eqn. 20)-based objective functions, the flow vectors
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(a) Overview

(b) Leading edge detail (hub)

(c) Trailing edge detail (hub)

Figure 5. Computational mesh used in CFD calculations
showing the overall rotor configuration, hub leading and trailing
edge detail (Rotor suction surface not shown).

involved in the definition of each metric are shown in
Fig. 6a & 6b respectively. The rotor loss (Cpo rer, Eqn.
17)-based objective function was formulated as the loss
in total pressure between the inlet and outlet of the rotor
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(a) Secondary flow

tangential

(b) Design efficacy

Figure 6. Definition of flow vectors for the Cs. and nqe metrics

blade passage which is identical to the well-known loss
coefficient used widely for turbomachinery design, although
for the present case, since the blade row in question was a
rotating blade row, the loss in total relative pressure between
the inlet and outlet was used. Finally, the flow deviation
from design (B4ey, Eqn. 18)- and secondary kinetic energy
helicity (SK EH, Eqn. 19)-based objective functions were
calculated at the simple difference between the local design
and actual flow angle and the dot product of the secondary
kinetic energy and streamwise helicity.

Efficiency w
Nt = (Po2—ps.i2)/p — 1/2V3%i5 (15)
Secondary kinetic energy
2 2
Cope = V3,sec‘22‘/£’),rad (16)
Loss _
Ot = s cimenn . 7
Flow deviation
Baew(S) = |B3(S) — Bs,a(5)| (18)
Secondary kinetic energy helicity
SKEH = (SKFE)-H (19)
Design efficacy B
U3 - 034
Nde = m (20)
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Table 9. Summary of cost functions

Endwall Cost function
’f]tt'based (1 — ’f]tt) x 100
Cske-based (1 x Cske) x 100
Cho,rei-based 1 x Cpo,retr) x 100

(
Baev-based (1 X (Baew) x 1

SK EH-based 1x (SKEH) +1 x 10°
Nde-based 1 % (J1 = nae|) x 100

Cske,l + ﬁdev,oﬂ'based (1 X Csk'e) + (07 X Bdev) x 1
CpO,rel,l + ﬁdeu,&?'based (1 X CpO,rﬁl) + (07 X Bdcv) x 1

where p, p, V and [ are the fluid density, pressure,
absolute velocity and relative angle magnitudes respectively,
w is the rotor specific work, S is the blade span, H is
the streamwise helicity, ¥ and g are the flow velocity and
angle vectors, and subscripts 02/03, 2/3, rel, d, sec and
rad denote stagnation, static, relative, design, secondary and
radial quantities of the flow at the X2 & X3 measurement
planes respectively.

For the SKEH, the secondary kinetic energy (SKE)
was calculated identically to the Cgk. except not non-
dimensionalized by the upstream kinetic energy.

The rotor efficiency defined in Eqn. 15 represents
the aerodynamic performance of the rotor based on
incompressible and isentropic assumptions (i.e. flow
pressures and velocities only). This was considered
acceptable for the current work due to the low speed nature
of the rig, and for a full derivation of the quantity the
reader is directed to Snedden®’’. In addition, and also due
to the low pressure nature of the rig, the radial velocities
(V}fm 4) in Eqn. 16 where taken to be any radial component
in the flow, since the design velocity contained no radial
component. Further, for both the Csie (Eqn. 16) and Bge,
(Eqn. 18) quantities, the off axis flow velocity and angle
were calculated using the design flow angle, which itself was
calculated during the design of the blading using the NREC
design suite *® and represented as a function of the blade span
(S).

The complete definitions of each objective function are
given in Table 9. Finally, where required, a scaling factor was
applied to each objective function to ensure that the overall
value of each objective function were similar in magnitude
for comparative purposes.

Mass-averaging

In those cases where a single input quantity was required for
the calculation of the metrics above, the data on each of the
X2 & X3 measurement planes were first mass-averaged. This
was achieved using the following function:-

Zi Zj Yi,jcvm,j
Zi Zj Cﬂ'u,j

where Y; ; is the quantity to be averaged, at the 1, gth
measurement point, Cmi,j is the mass flow coefficient
calculated for the same measurement point, and Y is the
final mass-averaged quantity. The mass flow coefficient itself
(Cy;,) was calculated using:-

Y = 1)

Cm — 5J

(2%

(22)

mrefi,]
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where 1h; ; is the mass flow at the particular measurement
point and 1it.cf, ; is a reference mass flow based on the
turbine inlet flow velocity.

Results

Endwall geometries, cost function reduction and
convergence

The final endwall geometries for each of the objective
functions are shown in Figs. 7 - 8, while the overall reduction
in each cost function, normalized by the starting objective
function values, is shown in Fig. 9.

Finally, a collection of statistics, designed to quantify
the convergence behaviour of each objective function, are
shown in Figs. 10a - 10d. These convergence properties
are important, because highly effective (i.e. objective
functions resulting in large reductions in objective functions,
and therefore potentially large improvements in turbine
performance) as well as *well-behaved’ objective functions
would be much more attractive to designers.

Endwall geometry In general, and as might be expected,
the majority of the so-called ‘simple’ design metrics
produced reasonably simple endwall geometries, with the
Net-, Cske- and SBge,-based objective functions producing
designs with of a single ‘hump-and-dip’ type configuration
and which - notably - were somewhat similar to previous
non-axisymmetric endwall designs produced by other
researchers, but using either manual or semi-automated
approaches. Further, the simple Cp rc;-based design was
also noted to produce a somewhat simple geometry, although
this was noted to depart somewhat significantly from
the classical ‘hump-and-dip’ configuration noted for the
previous 3 designs. Finally, although also ‘simple’ metrics,
the shape of the remaining SK EH- and n4.-based designs
were notably more complex.

When compared with Fig. 9, a similar trend was noticed,
and that was that - those metrics that resulted in reasonably
well-defined and simple geometries, tended to display
reasonably well-behaved convergence properties, with the
Net-s Cske=s Bdev- and Chpo rei-based designs all tending
to show large decreases in their respective cost function
magnitudes early on during each optimization run, followed
by small, but reasonably regular reductions in the latter phase
of each run. This was considered significant because, as
indicated previously, cost functions which show predictable
but consistent convergence properties are likely to be
favoured by designers, especially if large reductions in the
overall cost function magnitude can also be achieved.

Significantly, the more complex endwall geometries
produced by the SKEH- and Cyi.-based designs were
also noted to be associated with poorer convergence
characteristics, with Fig. 9 showing that large reductions
were still noted for the SK EH-based design, even at the
end of the final phase of the optimization procedure.

As might be expected, the geometries produced by the
‘compound’- design metrics were noticeably more complex
than their ‘simple’ counterparts, although both designs
appeared to converge in a reasonably predictable manner.
In addition to this, one point of interest associated with
the Cske,1 + Bdev,0.7-based design, was that, the series of
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(a) n:t-based

(b) Csp-based

(¢) Cpo,rei-based

(d) ﬁdev'based

reasonably significant reductions in the overall cost function
late in the final phase of the overall optimization run, were
found to be associated with the formation of the large ridge
extending across the blade passage towards to the exit of the
contoured portion of the blade passage. Study of the flow in
the intermediary designs of this portion of the optimization
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Table 10. Summary of DACE and CFD predicted objective function values

Cost function Final point ADACE/CFD
DACE CFD

nee-based 19.9010 19.8990 +0.01% (+0.0020)
Clsre-based 7.7403 7.7410 —0.01% (—0.0007)
Cho,re1-based 13.0840 13.0853 —0.01% (—0.0013)
Baev-based 3.6412 3.6410 +0.01% (+0.0002)
SK F H-based 21.9793 21.3741 +2.83% (+0.6052)
nae-based 3.6318 3.6176 +0.39% (+0.0142)
Clske.1 + Bdev.0.7-based 10.4587 10.4587 ~ 0.00% (~ 0.0000)
Cpo.ret.1 + Bdev,0.7-based 16.1891 16.1890 ~ 0.00% (+0.0001)

(e) SK EH-based

(f) nge-based

Figure 7. ‘Simple’ designs

run showed that the formation of this ridge, as well as the late
reduction in the overall cost function were associated with a
large decrease in the flow deviation from design (i.e. Bgey)
and therefore in this component of the compound metric and
therefore, a dominance of this constituent of the compound
metric in the final design.

One final observation, in relation to the convergence
characteristics of each of the cost function formulations, was
that, all those functions which included (in at least one of the
components) a ‘loss’ or ‘loss-based’” metric (such as the 7y;-,
Cpo,ret- and Chpo re1,1 + Baev,0.7-based objective functions),
showed the most favourable convergence behaviour, with
large early reductions in the cost function, accompanied by
small additional (if any) further reductions in the latter part of
the optimization procedure, suggesting that potentially large,
well-defined regions of low cost function magnitude were
present on the objective function hypersurface, and that these
were readily discoverable by the design system. In contrast,
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(@) Cske,1 + Bdev,0.7-based

(b) CpO,rel,l + 6dev,0.7-based

Figure 8. ‘Compound’ designs

those metrics based completely, or at least in part, on the flow
angles and / or velocities, showed generally more haphazard
convergence behaviour and greater overall sensitivities to the
progressive changes in the endwall geometries as manifest by
the intermediate endwall designs.

Metamodel performance

The final calculated objective function values for each design
are shown in Table 10 along with the predicted estimates
produced by the DACE model. To compare the accuracy of
the underlying model, the estimates were based on the model
hyperparameters produced by the MLE optimization during
the previous (i.e. 299t") step. The difference between the
calculated and estimated values are shown in absolute as well
as a percentage change from the actual value.

For the majority of objective functions, the model was
seen to perform extremely well, with only the SKFEH-
based model showing any notable difference to the calculated
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Figure 9. Normalized cumulative minimum objective function
values for iterations 1 - 300 (every 30" point plotted)

results. The poor relative performance of the SK F H-based
objective function was of significance because this metric
was also noted to display the poorest overall performance in
terms of the initial model fitting metrics (Table 6) whilst the
difficulties with the metric were also evidenced in the overall
poor convergence properties for the design as discussed
previously.

Conclusions

This paper detailed the design and implementation of a
fully autonomous non-axisymmetric turbine endwall design
procedure, which, as a result of its use of the DACE surrogate
modelling technique, was able to search for the global optima
of various cost functions despite the use of reasonably high
fidelity CFD as part of the process.

The final endwall shapes, when examined in conjunction
with plots of the reduction in the normalized cost function
magnitude, showed a clear bias towards the ‘simple’
objective functions in terms of convergence characteristics,
with those formulated using either the aerodynamic loss
(Cpo,rer) or similar metrics (such as the rotor efficiency, 1)
exhibiting the most preferable convergence characteristics.
Similarly, those objective functions which were based on one
or more of the CFD solution primitive values (such as the
flow angles or velocities) appeared to show less favourable
convergence characteristics.

In addition, when the DACE model predictions were
compared with the CFD predictions for the final optimization
point, a clear connection between the overall predictive
accuracy of the underlying surrogate model and the
convergence characteristics for that objective function was
noted.

Supplemental material

The source code for the endwall design and optimization
routine discussed in this paper may be downloaded at:-
https://github.com/icojb25/TurbineOpti.
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Figure 10. Changes in normalized mean and standard
deviation of all infill points for each endwall calculated per
optimization phase and cumulatively
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Nomenclature

o,0

C

2 gtandard deviation, DACE model variance

mass flow coefficient

C'r differential evolution cross-over rate

F' differential evolution scaling factor

H flow helicity, ¥ - (V X )

P blade pitch

P, DACE model smoothness parameter

Ry nominal turbine hub radius

S blade span

SKE secondary kinetic energy

SKFEH secondary kinetic energy helicity

U blade speed

V' velocity magnitude (absolute)

Chpo,re total pressure loss coefficient (relative)

Cske coefficient of secondary kinetic energy

A degree of reaction, ¢/2(tan S5 — tan (32)

B flow angle (relative)

Baev flow deviation from design angle (relative)
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or change in turbine hub radius

m, My mass flow, reference mass flow

€m machine epsilon / accuracy

N4e design efficacy

1y total-total efficiency

Kk matrix condition number

Amin/maz Minimum / maximum eigenvalues
L. concentrated likelihood function

R DACE model correlation matrix

R DACE model correlation matrix (regularized)
v DACE model regularization nugget

Y mass-averaged quantity

¢ flow coefficient,

Vag
U

¥ loading coefficient, 2¢(tan B2 4 tan 53)

1)1 phase angle of endwall curve 1

p fluid density

0 circumferential coordinate

¢ endwall curve phase shift

6 DACE model hyperparameters

¥ flow velocity (absolute)

#*, 77 DACE ¢*", j*" input points

ZP DACE prediction point

an, b, Fourier series coefficients

by, DACE model range parameter

¢ endwall curve amplitude

d DACE model weighted distance between design points
k number of harmonics, problem dimensionality
n endwall curve period, no. of DACE model datapoints
D, po static / stagnation pressure

w rotor specific work

y DACE model objective function prediction
Subscripts

1/2/3 NGV inlet/ rotor inlet / rotor outlet

ax axial

d design quantity

is isentropic

k endwall curve number

rad radial

rel relative

sec secondary
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